首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ecosystems - Xeric jack pine forests in northern boreal ecosystems are becoming more vulnerable with the increasing fire frequencies in this region. Understory vegetation is the most diverse...  相似文献   

2.
Increasing soil nutrients through litter manipulation, pollution, or fertilization can adversely affect ectomycorrhizal (EM) communities by inhibiting fungal growth. In this study, we used molecular genetic methods to determine the effects of litter addition on the EM community of a Pinus contorta stand in Yellowstone National Park that regenerated after a stand-replacing fire. Two controls were used; in unmodified control plots nothing was added to the soil, and in perlite plots perlite, a chemically neutral substance, was added to maintain soil moisture and temperature at levels similar to those under litter. We found that (i) species richness did not change significantly following perlite addition (2.6 ± 0.3 species/core in control plots, compared with 2.3 ± 0.3 species/core in perlite plots) but decreased significantly (P < 0.05) following litter addition (1.8 ± 0.3 species/core); (ii) EM infection was not affected by the addition of perlite but increased significantly (P < 0.001) in response to litter addition, and the increase occurred only in the upper soil layer, directly adjacent to the added litter; and (iii) Suillus granulatus, Wilcoxina mikolae, and agaricoid DD were the dominant organisms in controls, but the levels of W. mikolae and agaricoid DD decreased significantly in response to both perlite and litter addition. The relative levels of S. granulatus and a fourth fungus, Cortinariaceae species 2, increased significantly (P < 0.01 and P < 0.05, respectively) following litter addition. Thus, litter addition resulted in some negative effects that may be attributable to moisture-temperature relationships rather than to the increased nutrients associated with litter. Some species respond positively to litter addition, indicating that there are differences in their physiologies. Hence, changes in the EM community induced by litter accumulation also may affect ecosystem function.  相似文献   

3.
The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.  相似文献   

4.
5.
More than 60% of the total area of tree plantations in China is in subtropical, and over 70% of subtropical plantations consist of pure stands of coniferous species. Because of the poor ecosystem services provided by pure coniferous plantations and the ecological instability of these stands, a movement is under way to promote indigenous broadleaf plantation cultivation as a promising alternative. However, little is known about the carbon (C) stocks in indigenous broadleaf plantations and their dependence on stand age. Thus, we studied above- and below-ground biomass and C stocks in a chronosequence of Mytilaria laosensis plantations in subtropical China; stands were 7, 10, 18, 23, 29 and 33 years old. Our assessments included tree, shrub, herb and litter layers. We used plot-level inventories and destructive tree sampling to determine vegetation C stocks. We also measured soil C stocks by analyses of soil profiles to 100 cm depth. C stocks in the tree layer dominated the above-ground ecosystem C pool across the chronosequence. C stocks increased with age from 7 to 29 years and plateaued thereafter due to a reduction in tree growth rates. Minor C stocks were found in the shrub and herb layers of all six plantations and their temporal fluctuations were relatively small. C stocks in the litter and soil layers increased with stand age. Total above-ground ecosystem C also increased with stand age. Most increases in C stocks in below-ground and total ecosystems were attributable to increases in soil C content and tree biomass. Therefore, considerations of C sequestration potential in indigenous broadleaf plantations must take stand age into account.  相似文献   

6.
Patterns of biomass and carbon (C) storage distribution across Chinese pine (Pinus tabulaeformis) natural secondary forests are poorly documented. The objectives of this study were to examine the biomass and C pools of the major ecosystem components in a replicated age sequence of P. tabulaeformis secondary forest stands in Northern China. Within each stand, biomass of above- and belowground tree, understory (shrub and herb), and forest floor were determined from plot-level investigation and destructive sampling. Allometric equations using the diameter at breast height (DBH) were developed to quantify plant biomass. C stocks in the tree and understory biomass, forest floor, and mineral soil (0–100 cm) were estimated by analyzing the C concentration of each component. The results showed that the tree biomass of P. tabulaeformis stands was ranged from 123.8 Mg·ha–1 for the young stand to 344.8 Mg·ha–1 for the mature stand. The understory biomass ranged from 1.8 Mg·ha–1 in the middle-aged stand to 3.5 Mg·ha–1 in the young stand. Forest floor biomass increased steady with stand age, ranging from 14.9 to 23.0 Mg·ha–1. The highest mean C concentration across the chronosequence was found in tree branch while the lowest mean C concentration was found in forest floor. The observed C stock of the aboveground tree, shrub, forest floor, and mineral soil increased with increasing stand age, whereas the herb C stock showed a decreasing trend with a sigmoid pattern. The C stock of forest ecosystem in young, middle-aged, immature, and mature stands were 178.1, 236.3, 297.7, and 359.8 Mg C ha–1, respectively, greater than those under similar aged P. tabulaeformis forests in China. These results are likely to be integrated into further forest management plans and generalized in other contexts to evaluate C stocks at the regional scale.  相似文献   

7.
8.
Causes and implications of spatial variability in postfire tree density and understory plant cover for patterns of aboveground net primary production (ANPP) and leaf area index (LAI) were examined in ninety 11-year-old lodgepole pine (Pinus contorta var. latifolia Engelm.) stands across the landscape of Yellowstone National Park (YNP), Wyoming, USA. Field studies and aerial photography were used to address three questions: (1) What is the range and spatial pattern of lodgepole pine sapling density across the burned Yellowstone landscape and what factors best explain this variability? (2) How do ANPP and LAI vary across the landscape and is their variation explained by abiotic factors, sapling density, or both? (3) What is the predicted spatial pattern of ANPP and LAI across the burned Yellowstone landscape? Stand density spanned six orders of magnitude, ranging from zero to 535,000 saplings ha?1, and it decreased with increasing elevation and with increasing distance from unburned forest (r 2?=?0.37). Postfire densities mapped from 1:30,000 aerial photography revealed that 66% of the burned area had densities less than 5000 saplings ha?1 and approximately 25% had densities greater than 10,000 saplings ha?1; stand density varied spatially in a fine-grained mosaic. New allometric equations were developed to predict aboveground biomass, ANPP, and LAI of lodgepole pine saplings and the 25 most common herbaceous and shrub species in the burned forests. These allometrics were then used with field data on sapling size, sapling density, and percent cover of graminoid, forb, and shrub species to compute stand-level ANPP and LAI. Total ANPP averaged 2.8 Mg ha?1y?1 but ranged from 0.04 to 15.12 Mg ha?1y?1. Total LAI averaged 0.80 m2 m?2 and ranged from 0.01 to 6.87 m2 m?2. Variation in ANPP and LAI was explained by both sapling density and abiotic factors (elevation and soil class) (ANOVA, r 2?=?0.80); abiotic variables explained 51%–54% of this variation. The proportion of total ANPP contributed by herbaceous plants and shrubs declined sharply with increasing sapling density (r 2?=?0.72) and increased with elevation (r 2?=?0.36). However, total herbaceous productivity was always less than 2.7 Mg ha?1 y?1, and herbaceous productivity did not compensate for tree production when trees were sparse. When extrapolated to the landscape, 68% of the burned landscape was characterized by ANPP values less than 2.0 Mg ha?1y?1, 22% by values ranging from 2 to 4 Mg ha?1y?1, and the remaining 10% by values greater than 4 Mg ha?1y?1. The spatial patterns of ANPP and LAI were less heterogeneous than patterns of sapling density but still showed fine-grained variation in rates. For some ecosystem processes, postfire spatial heterogeneity within a successional stage may be similar in magnitude to the temporal variation observed through succession.  相似文献   

9.
Populations of fluorescent pseudomonads isolated from an uncultivated soil and from the roots of two plant species were previously shown to differ (P. Lemanceau, T. Corberand, L. Gardan, X. Latour, G. Laguerre, J.-M. Boeufgras, and C. Alabouvette, Appl. Environ. Microbiol. 61:1004-1012, 1995). The diversities of fluorescent pseudomonads, from two uncultivated soils and from the roots of two plant species cultivated in these two soils, were compared. The phenotypic diversity of the bacterial isolates was characterized on the basis of biochemical and physiological tests and on the basis of their ability to utilize 147 different organic compounds. The genotypic diversity of the isolates was characterized on the basis of the types of 16S genes coding for rRNA (rDNA), their repetitive extragenic palindromic patterns by PCR, and plasmid profiles. Taxonomic identification of the isolates was achieved with both biochemical and physiological tests and by comparing their 16S rDNA types to those of reference and type strains of fluorescent Pseudomonas spp. Numerical analysis of phenotypic characteristics allowed the clustering of isolates that showed high levels of similarity. This analysis indicated that both soil type and host plant had an effect on the diversity of fluorescent pseudomonads. However, of the two factors studied, the soil was clearly the dominating one. Indeed, the populations associated with the roots of each plant species varied from one soil to the other. This variation could possibly be ascribed to the differences recorded between the phenotypically diverse populations of fluorescent pseudomonads from the two uncultivated soils. The plant selection was, at least partly, plant specific. It was not related to bacterial species and biovars or to the presence of plasmid DNA. The phenotypic clustering of isolates was well correlated with genotypic characterization by repetitive extragenic palindrome-PCR fingerprinting.  相似文献   

10.
We employed a novel set of six highly polymophic chloroplastic simple sequence repeat (cpSSR) loci to investigate the phylogeography of lodgepole pine (Pinus contorta Dougl. Ex. Loud.), and to examine aspects of the evolutionary process operating on these repetitive DNA sequences. Chloroplast haplotypes of 500 trees, sampled throughout the range of lodgepole pine, were determined. We found a marked association of genetic distance with physical distance within the scale of 0 to 1,000 km, but no association beyond that range. Likewise, geographic clustering was observed only among recent clades in a dendrogram. These phylogeographic patterns are consistant with a rapid rangewide expansion (”big-bang”) followed by recent, local population differentiation (”galaxy formation”). In support of this expansion, coalescent simulations of the genealogical process gave a long-term effective population size in the low thousands, and a time to common ancestry of about 1,500 generations (12,000 years), consistent with a post-Pleistocene population expansion as documented by previous pollen-sediment analyses. Two lines of evidence (mapping mutational events onto a phylogeny, and evaluation of observed versus expected gene diversity) suggest that five of the cpSSR loci evolve primarily by a stepwise model of evolution of single repeat changes (but with a small proportion of changes involving two or more repeats), and the coalescent simulations point to a mutation rate of about 10–3. Received: 7 December 2000 / Accepted: 17 May 2001  相似文献   

11.
Scots pine (Pinus sylvestris L.) seedlings were grown for 3years in the ground in open top chambers and exposed to twoconcentrations of atmospheric CO2(ambient or ambient + 400 µmol mol-1) without addition of nutrients and water. Biomassproduction (above-ground and below-ground) and allocation, aswell as canopy structure and tissue nitrogen concentrationsand contents, were examined by destructive harvest after 3 years.Elevated CO2increased total biomass production by 55%, reducedneedle area and needle mass as indicated, respectively, by lowerleaf area ratio and leaf mass ratio. A relatively smaller totalneedle area was produced in relation to fine roots under elevatedCO2. The proportion of dry matter in roots was increased byelevated CO2, as indicated by increased root-to-shoot ratioand root mass ratio. Within the root system, there was a significantshift in the allocation towards fine roots. Root litter constituteda much higher fraction of fine roots in trees grown in the elevatedCO2than in those grown in ambient CO2. Growth at elevated CO2causeda significant decline in nitrogen concentration only in theneedles, while nitrogen content significantly increased in branchesand fine roots (with diameter less than 1 mm). There were nochanges in crown structure (branch number and needle area distribution).Based upon measurements of growth made throughout the 3 years,the greatest increase in biomass under elevated CO2took placemainly at the beginning of the experiment, when trees grownin elevated CO2had higher relative growth rates than those grownunder ambient CO2; these differences disappeared with time.Symptoms of acclimation of trees to growth in the elevated CO2treatmentwere observed and are discussed. Copyright 2000 Annals of BotanyCompany Elevated CO2, Pinus sylvestris, biomass production, allocation, fine roots, root litter, crown structure, nitrogen, C/N ratio  相似文献   

12.
The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum), another by a shrub (Rhamnus davurica), and the third by a tree (Ailanthus altissima). The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME). Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs) closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that nitrogen cycling bacteria and functions are important factors in plant invasions. Whether the changes in microbial communities are driven by direct plant microbial interactions or a result of plant-driven changes in soil properties remains to be determined.  相似文献   

13.
We studied avian resource use in a native West Indian pine (Pinus occidentalis) forest in the Cordillera Central of the Dominican Republic during the nonbreeding season. The forest is characterized by a fairly open pine canopy and a dense mixed-broadleaf and pine understory. We used a principal components analysis of 23 foraging characters for 23 bird species, including foraging height, the proportional use of 5 different foraging methods, 3 horizontal positions and foliage densities, and 11 foraging substrates. Five principal components accounted for 74 percent of the total variance of the assemblage variables and resulted in the delineation of at least 5 foraging guilds. 78 percent of bird species had mean foraging heights of 5.0–10.0 m, corresponding to the region of overlap of pine and broadleaf vegetation. As a result, the diversity of foraging substrates and maneuvers used by birds, rather than foraging height, appears to be the primary means by which birds that exploit this habitat separate ecologically. Migrant wood warblers (Parulinae) are probably able to integrate into the community because of little diet overlap between residents and migrants, and the fairly specialized nature of their largely insectivorous foraging habits. Avian foraging in this habitat may reflect the effects of frequent disturbance such as hurricanes.  相似文献   

14.
Herbicide resistance is becoming more common in weed ecotypes and crop species including turfgrasses, but current gaps in knowledge limit predictive ecological risk assessments and risk management plans. This project examined the effect of annual glyphosate applications on the vegetative growth and reproductive potential of two weedy bentgrasses, creeping bentgrass (CB) and redtop (RT), where the glyphosate resistance (GR) trait was mimicked by covering the bentgrass plants during glyphosate application. Five field plots were studied in habitats commonly inhabited by weedy bentgrasses including an agricultural hayfield, natural meadow, and wasteland. Results showed that annual glyphosate treatment improved bentgrass survivorship, vegetative growth, and reproductive potential compared with bentgrass in unsprayed subplots. In the second year of growth, RT plants had an 86-fold increase in flower number in glyphosate-treated subplots versus controls, while CB plants had a 20-fold increase. At the end of the three year study, plant community composition had changed in glyphosate-treated subplots in hayfield and meadow plots compared to controls. Soils in subplots receiving glyphosate had higher nitrate concentrations than controls. This is the first study to mimic the GR trait in bentgrass plants with the goal of quantifying bentgrass response to glyphosate selection pressure and understanding the impacts on surrounding plant communities.  相似文献   

15.
16.
17.
The interaction between disturbance and climate change and resultant effects on ecosystem carbon (C) and nitrogen (N) fluxes are poorly understood. Here, we model (using CENTURY version 4.5) how climate change may affect C and N fluxes among mature and regenerating lodgepole pine ( Pinus contorta var. latifolia Engelm. ex S. Wats.) stands that vary in postfire tree density following stand-replacing fire. Both young (postfire) and mature stands had elevated forest production and net N mineralization under future climate scenarios relative to current climate. Forest production increased 25% [Hadley (HAD)] to 36% [Canadian Climate Center (CCC)], compared with 2% under current climate, among stands that varied in stand age and postfire density. Net N mineralization increased under both climate scenarios, e.g., +19% to 37% (HAD) and +11% to 23% (CCC), with greatest increases for young stands with sparse tree regeneration. By 2100, total ecosystem carbon (live+dead+soils) in mature stands was higher than prefire levels, e.g., +16% to 19% (HAD) and +24% to 28% (CCC). For stands regenerating following fire in 1988, total C storage was 0–9% higher under the CCC climate model, but 5–6% lower under the HAD model and 20–37% lower under the Control. These patterns, which reflect variation in stand age, postfire tree density, and climate model, suggest that although there were strong positive responses of lodgepole pine productivity to future changes in climate, C flux over the next century will reflect complex relationships between climate, age structure, and disturbance-recovery patterns of the landscape.  相似文献   

18.
This study describes the structure of the Chironomidae community associated with bryophytes in a first-order stream located in a biological reserve of the Atlantic Forest, during two seasons. Samples of bryophytes adhered to rocks along a 100-m stretch of the stream were removed with a metal blade, and 200-mL pots were filled with the samples. The numerical density (individuals per gram of dry weight), Shannon’s diversity index, Pielou’s evenness index, the dominance index (DI), and estimated richness were calculated for each collection period (dry and rainy). Linear regression analysis was employed to test the existence of a correlation between rainfall and the individual’s density and richness. The high numerical density and richness of Chironomidae taxa observed are probably related to the peculiar conditions of the bryophyte habitat. The retention of larvae during periods of higher rainfall contributed to the high density and richness of Chironomidae larvae. The rarefaction analysis showed higher richness in the rainy season related to the greater retention of food particles. The data from this study show that bryophytes provide stable habitats for the colonization by and refuge of Chironomidae larvae, mainly under conductions of faster water flow and higher precipitation.  相似文献   

19.
Bengt  Nyman 《Physiologia plantarum》1969,22(3):441-452
Stachyose, raffinose and sucrose have been tentatively identified in ungerminated Scots pine seeds with paper chromatography and TLC. After the onset of the germination process even glucose and fructose were detected. No free galactose has been found. The occurrence and distribution of starch has been investigated with histochemical technique. The same substances have been quantitatively studied during the first 24 hours of the germination in light and darkness. This was done with an enzymatic technique alone or in combination with TLC. The evidence of a light influence on the transformations of starch, glucose and fructose has been discussed in relation to the phytochrome mechanism.  相似文献   

20.
Pigmentation of body surface in animals can have multiple determinants and accomplish diverse functions. Eumelanin and pheomelanin are the main animal pigments, being responsible of yellow, brownish-red and black hues, and have partly common biosynthetic pathways. Many populations of vertebrates show individual variation in melanism, putatively with large heritable component. Genes responsible for eu- or pheomelanogenesis have pleiotropic but contrasting effects on life-history traits, explaining the patterns of covariation observed between melanization and physiology (e.g. immunity and stress response), sexual behavior and other characters in diverse taxa. Yet, very few studies in the wild have investigated if eu- and pheomelanization predict major fitness traits like viability or fecundity. In this correlative study, by contrasting adult barn swallows (Hirundo rustica) matched for age, sex, breeding site, and year and date of sampling, we show that males but not females that survived until the next year had paler, relatively more eu- than pheomelanic pigmentation of ventral body feathers. Better performance of individuals that allocate relatively more to eumelanogenesis was expected based on previous evidence on covariation between eumelanic pigmentation and specific traits related to immunity and susceptibility to stress. However, together with the evidence of no covariation between viability and melanization among females, this finding raises the question of the mechanisms that maintain variation in genes for melanogenesis. We discuss the possibility that eu- and pheomelanization are under contrasting viability and sexual selection, as suggested by larger breeding and sperm competition success of darker males from other barn swallow subspecies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号