首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Wnt signaling through frizzled (Fz) receptors plays key roles in just about every developmental system that has been studied. Several Wnt-Fz signaling pathways have been identified including the Wnt/planar cell polarity (PCP) pathway. PCP signaling is crucial for many developmental processes that require major cytoskeletal rearrangements. Downstream of Fz, PCP signaling is thought to involve the GTPases, Rho, Rac and Cdc42 and regulation of the JNK cascade. Here we report on the localization of these GTPases and JNK in the lens and assess their involvement in the cytoskeletal reorganisation that is a key element of FGF-induced lens fiber cell differentiation.  相似文献   

3.
4.
5.
The planar cell polarity (PCP) signaling pathway, principally understood from work in Drosophila, is now known to contribute to development in a broad swath of the animal kingdom, and its impairment leads to developmental malformations and diseases affecting humans. The ‘core’ mechanism underlying PCP signaling polarizes sheets of cells, aligning them in a head-to-tail fashion within the sheet. Cells use the resulting directional information to guide a wide variety of processes. One such process is lateralization, the determination of left–right asymmetry that guides the asymmetric morphology and placement of internal organs. Recent evidence extends the idea that PCP signaling underlies the earliest steps in lateralization and that PCP is invoked again during asymmetric morphogenesis of organs including the heart and gut.  相似文献   

6.
In the past decade, substantial evidence established that long noncoding RNAs are serious about mediating the evolution of malignancies. In previous studies, LINC00365, which has not been reported in colorectal cancer (CRC), was selected using the bioinformatics analysis in GSE109454 and GSE41655 data sets. However, the function and mechanism of LINC00365 are still obscure. In our study, LINC00365 was found upregulated in CRC specimens and intimately connected with the prognosis of patients with CRC. In addition, LINC00365 overexpression enhances the cell abilities of proliferation, migration, and invasion in vitro. Meanwhile, mechanistic studies showed that LINC00365 might involve in CRC cell progression by mediating the Wnt/β-catenin pathway. Furthermore, LINC00365 upregulation increased CDK1 protein expression. In conclusion, this study suggests that LINC00365 acts as a vital part in facilitating CRC progression and might play as a therapeutic target for patients with CRC.  相似文献   

7.
Chronic venous disease (CVD) is a prevalent and potentially debilitating condition that affects millions of individuals. An excessive endothelial inflammatory response is reportedly involved in the development of CVD. In this study, we explored the effect and mechanism of melatonin on venous endothelial damage induced by tumor necrosis factor α (TNF-α). Our data demonstrated that inflammation injury triggered mitochondrial dysfunction, activated reactive oxygen species-related oxidative damage, inhibited mitochondrial potential and ultimately initiated caspase-involved cellular death. Interestingly, melatonin preserved inflammation-attacked mitochondrial performance and thus increased cell survival under TNF-α. Cellular experiments illustrated that inflammation injury promoted the levels of mammalian sterile 20-like kinase 1 (MST1) and mitochondrial elongation factor 1 (MIEF1); active MST1–MIEF1 pathway disturbed mitochondria-related energy production, leading to mitochondria-induced cell damage. Interestingly, melatonin effectively suppressed MST1–MIEF1 axis and thus improved cell survival ratio under TNF-α-mediated inflammation injury. Reactivation of MST1–MIEF1 pathway attenuated melatonin-related endothelial protective actions. Herein, our results illuminate that melatonin is an effective approach to attenuate inflammation-related venous endothelial cell damage through handling the MST1–MIEF1 signaling pathway.  相似文献   

8.
9.
10.
Maduramicin (Mad), a polyether ionophore antibiotic, has been reported to be toxic to animals and humans because of being used at high doses or for long time, resulting in heart failure. However, the toxic mechanism of Mad in cardiac muscle cells is not well understood. Here, we show that Mad induced cell viability reduction and apoptosis in cardiac-derived H9c2, HL-1 cells, primary cardiomyocytes, and murine cardiac muscles, which was because of the inhibition of extracellular-signal-regulated kinase 1/2 (Erk1/2). Expression of constitutively active mitogen-activated protein kinase kinase 1 (MKK1) attenuated Mad-induced cell death in H9c2 cells, whereas silencing Erk1/2 or ectopic expression of dominant negative MKK1 strengthened Mad-induced cell death. Moreover, we found that both phosphatase and tensin homolog on chromosome 10 (PTEN) and protein kinase B (Akt) were implicated in the regulation of Erk1/2 inactivation and apoptosis in the cells and tissues exposed to Mad. Overexpression of dominant negative PTEN and/or constitutively active Akt, or constitutively active Akt and/or constitutively active MKK1 rescued the cells from Mad-induced dephosphorylated-Erk1/2 and cell death. Furthermore, Mad-induced reactive oxygen species (ROS) activated PTEN and inactivated Akt–Erk1/2 contributing to cell death, as N-acetyl- L -cysteine ameliorated the event. Taken together, the results disclose that Mad inhibits Erk1/2 via ROS-dependent activation of PTEN and inactivation of Akt, leading to cell death in cardiac muscle cells. Our findings suggest that manipulation of the ROS–PTEN–Akt–Erk1/2 pathway may be a potential approach to prevent Mad-induced cardiotoxicity.  相似文献   

11.
Previous studies have implicated that hypoxic stress could enhance osteoclast differentiation; however, the underlying mechanism remains poorly understood. Autophagy is a dynamic lysosomal degradation process that has emerged as an important regulator under hypoxic environment. In the present study, we demonstrate for the first time that autophagy regulates hypoxia-induced osteoclastogenesis in vitro. We found that exposure of RAW264.7 cells to hypoxia (0.2% oxygen) resulted in enhanced osteoclast differentiation, accompanied by the observation of several specific features of autophagy, including appearance of membranous vacuoles, formation of acidic vesicular organelles, cleavage and recruitment of microtubule-associated protein 1 light chain 3 (LC3) to autophagosomes, increase in autophagic flux, as well as up-regulation of autophagy-related gene (Atg) expression. Moreover, suppression of autophagy with DN-Atg5(K130R) or 3-methyladenine (3-MA) significantly attenuated the osteoclast differentiation under hypoxic conditions, indicating the functional significance of autophagy in hypoxia-induced osteoclastogenesis. The data also showed that the activation of autophagy under hypoxic conditions was caused by up-regulated expression of hypoxia-inducible factor-1α (HIF-1α)-dependent Bcl-2 adenovirus E1a 19 kDa interacting protein 3 (BNIP3). Importantly, knockdown of HIF-1α or BNIP3 obviously abrogated hypoxia-induced autophagy activation and osteoclastogenesis enhancement. Collectively, our results highlight the fact that autophagy is a pivotal regulator for hypoxia-induced osteoclast differentiation, which may provide new insight into the pathological processes of osteoclastogenesis under hypoxic stress and help develop new therapeutic strategies for abnormal osteoclastogenesis.  相似文献   

12.
Increasing evidence confirms that exosome-mediated transfer of microRNAs can influence cancer progression including tumor cell invasion, cell proliferation, and drug resistance via cell–cell communication. However, the potential role of exosomal-miR-1260b in lung adenocarcinoma (LAC) remains poorly understood. Thus, this study focused on investigating the function of exosomal-miR-1260b on cell invasion. Exosomal-miR-1260b was found to be higher in plasma of patients with LAC than that of healthy persons via quantitative real-time polymerase chain reaction assay. The sensitivity and specificity of exosomal-miR-1260b (cutoff point: 2.027) were 72% and 86%, and area under the curve of 0.845 (95% CI = 0.772–0.922). Elevated expression of miR-1260b in LAC tissues was positively correlated with exosomal-miR-1260b in plasma (r = .642, p < .05). Furthermore, ceramide biosynthesis regulated exosomal-miR-1260b secretion. Exosome-mediated transfer of miR-1260b promoted A549 cell invasion and was still functional inside A549 cells. Moreover, exosomal-miR-1260b regulated Wnt/β–catenin signaling pathway by inhibiting sFRP1 and Smad4. This study identified a new regulation mechanism involving in cell invasion by exosome-mediated tumor-cell-to-tumor-cell communication. Targeting exosome-microRNAs may provide new insights into the diagnosis and treatment of LAC.  相似文献   

13.
MARKs kinase belongs to an AMPK-related family kinase plays a critical role in tumor progression, but its exact role and contribution of four different isoforms remain largely ambiguous. In this study, we used a clinical dataset compiled by The Cancer Genome Atlas (TCGA) and GEO revealed that MARK2 and MARK4 expressions were significantly upregulated in non-small cell lung cancer (NSCLC) compared with normal tissues. Furthermore, expressions of MARK2/4 were highly appeared in advanced stages and associated with the low survival rate of NSCLC patients. Functional assays demonstrated that MARK2/4 deletion or MARKs inhibition significantly suppressed aerobic glycolysis and cell growth in NSCLC cells. Mechanistically, MARK2/4 stimulates the mTOR/HIF-1α pathway and subsequently alleviates AMPK activity via physically associate with Raptor and AMPKα1, thereby facilitating aerobic glycolysis and cell growth in NSCLC cells. However, these effects were markedly reversed by MARKs inhibitor 39621, or MARK2/4 deletion, mTOR inhibitor rapamycin, or AMPK activator AICAR. Together, the data demonstrated that MARK2/4 exerts its oncogenic effects by facilitating metabolic reprogramming in NSCLC cells. Therefore, MARK2/4 might be a potential therapeutic target for lung cancer.  相似文献   

14.
Before entering mitosis, the stacks of the Golgi cisternae are separated from each other, and inhibiting this process delays entry of mammalian cells into mitosis. Protein kinase D (PKD) is known to be involved in Golgi-to–cell surface transport by controlling the biogenesis of specific transport carriers. Here we show that depletion of PKD1 and PKD2 proteins from HeLa cells by small interfering RNA leads to the accumulation of cells in the G2 phase of the cell cycle and prevents cells from entering mitosis. We further provide evidence that inhibition of PKD blocks mitotic Raf-1 and mitogen-activated protein kinase kinase (MEK) activation, and, as a consequence, mitotic Golgi fragmentation, which could be rescued by expression of active MEK1. Finally, Golgi fluorescence recovery after photobleaching analyses demonstrate that PKD is crucial for the cleavage of the noncompact zones of Golgi membranes in G2 phase. Our findings suggest that PKD controls interstack Golgi connections in a Raf-1/MEK1–dependent manner, a process required for entry of the cells into mitosis.  相似文献   

15.
Atherosclerosis (AS) is a major pathogenic factor in patients with cardiovascular diseases, and endothelial dysfunction (ED) plays a primary role in the occurrence and development of AS. In our study, we attempted to evaluate the role of phosphatase and tensin homolog (PTEN) in endothelial cell apoptosis under oxidized low-density lipoprotein (ox-LDL) stimulation and identify the associated mechanisms. The results of our study demonstrated that ox-LDL induced human umbilical vein endothelial cell (HUVEC) death via mitochondrial apoptosis, as evidenced by reduced mitochondrial potential, increased mitochondria permeability transition pore opening, cellular calcium overload, and caspase-9/-3 activation. In addition, ox-LDL also suppressed cellular energy production via downregulating the mitochondrial respiratory complex. Moreover, ox-LDL impaired HUVECs migration. Western blot analysis showed that PTEN expression was upregulated after exposure to ox-LDL and knockdown of PTEN could attenuate ox-LDL-mediated endothelial cell damage. Furthermore, we found that ox-LDL impaired mitophagy activity, whereas PTEN deletion could improve mitophagic flux and this effect relied on the activity of the AMP-activated protein kinase (AMPK)–cAMP-response element-binding protein (CREB)–Mitofusin-2 (Mfn2) axis. When the AMPK–CREB–Mfn2 pathway was inhibited, PTEN deletion-associated HUVECs protection was significantly reduced, suggesting that the AMPK–CREB–Mfn2-mitophagy axis is required for PTEN deletion-mediated endothelial cell survival under ox-LDL. Taken together, our results indicate that ox-LDL-induced endothelial cell damage is associated with PTEN overexpression, and inhibition of PTEN could promote endothelial survival via activating the AMPK–CREB–Mfn2-mitophagy signaling pathway.  相似文献   

16.
Intercellular junctions are crucial for mechanotransduction, but whether tight junctions contribute to the regulation of cell–cell tension and adherens junctions is unknown. Here, we demonstrate that the tight junction protein ZO-1 regulates tension acting on VE-cadherin–based adherens junctions, cell migration, and barrier formation of primary endothelial cells, as well as angiogenesis in vitro and in vivo. ZO-1 depletion led to tight junction disruption, redistribution of active myosin II from junctions to stress fibers, reduced tension on VE-cadherin and loss of junctional mechanotransducers such as vinculin and PAK2, and induced vinculin dissociation from the α-catenin–VE-cadherin complex. Claudin-5 depletion only mimicked ZO-1 effects on barrier formation, whereas the effects on mechanotransducers were rescued by inhibition of ROCK and phenocopied by JAM-A, JACOP, or p114RhoGEF down-regulation. ZO-1 was required for junctional recruitment of JACOP, which, in turn, recruited p114RhoGEF. ZO-1 is thus a central regulator of VE-cadherin–dependent endothelial junctions that orchestrates the spatial actomyosin organization, tuning cell–cell tension, migration, angiogenesis, and barrier formation.  相似文献   

17.
Huo L  Wen W  Wang R  Kam C  Xia J  Feng W  Zhang M 《The EMBO journal》2011,30(4):665-678
Zonula occludens (ZO)-1 is a multi-domain scaffold protein known to have critical roles in the establishment of cell-cell adhesions and the maintenance of stable tissue structures through the targeting, anchoring, and clustering of transmembrane adhesion molecules and cytoskeletal proteins. Here, we report that ZO-1 directly binds to MRCKβ, a Cdc42 effector kinase that modulates cell protrusion and migration, at the leading edge of migrating cells. Structural studies reveal that the binding of a β hairpin from GRINL1A converts ZO-1 ZU5 into a complete ZU5-fold. A similar interaction mode is likely to occur between ZO-1 ZU5 and MRCKβ. The interaction between ZO-1 and MRCKβ requires the kinase to be primed by Cdc42 due to the closed conformation of the kinase. Formation of the ZO-1/MRCKβ complex enriches the kinase at the lamellae of migrating cells. Disruption of the ZO-1/MRCKβ complex inhibits MRCKβ-mediated cell migration. These results demonstrate that ZO-1, a classical scaffold protein with accepted roles in maintaining cell-cell adhesions in stable tissues, also has an active role in cell migration during processes such as tissue development and remodelling.  相似文献   

18.
The roles of α5-nicotinic acetylcholine receptors (α5-nAChRs) in various types of solid cancer have been reported; however, its role in melanoma remains unknown. We knocked down α5-nAChR expression in melanoma cells to investigate the role of α5-nAChR in the proliferation, migration, and invasion of melanoma cells, and its effect on downstream signaling pathways. Using immunohistochemical analysis, we determined that α5-nAChR expression is significantly increased in human melanoma tissues and cell lines compared with normal human skin tissues. Knocking down α5-nAChR expression in melanoma cells in culture significantly inhibited the proliferation, migration, and invasiveness of melanoma cell lines. Specifically, knockdown of α5-nAChR inhibited PI3K-AKT and ERK1/2 signaling activity. Moreover, we confirmed that the Notch1 signaling pathway is the downstream target of α5-nAChR in melanoma. Our findings suggest that α5-nAChR plays a critical role in melanoma development and progression, and that targeting α5-nAChR may be a strategy for melanoma treatment.  相似文献   

19.
Guo  Songjia  Shan  Shuhua  Wu  Haili  Hao  Huiqiang  Li  Zhuoyu 《Molecular biology reports》2021,48(11):7059-7065
Molecular Biology Reports - Nostoc commune Vauch. is a nitrogen-fixing blue-green algae that expresses a large number of active molecules with medicinal properties. Our previous study found that a...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号