首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 661 毫秒
1.
Lower levels of global DNA methylation in white blood cell (WBC) DNA have been associated with adult cancers. It is unknown whether individuals with a family history of cancer also have lower levels of global DNA methylation early in life. We examined global DNA methylation in WBC (measured in three repetitive elements, LINE1, Sat2 and Alu, by MethyLight and in LINE1 by pyrosequencing) in 51 girls aged 6–17 years. Compared to girls without a family history of breast cancer, methylation levels were lower for all assays in girls with a family history of breast cancer and statistically significantly lower for Alu and LINE1 pyrosequencing. After adjusting for age, body mass index (BMI) and Tanner stage, only methylation in Alu was associated with family history of breast cancer. If these findings are replicated in larger studies, they suggest that lower levels of global WBC DNA methylation observed later in life in adults with cancer may also be present early in life in children with a family history of cancer.Key words: Alu, DNA global methylation, early life exposure, epigenetics, LINE1, methylight, pyrosequencing, Sat2  相似文献   

2.
The monoallelic expression of imprinted genes is controlled by epigenetic factors including DNA methylation and histone modifications. In mouse, the imprinted gene Gtl2 is associated with two differentially methylated regions: the IG-DMR, which serves as a gametic imprinting mark at which paternal allele-specific DNA methylation is inherited from sperm, and the Gtl2-DMR, which acquires DNA methylation on the paternal allele after fertilization. The timeframe during which DNA methylation is acquired at secondary DMRs during post-fertilization development and the relationship between secondary DMRs and imprinted expression have not been well established. In order to better understand the role of secondary DMRs in imprinting, we examined the methylation status of the Gtl2-DMR in pre- and post-implantation embryos. Paternal allele-specific DNA methylation of this region correlates with imprinted expression of Gtl2 during post-implantation development but is not required to implement imprinted expression during pre-implantation development, suggesting that this secondary DMR may play a role in maintaining imprinted expression. Furthermore, our developmental profile of DNA methylation patterns at the Cdkn1c- and Gtl2-DMRs illustrates that the temporal acquisition of DNA methylation at imprinted genes during post-fertilization development is not universally controlled.Key words: genomic imprinting, DNA methylation, Gtl2, secondary DMR, epigenetics  相似文献   

3.
DNA methylation measured in white blood cell DNA is increasingly being used in studies of cancer susceptibility. However, little is known about the correlation between different assays to measure global methylation and whether the source of DNA matters when examining methylation profiles in different blood cell types. Using information from 620 women, 217 and 403 women with DNA available from granulocytes (Gran) and total white blood cells (WBC), respectively, and 48 women with DNA available from four different sources [WBC, Gran, mononuclear (MN) and lymphoblastoid cell lines (LCL)], we compared DNA methylation for three repetitive elements (LINE1, Sat2, Alu) by MethyLight, luminometric methylation assay (LUMA) and [3H]-methyl acceptance assay. For four of the five assays, DNA methylation levels measured in Gran were not correlated with methylation in LCL, MN or WBC; the exception was Sat2. DNA methylation in LCL was correlated with methylation in MN and WBC for the [3H]-methyl acceptance, LINE1 and Alu assays. Methylation in MN was correlated with methylation in WBC for the [3H]-methyl acceptance and LUMA assays. When we compared the five assays to each other by source of DNA, we observed statistically significant correlations ranging from 0.3–0.7 for each cell type with one exception (Sat2 and Alu in MN). Among the 620 women stratified by DNA source, correlations among assays were highest for the three repetitive elements (range 0.39–0.64). Results from the LUMA assay were modestly correlated with LINE1 (0.18–0.20). These results suggest that both assay and source of DNA are critical components in the interpretation of global DNA methylation patterns from WBC.Key words: [3H]-methyl acceptance assay, Alu, DNA demethylation, epigenetics, LINE1, LUMA, methylight, Sat2  相似文献   

4.
《Epigenetics》2013,8(1):76-85
DNA methylation measured in white blood cell DNA is increasingly being used as in studies of cancer susceptibility. However, little is known about the correlation between different assays to measure global methylation and whether the source of DNA matters when examining methylation profiles in different blood cell types. Using information from 620 women, 217 and 403 women with DNA available from granulocytes (Gran), and total white blood cells (WBC), respectively, and 48 women with DNA available from four different sources (WBC, Gran, mononuclear (MN), and lymphoblastoid cell lines (LCL)), we compared DNA methylation for three repetitive elements (LINE1, Sat2, Alu) by MethyLight, luminometric methylation assay (LUMA), and [3H]-methyl acceptance assay. For four of the five assays, DNA methylation levels measured in Gran were not correlated with methylation in LBC, MN, or WBC; the exception was Sat2. DNA methylation in LCL was correlated with methylation in MN and WBC for the [3H]-methyl acceptance, LINE1, and Alu assays. Methylation in MN was correlated with methylation in WBC for the [3H]-methyl acceptance and LUMA assays. When we compared the five assays to each other by source of DNA, we observed statistically significant positive correlations ranging from 0.3-0.7 for each cell type with one exception (Sat2 and Alu in MN). . Among the 620 women stratified by DNA source, correlations among assays were highest for the three repetitive elements (range 0.39-0.64). Results from the LUMA assay were modestly correlated with LINE1 (0.18-0.20). These results suggest that both assay and source of DNA are critical components in the interpretation of global DNA methylation patterns from WBC.  相似文献   

5.
DNA (cytosine-5) methyltransferase 1 (DNMT1) is essential for mammalian development and maintenance of DNA methylation following DNA replication in cells. The DNA methylation process generates S-adenosyl-l-homocysteine, a strong inhibitor of DNMT1. Here we report that S-adenosylhomocysteine hydrolase (SAHH/AHCY), the only mammalian enzyme capable of hydrolyzing S-adenosyl-l-homocysteine binds to DNMT1 during DNA replication. SAHH enhances DNMT1 activity in vitro, and its overexpression in mammalian cells led to hypermethylation of the genome, whereas its inhibition by adenosine periodate or siRNA-mediated knockdown resulted in hypomethylation of the genome. Hypermethylation was consistent in both gene bodies and repetitive DNA elements leading to aberrant gene regulation. Cells overexpressing SAHH specifically up-regulated metabolic pathway genes and down-regulated PPAR and MAPK signaling pathways genes. Therefore, we suggest that alteration of SAHH level affects global DNA methylation levels and gene expression.  相似文献   

6.
We report a method for studying global DNA methylation based on using bisulfite treatment of DNA and simultaneous PCR of multiple DNA repetitive elements, such as Alu elements and long interspersed nucleotide elements (LINE). The PCR product, which represents a pool of approximately 15000 genomic loci, could be used for direct sequencing, selective restriction digestion or pyrosequencing, in order to quantitate DNA methylation. By restriction digestion or pyrosequencing, the assay was reproducible with a standard deviation of only 2% between assays. Using this method we found that almost two-thirds of the CpG methylation sites in Alu elements are mutated, but of the remaining methylation target sites, 87% were methylated. Due to the heavy methylation of repetitive elements, this assay was especially useful in detecting decreases in DNA methylation, and this assay was validated by examining cell lines treated with the methylation inhibitor 5-aza-2′deoxycytidine (DAC), where we found a 1–16% decrease in Alu element and 18–60% LINE methylation within 3 days of treatment. This method can be used as a surrogate marker of genome-wide methylation changes. In addition, it is less labor intensive and requires less DNA than previous methods of assessing global DNA methylation.  相似文献   

7.
8.
The parent-of-origin specific expression of imprinted genes relies on DNA methylation of CpG-dinucleotides at differentially methylated regions (DMRs) during gametogenesis. To date, four paternally methylated DMRs have been identified in screens based on conventional approaches. These DMRs are linked to the imprinted genes H19, Gtl2 (IG-DMR), Rasgrf1 and, most recently, Zdbf2 which encodes zinc finger, DBF-type containing 2. In this study, we applied a novel methylated-DNA immunoprecipitation-on-chip (meDIP-on-chip) method to genomic DNA from mouse parthenogenetic- and androgenetic-derived stem cells and sperm and identified 458 putative DMRs. This included the majority of known DMRs. We further characterized the paternally methylated Zdbf2/ZDBF2 DMR. In mice, this extensive germ line DMR spanned 16 kb and possessed an unusual tripartite structure. Methylation was dependent on DNA methyltransferase 3a (Dnmt3a), similar to H19 DMR and IG-DMR. In both humans and mice, the adjacent gene, Gpr1/GPR1, which encodes a G-protein-coupled receptor 1 protein with transmembrane domain, was also imprinted and paternally expressed. The Gpr1-Zdbf2 domain was most similar to the Rasgrf1 domain as both DNA methylation and the actively expressed allele were in cis on the paternal chromosome. This work demonstrates the effectiveness of meDIP-on-chip as a technique for identifying DMRs.  相似文献   

9.
The aim of this study was to identify in human cells common targets of histone H3 lysine 9 (H3-Lys9) methylation, a modification that is generally associated with gene silencing. After chromatin immunoprecipitation using an H3-Lys9 methylated antibody, we cloned the recovered DNA and sequenced 47 independent clones. Of these, 38 clones (81%) contained repetitive elements, either short interspersed transposable element (SINE or Alu elements), long terminal repeat (LTR), long interspersed transposable element (LINE), or satellite region (ALR/Alpha) DNA, and three additional clones were near Alu elements. Further characterization of these repetitive elements revealed that 32 clones (68%) were Alu repeats, corresponding to both old Alu (23 clones) and young Alu (9 clones) subfamilies. Association of H3-Lys9 methylation was confirmed by chromatin immunoprecipitation-PCR using conserved Alu primers. In addition, we randomly selected 5 Alu repeats from the recovered clones and confirmed association with H3-Lys9 by PCR using primer sets flanking the Alu elements. Treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine rapidly decreased the level of H3-Lys9 methylation in the Alu elements, suggesting that H3-Lys9 methylation may be related to the suppression of Alu elements through DNA methylation. Thus H3-Lys9 methylation is enriched at human repetitive elements, particularly Alu elements, and may play a role in the suppression of recombination by these elements.  相似文献   

10.
Altered placental function as a consequence of aberrant imprinted gene expression may be one mechanism mediating the association between low birth weight and increased cardiometabolic disease risk. Imprinted gene expression is regulated by epigenetic mechanisms, particularly DNA methylation (5mC) at differentially methylated regions (DMRs). While 5-hydroxymethylcytosine (5hmC) is also present at DMRs, many techniques do not distinguish between 5mC and 5hmC. Using human placental samples, we show that the expression of the imprinted gene CDKN1C associates with birth weight. Using specific techniques to map 5mC and 5hmC at DMRs controlling the expression of CDKN1C and the imprinted gene IGF2, we show that 5mC enrichment at KvDMR and DMR0, and 5hmC enrichment within the H19 gene body, associate positively with birth weight. Importantly, the presence of 5hmC at imprinted DMRs may complicate the interpretation of DNA methylation studies in placenta; future studies should consider using techniques that distinguish between, and permit quantification of, both modifications.  相似文献   

11.
DNA methylation is an important epigenetic modification involved in many biological processes and diseases. Computational analysis of differentially methylated regions (DMRs) could explore the underlying reasons of methylation. DMRFusion is presented as a useful tool for comprehensive DNA methylation analysis of DMRs on methylation sequencing data. This tool is designed base on the integration of several ranking methods; Information gain, Between versus within Class scatter ratio, Fisher ratio, Z-score and Welch's t-test. In this study, DMRFusion on reduced representation bisulfite sequencing (RRBS) data in chronic lymphocytic leukemia cancer displayed 30 nominated regions and CpG sites with a maximum methylation difference detected in the hypermethylation DMRs. We realized that DMRFusion is able to process methylation sequencing data in an efficient and accurate manner and to provide annotation and visualization for DMRs with high fold difference score (p-value and FDR < 0.05 and type I error: 0.04).  相似文献   

12.
Unusual clusters of YY1 binding sites are located within several differentially methylated regions (DMRs), including Xist, Nespas and Peg3, which all become methylated during oogenesis. In this study, we performed conditional YY1 knockdown (KD) to investigate YY1''s roles in DNA methylation of these DMRs. Reduced levels of YY1 during spermatogenesis did not cause any major change in these DMRs although the same YY1 KD caused hypermethylation in these DMRs among a subset of aged mice. However, YY1 KD during oogenesis resulted in the loss of DNA methylation on Peg3 and Xist, but there were no changes on Nespas and H19. Continued YY1 KD from oogenesis to the blastocyst stage caused further loss in DNA methylation on Peg3. Consequently, high incidents of lethality were observed among embryos that had experienced the reduced levels of YY1 protein. Overall, the current study suggests that YY1 likely plays a role in the de novo DNA methylation of the DMRs of Peg3 and Xist during oogenesis and also in the maintenance of unmethylation status of these DMRs during spermatogenesis.  相似文献   

13.
《Epigenetics》2013,8(6):652-663
DNA methylation of CpGs located in two types of repetitive elements—LINE1 (L1) and Alu—is used to assess “global” changes in DNA methylation in studies of human disease and environmental exposure. L1 and Alu contribute close to 30% of all base pairs in the human genome and transposition of repetitive elements is repressed through DNA methylation. Few studies have investigated whether repetitive element DNA methylation is associated with DNA methylation at other genomic regions, or the biological and technical factors that influence potential associations. Here, we assess L1 and Alu DNA methylation by Pyrosequencing of consensus sequences and using subsets of probes included in the Illumina Infinium HumanMethylation27 BeadChip array. We show that evolutionary age and assay method affect the assessment of repetitive element DNA methylation. Additionally, we compare Pyrosequencing results for repetitive elements to average DNA methylation of CpG islands, as assessed by array probes classified into strong, weak and non-islands. We demonstrate that each of these dispersed sequences exhibits different patterns of tissue-specific DNA methylation. Correlation of DNA methylation suggests an association between L1 and weak CpG island DNA methylation in some of the tissues examined. We caution, however, that L1, Alu and CpG island DNA methylation are distinct measures of dispersed DNA methylation and one should not be used in lieu of another. Analysis of DNA methylation data is complex and assays may be influenced by environment and pathology in different or complementary ways.  相似文献   

14.
DNA methylation is a hallmark of genomic imprinting and differentially methylated regions (DMRs) are found near and in imprinted genes. Imprinted genes are expressed only from the maternal or paternal allele and their normal balance can be disrupted by uniparental disomy (UPD), the inheritance of both chromosomes of a chromosome pair exclusively from only either the mother or the father. Maternal UPD for chromosome 7 (matUPD7) results in Silver-Russell syndrome (SRS) with typical features and growth retardation, but no gene has been conclusively implicated in SRS. In order to identify novel DMRs and putative imprinted genes on chromosome 7, we analyzed eight matUPD7 patients, a segmental matUPD7q31-qter, a rare patUPD7 case and ten controls on the Infinium HumanMethylation450K BeadChip with 30 017 CpG methylation probes for chromosome 7. Genome-scale analysis showed highly significant clustering of DMRs only on chromosome 7, including the known imprinted loci GRB10, SGCE/PEG10, and PEG/MEST. We found ten novel DMRs on chromosome 7, two DMRs for the predicted imprinted genes HOXA4 and GLI3 and one for the disputed imprinted gene PON1. Quantitative RT-PCR on blood RNA samples comparing matUPD7, patUPD7, and controls showed differential expression for three genes with novel DMRs, HOXA4, GLI3, and SVOPL. Allele specific expression analysis confirmed maternal only expression of SVOPL and imprinting of HOXA4 was supported by monoallelic expression. These results present the first comprehensive map of parent-of-origin specific DMRs on human chromosome 7, suggesting many new imprinted sites.  相似文献   

15.
DNA methylation of CpGs located in two types of repetitive elements—LINE1 (L1) and Alu—is used to assess “global” changes in DNA methylation in studies of human disease and environmental exposure. L1 and Alu contribute close to 30% of all base pairs in the human genome and transposition of repetitive elements is repressed through DNA methylation. Few studies have investigated whether repetitive element DNA methylation is associated with DNA methylation at other genomic regions, or the biological and technical factors that influence potential associations. Here, we assess L1 and Alu DNA methylation by Pyrosequencing of consensus sequences and using subsets of probes included in the Illumina Infinium HumanMethylation27 BeadChip array. We show that evolutionary age and assay method affect the assessment of repetitive element DNA methylation. Additionally, we compare Pyrosequencing results for repetitive elements to average DNA methylation of CpG islands, as assessed by array probes classified into strong, weak and non-islands. We demonstrate that each of these dispersed sequences exhibits different patterns of tissue-specific DNA methylation. Correlation of DNA methylation suggests an association between L1 and weak CpG island DNA methylation in some of the tissues examined. We caution, however, that L1, Alu and CpG island DNA methylation are distinct measures of dispersed DNA methylation and one should not be used in lieu of another. Analysis of DNA methylation data is complex and assays may be influenced by environment and pathology in different or complementary ways.  相似文献   

16.
The mouse chromosome 7C, orthologous to the human 15q11–q13 has an imprinted domain, where most of the genes are expressed only from the paternal allele. The imprinted domain contains paternally expressed genes, Snurf/Snrpn, Ndn, Magel2, Mkrn3, and Frat3, C/D-box small nucleolar RNAs (snoRNAs), and the maternally expressed gene, Ube3a. Imprinted expression in this large (approximately 3–4 Mb) domain is coordinated by a bipartite cis-acting imprinting center (IC), located upstream of the Snurf/Snrpn gene. The molecular mechanism how IC regulates gene expression of the whole domain remains partially understood. Here we analyzed the relationship between imprinted gene expression and DNA methylation in the mouse chromosome 7C using DNA methyltransferase 1 (DNMT1)-null mutant embryos carrying Dnmt1ps alleles, which show global loss of DNA methylation and embryonic lethality. In the DNMT1-null embryos at embryonic day 9.5, the paternally expressed genes were biallelically expressed. Bisulfite DNA methylation analysis revealed loss of methylation on the maternal allele in the promoter regions of the genes. These results demonstrate that DNMT1 is necessary for monoallelic expression of the imprinted genes in the chromosome 7C domain, suggesting that DNA methylation in the secondary differentially methylated regions (DMRs), which are acquired during development serves primarily to control the imprinted expression from the maternal allele in the mouse chromosome 7C.  相似文献   

17.
《Epigenetics》2013,8(8):1012-1020
The monoallelic expression of imprinted genes is controlled by epigenetic factors including DNA methylation and histone modifications. In mouse, the imprinted gene Gtl2 is associated with two differentially methylated regions: the IG-DMR, which serves as a gametic imprinting mark at which paternal allele-specific DNA methylation is inherited from sperm, and the Gtl2-DMR, which acquires DNA methylation on the paternal allele after fertilization. The timeframe during which DNA methylation is acquired at secondary DMRs during post-fertilization development and the relationship between secondary DMRs and imprinted expression have not been well established. In order to better understand the role of secondary DMRs in imprinting, we examined the methylation status of the Gtl2-DMR in pre- and post-implantation embryos. Paternal allele-specific DNA methylation of this region correlates with imprinted expression of Gtl2 during post-implantation development but is not required to implement imprinted expression during pre-implantation development, suggesting that this secondary DMR may play a role in maintaining imprinted expression. Furthermore, our developmental profile of DNA methylation patterns at the Cdkn1c- and Gtl2-DMRs illustrates that the temporal acquisition of DNA methylation at imprinted genes during post-fertilization development is not universally controlled.  相似文献   

18.
An imprinting disorder has been believed to underlie the etiology of familial biparental hydatidiform moles (HMs) based on the abnormal methylation or expression of imprinted genes in molar tissues. However, the extent of the epigenetic defect in these tissues and the developmental stage at which the disorder begins have been poorly defined. In this study, we assessed the extent of abnormal DNA methylation in two HMs caused by mutations in the recently identified 19q13.4 gene, NALP7. We demonstrate normal postzygotic DNA methylation patterns at major repetitive and long interspersed nuclear elements (LINEs), genes on the inactive X-chromosome, three-cancer related genes, and CpG rich regions surrounding the PEG3 differentially methylated region (DMR). Our data provide a comprehensive assessment of DNA methylation in familial molar tissues and indicate that abnormal DNA methylation in these tissues is restricted to imprinted DMRs. The known role of NALP7 in apoptosis and inflammation pinpoints previously unrecognized pathways that could directly or indirectly underlie the abnormal methylation of imprinted genes in molar tissues.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

19.
X-chromosome inactivation (XCI) is an essential mechanism in females that compensates for the genome imbalance between females and males. It is known that XCI can spread into an autosome of patients with X;autosome translocations. The subject was a 5-year-old boy with Prader?CWilli syndrome (PWS)-like features including hypotonia, hypo-genitalism, hypo-pigmentation, and developmental delay. G-banding, fluorescent in situ hybridization, BrdU-incorporated replication, human androgen receptor gene locus assay, SNP microarrays, ChIP-on-chip assay, bisulfite sequencing, and real-time RT-PCR were performed. Cytogenetic analyses revealed that the karyotype was 46,XY,der(X)t(X;15)(p21.1;q11.2),?15. In the derivative chromosome, the X and half of the chromosome 15 segments showed late replication. The X segment was maternal, and the chromosome 15 region was paternal, indicating its post-zygotic origin. The two chromosome 15s had a biparental origin. The DNA methylation level was relatively high in the region proximal from the breakpoint, and the level decreased toward the middle of the chromosome 15 region; however, scattered areas of hypermethylation were found in the distal region. The promoter regions of the imprinted SNRPN and the non-imprinted OCA2 genes were completely and half methylated, respectively. However, no methylation was found in the adjacent imprinted gene UBE3A, which contained a lower density of LINE1 repeats. Our findings suggest that XCI spread into the paternal chromosome 15 led to the aberrant hypermethylation of SNRPN and OCA2 and their decreased expression, which contributes to the PWS-like features and hypo-pigmentation of the patient. To our knowledge, this is the first chromosome-wide methylation study in which the DNA methylation level is demonstrated in an autosome subject to XCI.  相似文献   

20.
DNA methylation is a key epigenetic modification which, in mammals, occurs mainly at CpG dinucleotides. Most of the CpG methylation in the genome is found in repetitive regions, rich in dormant transposons and endogenous retroviruses. Global DNA hypomethylation, which is a common feature of several conditions such as ageing and cancer, can cause the undesirable activation of dormant repeat elements and lead to altered expression of associated genes. DNA hypomethylation can cause genomic instability and may contribute to mutations and chromosomal recombinations. Various approaches for quantification of global DNA methylation are widely used. Several of these approaches measure a surrogate for total genomic methyl cytosine and there is uncertainty about the comparability of these methods. Here we have applied 3 different approaches (luminometric methylation assay, pyrosequencing of the methylation status of the Alu repeat element and of the LINE1 repeat element) for estimating global DNA methylation in the same human cell and tissue samples and have compared these estimates with the “gold standard” of methyl cytosine quantification by HPLC. Next to HPLC, the LINE1 approach shows the smallest variation between samples, followed by Alu. Pearson correlations and Bland-Altman analyses confirmed that global DNA methylation estimates obtained via the LINE1 approach corresponded best with HPLC-based measurements. Although, we did not find compelling evidence that the gold standard measurement by HPLC could be substituted with confidence by any of the surrogate assays for detecting global DNA methylation investigated here, the LINE1 assay seems likely to be an acceptable surrogate in many cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号