首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In quantitative biology, observed data are fitted to a model that captures the essence of the system under investigation in order to obtain estimates of the parameters of the model, as well as their standard errors and interactions. The fitting is best done by the method of maximum likelihood, though least-squares fits are often used as an approximation because the calculations are perceived to be simpler. Here Brian Williams and Chris Dye argue that the method of maximum likelihood is generally preferable to least squares giving the best estimates of the parameters for data with any given error distribution, and the calculations are no more difficult than for least-squares fitting. They offer a relatively simple explanation of the methods and describe its implementation using examples from leishmaniasis epidemiology.  相似文献   

2.
The purpose of the study is to estimate the population size under a homogeneous truncated count model and under model contaminations via the Horvitz‐Thompson approach on the basis of a count capture‐recapture experiment. The proposed estimator is based on a mixture of zero‐truncated Poisson distributions. The benefit of using the proposed model is statistical inference of the long‐tailed or skewed distributions and the concavity of the likelihood function with strong results available on the nonparametric maximum likelihood estimator (NPMLE). The results of comparisons, for finding the appropriate estimator among McKendrick's, Mantel‐Haenszel's, Zelterman's, Chao's, the maximum likelihood, and the proposed methods in a simulation study, reveal that under model contaminations the proposed estimator provides the best choice according to its smallest bias and smallest mean square error for a situation of sufficiently large population sizes and the further results show that the proposed estimator performs well even for a homogeneous situation. The empirical examples, containing the cholera epidemic in India based on homogeneity and the heroin user data in Bangkok 2002 based on heterogeneity, are fitted with an excellent goodness‐of‐fit of the models and the confidence interval estimations may also be of considerable interest. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Maximum likelihood estimation of the model parameters for a spatial population based on data collected from a survey sample is usually straightforward when sampling and non-response are both non-informative, since the model can then usually be fitted using the available sample data, and no allowance is necessary for the fact that only a part of the population has been observed. Although for many regression models this naive strategy yields consistent estimates, this is not the case for some models, such as spatial auto-regressive models. In this paper, we show that for a broad class of such models, a maximum marginal likelihood approach that uses both sample and population data leads to more efficient estimates since it uses spatial information from sampled as well as non-sampled units. Extensive simulation experiments based on two well-known data sets are used to assess the impact of the spatial sampling design, the auto-correlation parameter and the sample size on the performance of this approach. When compared to some widely used methods that use only sample data, the results from these experiments show that the maximum marginal likelihood approach is much more precise.  相似文献   

4.
Summary We estimate the parameters of a stochastic process model for a macroparasite population within a host using approximate Bayesian computation (ABC). The immunity of the host is an unobserved model variable and only mature macroparasites at sacrifice of the host are counted. With very limited data, process rates are inferred reasonably precisely. Modeling involves a three variable Markov process for which the observed data likelihood is computationally intractable. ABC methods are particularly useful when the likelihood is analytically or computationally intractable. The ABC algorithm we present is based on sequential Monte Carlo, is adaptive in nature, and overcomes some drawbacks of previous approaches to ABC. The algorithm is validated on a test example involving simulated data from an autologistic model before being used to infer parameters of the Markov process model for experimental data. The fitted model explains the observed extra‐binomial variation in terms of a zero‐one immunity variable, which has a short‐lived presence in the host.  相似文献   

5.
Batch marking is common and useful for many capture–recapture studies where individual marks cannot be applied due to various constraints such as timing, cost, or marking difficulty. When batch marks are used, observed data are not individual capture histories but a set of counts including the numbers of individuals first marked, marked individuals that are recaptured, and individuals captured but released without being marked (applicable to some studies) on each capture occasion. Fitting traditional capture–recapture models to such data requires one to identify all possible sets of capture–recapture histories that may lead to the observed data, which is computationally infeasible even for a small number of capture occasions. In this paper, we propose a latent multinomial model to deal with such data, where the observed vector of counts is a non-invertible linear transformation of a latent vector that follows a multinomial distribution depending on model parameters. The latent multinomial model can be fitted efficiently through a saddlepoint approximation based maximum likelihood approach. The model framework is very flexible and can be applied to data collected with different study designs. Simulation studies indicate that reliable estimation results are obtained for all parameters of the proposed model. We apply the model to analysis of golden mantella data collected using batch marks in Central Madagascar.  相似文献   

6.
Phylogenetic methods that use matrices of pairwise distances between sequences (e.g., neighbor joining) will only give accurate results when the initial estimates of the pairwise distances are accurate. For many different models of sequence evolution, analytical formulae are known that give estimates of the distance between two sequences as a function of the observed numbers of substitutions of various classes. These are often of a form that we call "log transform formulae". Errors in these distance estimates become larger as the time t since divergence of the two sequences increases. For long times, the log transform formulae can sometimes give divergent distance estimates when applied to finite sequences. We show that these errors become significant when t approximately 1/2 |lambda(max)|(-1) logN, where lambda(max) is the eigenvalue of the substitution rate matrix with the largest absolute value and N is the sequence length. Various likelihood-based methods have been proposed to estimate the values of parameters in rate matrices. If rate matrix parameters are known with reasonable accuracy, it is possible to use the maximum likelihood method to estimate evolutionary distances while keeping the rate parameters fixed. We show that errors in distances estimated in this way only become significant when t approximately 1/2 |lambda(1)|(-1) logN, where lambda(1) is the eigenvalue of the substitution rate matrix with the smallest nonzero absolute value. The accuracy of likelihood-based distance estimates is therefore much higher than those based on log transform formulae, particularly in cases where there is a large range of timescales involved in the rate matrix (e.g., when the ratio of transition to transversion rates is large). We discuss several practical ways of estimating the rate matrix parameters before distance calculation and hence of increasing the accuracy of distance estimates.  相似文献   

7.
We present a theoretical study aiming at model fitting for sensory neurons. Conventional neural network training approaches are not applicable to this problem due to lack of continuous data. Although the stimulus can be considered as a smooth time-dependent variable, the associated response will be a set of neural spike timings (roughly the instants of successive action potential peaks) that have no amplitude information. A recurrent neural network model can be fitted to such a stimulus-response data pair by using the maximum likelihood estimation method where the likelihood function is derived from Poisson statistics of neural spiking. The universal approximation feature of the recurrent dynamical neuron network models allows us to describe excitatory-inhibitory characteristics of an actual sensory neural network with any desired number of neurons. The stimulus data are generated by a phased cosine Fourier series having a fixed amplitude and frequency but a randomly shot phase. Various values of amplitude, stimulus component size, and sample size are applied in order to examine the effect of the stimulus to the identification process. Results are presented in tabular and graphical forms at the end of this text. In addition, to demonstrate the success of this research, a study involving the same model, nominal parameters and stimulus structure, and another study that works on different models are compared to that of this research.  相似文献   

8.
Bivariate samples may be subject to censoring of both random variables. For example, for two toxins measured in batches of wheat grain, there may be specific detection limits. Alternatively, censoring may be incomplete over a certain domain, with the probability of detection depending on the toxin level. In either case, data are not missing at random, and the missing data pattern bears some information on the parameters of the underlying model (informative missingness), which can be exploited for a fully efficient analysis. Estimation (after suitable data transformation) of the correlation in such samples is the subject of the present paper. We consider several estimators. The first is based on the tetrachoric correlation. It is simple to compute, but does not exploit the full information. The other two estimators exploit all information and use full maximum likelihood, but involve heavier computations. The one assumes fixed detection limits, while the other involves a logistic model for the probability of detection. For a real data set, a logistic model for the probability of detection fitted markedly better than a model with fixed detection limits, suggesting that censoring is not complete.  相似文献   

9.
Zhang D  Lin X  Sowers M 《Biometrics》2000,56(1):31-39
We consider semiparametric regression for periodic longitudinal data. Parametric fixed effects are used to model the covariate effects and a periodic nonparametric smooth function is used to model the time effect. The within-subject correlation is modeled using subject-specific random effects and a random stochastic process with a periodic variance function. We use maximum penalized likelihood to estimate the regression coefficients and the periodic nonparametric time function, whose estimator is shown to be a periodic cubic smoothing spline. We use restricted maximum likelihood to simultaneously estimate the smoothing parameter and the variance components. We show that all model parameters can be easily obtained by fitting a linear mixed model. A common problem in the analysis of longitudinal data is to compare the time profiles of two groups, e.g., between treatment and placebo. We develop a scaled chi-squared test for the equality of two nonparametric time functions. The proposed model and the test are illustrated by analyzing hormone data collected during two consecutive menstrual cycles and their performance is evaluated through simulations.  相似文献   

10.
Nonlinear mixed effects models for repeated measures data   总被引:51,自引:1,他引:50  
We propose a general, nonlinear mixed effects model for repeated measures data and define estimators for its parameters. The proposed estimators are a natural combination of least squares estimators for nonlinear fixed effects models and maximum likelihood (or restricted maximum likelihood) estimators for linear mixed effects models. We implement Newton-Raphson estimation using previously developed computational methods for nonlinear fixed effects models and for linear mixed effects models. Two examples are presented and the connections between this work and recent work on generalized linear mixed effects models are discussed.  相似文献   

11.
Neural networks have received much attention in recent years mostly by non-statisticians. The purpose of this paper is to incorporate neural networks in a non-linear regression model and obtain maximum likelihood estimates of the network parameters using a standard Newton-Raphson algorithm. We use maximum likelihood estimators instead of the usual back-propagation technique and compare the neural network predictions with predictions of quadratic regression models and with non-parametric nearest neighbor predictions. These comparisons are made using data generated from a variety of functions. Because of the number of parameters involved, neural network models can easily over-fit the data, hence validation of results is crucial.  相似文献   

12.
The phylogenetic mixed model is an application of the quantitative-genetic mixed model to interspecific data. Although this statistical framework provides a potentially unifying approach to quantitative-genetic and phylogenetic analysis, the model has been applied infrequently because of technical difficulties with parameter estimation. We recommend a reparameterization of the model that eliminates some of these difficulties, and we develop a new estimation algorithm for both the original maximum likelihood and new restricted maximum likelihood estimators. The phylogenetic mixed model is particularly rich in terms of the evolutionary insight that might be drawn from model parameters, so we also illustrate and discuss the interpretation of the model parameters in a specific comparative analysis.  相似文献   

13.
Kück P  Mayer C  Wägele JW  Misof B 《PloS one》2012,7(5):e36593
The aim of our study was to test the robustness and efficiency of maximum likelihood with respect to different long branch effects on multiple-taxon trees. We simulated data of different alignment lengths under two different 11-taxon trees and a broad range of different branch length conditions. The data were analyzed with the true model parameters as well as with estimated and incorrect assumptions about among-site rate variation. If length differences between connected branches strongly increase, tree inference with the correct likelihood model assumptions can fail. We found that incorporating invariant sites together with Γ distributed site rates in the tree reconstruction (Γ+I) increases the robustness of maximum likelihood in comparison with models using only Γ. The results show that for some topologies and branch lengths the reconstruction success of maximum likelihood under the correct model is still low for alignments with a length of 100,000 base positions. Altogether, the high confidence that is put in maximum likelihood trees is not always justified under certain tree shapes even if alignment lengths reach 100,000 base positions.  相似文献   

14.
通过引入区域的初始比例因子,考虑了二个区域A与B的封闭种群标记重捕模型,再利用完整的极大似然函数和多项分布函数的性质,给出了当个体在不同区域的个体捕捉率相等时的二个区域之间的转移概率与各区域的初始比例的求法,推导出在不同区域的个体捕捉率不相等但个体低转移率条件下二个区域的封闭种群的标记重捕模型的参数表达式,并用实例说明。  相似文献   

15.
We consider longitudinal studies in which the outcome observed over time is binary and the covariates of interest are categorical. With no missing responses or covariates, one specifies a multinomial model for the responses given the covariates and uses maximum likelihood to estimate the parameters. Unfortunately, incomplete data in the responses and covariates are a common occurrence in longitudinal studies. Here we assume the missing data are missing at random (Rubin, 1976, Biometrika 63, 581-592). Since all of the missing data (responses and covariates) are categorical, a useful technique for obtaining maximum likelihood parameter estimates is the EM algorithm by the method of weights proposed in Ibrahim (1990, Journal of the American Statistical Association 85, 765-769). In using the EM algorithm with missing responses and covariates, one specifies the joint distribution of the responses and covariates. Here we consider the parameters of the covariate distribution as a nuisance. In data sets where the percentage of missing data is high, the estimates of the nuisance parameters can lead to highly unstable estimates of the parameters of interest. We propose a conditional model for the covariate distribution that has several modeling advantages for the EM algorithm and provides a reduction in the number of nuisance parameters, thus providing more stable estimates in finite samples.  相似文献   

16.
Recent data shows that HIV-1 is characterised by variation in viral virulence factors that is heritable between infections, which suggests that viral virulence can be naturally selected at the population level. A trade-off between transmissibility and duration of infection appears to favour viruses of intermediate virulence. We developed a mathematical model to simulate the dynamics of putative viral genotypes that differ in their virulence. As a proxy for virulence, we use set-point viral load (SPVL), which is the steady density of viral particles in blood during asymptomatic infection. Mutation, the dependency of survival and transmissibility on SPVL, and host effects were incorporated into the model. The model was fitted to data to estimate unknown parameters, and was found to fit existing data well. The maximum likelihood estimates of the parameters produced a model in which SPVL converged from any initial conditions to observed values within 100-150 years of first emergence of HIV-1. We estimated the 1) host effect and 2) the extent to which the viral virulence genotype mutates from one infection to the next, and found a trade-off between these two parameters in explaining the variation in SPVL. The model confirms that evolution of virulence towards intermediate levels is sufficiently rapid for it to have happened in the early stages of the HIV epidemic, and confirms that existing viral loads are nearly optimal given the assumed constraints on evolution. The model provides a useful framework under which to examine the future evolution of HIV-1 virulence.  相似文献   

17.
The well-known neural mass model described by Lopes da Silva et al. (1976) and Zetterberg et al. (1978) is fitted to actual EEG data. This is achieved by reformulating the original set of integral equations as a continuous-discrete state space model. The local linearization approach is then used to discretize the state equation and to construct a nonlinear Kalman filter. On this basis, a maximum likelihood procedure is used for estimating the model parameters for several EEG recordings. The analysis of the noise-free differential equations of the estimated models suggests that there are two different types of alpha rhythms: those with a point attractor and others with a limit cycle attractor. These attractors are also found by means of a nonlinear time series analysis of the EEG recordings. We conclude that the Hopf bifurcation described by Zetterberg et al. (1978) is present in actual brain dynamics. Received: 11 August 1997 / Accepted in revised form: 20 April 1999  相似文献   

18.
Ripatti S  Palmgren J 《Biometrics》2000,56(4):1016-1022
There exists a growing literature on the estimation of gamma distributed multiplicative shared frailty models. There is, however, often a need to model more complicated frailty structures, but attempts to extend gamma frailties run into complications. Motivated by hip replacement data with a more complicated dependence structure, we propose a model based on multiplicative frailties with a multivariate log-normal joint distribution. We give a justification and an estimation procedure for this generally structured frailty model, which is a generalization of the one presented by McGilchrist (1993, Biometrics 49, 221-225). The estimation is based on Laplace approximation of the likelihood function. This leads to estimating equations based on a penalized fixed effects partial likelihood, where the marginal distribution of the frailty terms determines the penalty term. The tuning parameters of the penalty function, i.e., the frailty variances, are estimated by maximizing an approximate profile likelihood. The performance of the approximation is evaluated by simulation, and the frailty model is fitted to the hip replacement data.  相似文献   

19.
Neural networks are considered by many to be very promising tools for classification and prediction. The flexibility of the neural network models often result in over-fit. Shrinking the parameters using a penalized likelihood is often used in order to overcome such over-fit. In this paper we extend the approach proposed by FARAGGI and SIMON (1995a) to modeling censored survival data using the input-output relationship associated with a single hidden layer feed-forward neural network. Instead of estimating the neural network parameters using the method of maximum likelihood, we place normal prior distributions on the parameters and make inferences based on derived posterior distributions of the parameters. This Bayesian formulation will result in shrinking the parameters of the neural network model and will reduce the over-fit compared with the maximum likelihood estimators. We illustrate our proposed method on a simulated and a real example.  相似文献   

20.
Zero‐truncated data arises in various disciplines where counts are observed but the zero count category cannot be observed during sampling. Maximum likelihood estimation can be used to model these data; however, due to its nonstandard form it cannot be easily implemented using well‐known software packages, and additional programming is often required. Motivated by the Rao–Blackwell theorem, we develop a weighted partial likelihood approach to estimate model parameters for zero‐truncated binomial and Poisson data. The resulting estimating function is equivalent to a weighted score function for standard count data models, and allows for applying readily available software. We evaluate the efficiency for this new approach and show that it performs almost as well as maximum likelihood estimation. The weighted partial likelihood approach is then extended to regression modelling and variable selection. We examine the performance of the proposed methods through simulation and present two case studies using real data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号