首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stimulation of mature T cells with agonist ligands of the Ag receptor (TCR) causes rapid phosphorylation of tyrosine-based activation motifs in the intracellular portion of TCR-zeta and CD3 and activation of several intracellular signaling cascades. Coordinate activation of these pathways is dependent on Lck- and ZAP-70-mediated tyrosine phosphorylation of a 36-kDa linker for activation of T cells and subsequent recruitment of phospholipase C-gamma1, Grb2-SOS, and SLP-76-vav. Here, we show that TCR partial agonist ligands can selectively activate one of these pathways, the Ras-mitogen-activated protein kinase pathway, by inducing recruitment of Grb2-SOS complexes to incompletely phosphorylated p21 phospho-TCR-zeta. This bypasses the need for activation of Lck and ZAP-70, and for phosphorylation of the linker for activation of T cells to activate Ras. We propose a general model in which differential recruitment of activating complexes away from transmembrane linker proteins may determine selective activation of a given signaling pathway.  相似文献   

2.
ZAP-70-deficient patients present with nonfunctional CD4+ T cells in the periphery. We find that a subset of primary ZAP-70-deficient T cells, expressing high levels of the related protein-tyrosine kinase Syk, can proliferate in vitro. These cells (denoted herein as Syk(hi)/ZAP-70(-) T cells) provide a unique model in which the contribution of Syk to TCR-mediated responses can be explored in a nontransformed background. Importantly, CD3-induced responses, such as tyrosine phosphorylation of cellular substrates (LAT, SLP76, and PLC-gamma1), as well as calcium mobilization, which are defective in T cells expressing neither ZAP-70 nor Syk, are observed in Syk(hi)/ZAP-70(-) T cells. However, Syk(hi)/ZAP-70(-) T cells differ from control T cells with respect to the T cell antigen receptor (TCR)-mediated activation of the MAPK cascades: extracellular signal-regulated kinase activity and recruitment of the JNK and p38 stress-related MAPK pathways are diminished. This distinct phenotype of Syk(hi)/ZAP-70(-) T cells is associated with a profound decrease in CD3-mediated interleukin 2 secretion and proliferation relative to control T cells. Thus, ZAP-70 and Syk appear to play distinct roles in transducing a TCR-mediated signal.  相似文献   

3.
Th0 clones recognizing an immunodominant peptide of myelin basic protein (residues 83-99) were derived from patients with multiple sclerosis. We demonstrate that analogue peptides with alanine substitution at Val86 and His88 had a unique partial agonistic property in inducing Th0 -->Th1 and Th0 -->Th2 deviation of the myelin basic protein-reactive T cell clones, respectively. Th0 to Th1 deviation induced by peptide 86V-->A correlated with up-regulation of Fyn and ZAP-70 kinase activities. Conversely, Th0 to Th2 deviation induced by peptide 88H-->A was associated with complete failure to activate Fyn and ZAP-70 kinases. The observed Th1 and Th2 shift also correlated, to a lesser extent, with Lck kinase activity that was down-regulated with Th1 deviation and increased with Th2 deviation in some T cell clones. We demonstrated that the Th1 and Th2 shift induced by the analogue peptides was a reversible process, as the T cell clones previously exposed to either 86V-->A or 88H-->A peptide could revert to an opposite phenotype when rechallenged reciprocally with a different analogue peptide. The study has important implications in our understanding of regulation of TCR-associated tyrosine kinases by altered peptide ligands and its role in cytokine regulation of autoreactive T cells.  相似文献   

4.
Steroid hormones are known to mediate rapid non-genomic effects occurring within minutes, besides the classical genomic actions mediated by the nuclear translocation of the cytoplasmic glucocorticoid receptor (GR). The glucocorticoid hormone (GC) has significant role in the regulation of T-cell activation; however, the cross-talk between the GC and T-cell receptor (TcR) signal transducing pathways are still to be elucidated. We examined the rapid effects of GC exposure on in vitro cultured human T-cells. Our results showed that Dexamethasone (DX), a GC analogue, when applied at high dose (10 microM), induced rapid (within 5 min) tyrosine-phosphorylation events in Jurkat cells. Short DX pre-treatment strongly inhibited the tyrosine-phosphorylation stimulated by CD3 cross-linking. Furthermore, we also investigated the phosphorylation status of ZAP-70, an important member of tyrosine kinase mediated signalling pathway of TcR-elicited T-cell activation. Here, we demonstrate that high dose DX induced a rapid ZAP-70 tyrosine-phosphorylation in Jurkat T-cells. DX-induced ZAP-70 phosphorylation could be inhibited by RU486 (GR antagonist), suggesting that this process was GR mediated. DX-induced ZAP-70 phosphorylation did not occur in the absence of active p56-lck as examined in the p56-lck kinase-deficient Jurkat cell line JCaM1.6. Our results show that DX, at a high dose, can rapidly influence the initial tyrosine-phosphorylation events of the CD3 signalling pathway in Jurkat cells, thereby modifying TcR-derived signals. Lck and ZAP-70 represent an important molecular link between the TcR and GC signalling pathways.  相似文献   

5.
TCR/CD3 down-modulation and zeta degradation are regulated by ZAP-70   总被引:1,自引:0,他引:1  
TCR down-modulation following binding to MHC/peptide complexes is considered to be instrumental for T cell activation because it allows serial triggering of receptors and the desensitization of stimulated cells. We studied CD3/TCR down-modulation and zeta degradation in T cells from two ZAP-70-immunodeficient patients. We show that, at high occupancy of the TCR, down-modulation of the CD3/TCR is comparable whether T cells express or do not express ZAP-70. However, if TCR occupancy was low, we found that CD3/TCR was down-regulated to a lesser extent in ZAP-70-negative than in ZAP-70-positive T cells. We studied CD3/TCR down-modulation in P116 (a ZAP-70-negative Jurkat cell-derived clone) and in P116 transfected with genes encoding the wild-type or a kinase-dead form of ZAP-70. Down-modulation of the TCR at high occupancy did not require ZAP-70, whereas at low TCR occupancy down-modulation was markedly reduced in the absence of ZAP-70 and in cells expressing a dead kinase mutant of ZAP-70. Thus, the presence of ZAP-70 alone is not sufficient for down-modulation; the kinase activity of this molecule is also required. The degradation of zeta induced by TCR triggering is also severely impaired in T cells from ZAP-70-deficient patients, P116 cells, and P116 cells expressing a kinase-dead form of ZAP-70. This defect in TCR-induced zeta degradation is observed at low and high levels of TCR occupancy. Our results identify ZAP-70, a tyrosine kinase known to be crucial for T cell activation, as a key player in TCR down-modulation and zeta degradation.  相似文献   

6.
7.
We utilized a novel peptide library approach to identify specific inhibitors of ZAP-70, a protein Tyr kinase involved in T cell activation. By screening more than 6 billion peptides oriented by a common Tyr residue for their ability to bind to ZAP-70, we determined a consensus optimal peptide. A Phe-for-Tyr substituted version of the peptide inhibited ZAP-70 protein Tyr kinase activity by competing with protein substrates (K(I) of 2 microM). The related protein Tyr kinases, Lck and Syk, were not significantly inhibited by the peptide. When introduced into intact T cells, the peptide blocked signaling downstream of ZAP-70, including ZAP-70-dependent gene induction, without affecting upstream Tyr phosphorylation. Thus, screening Tyr-oriented peptide libraries can identify selective peptide inhibitors of protein Tyr kinases.  相似文献   

8.
Receptor phosphorylation is thought to be tightly regulated because phosphorylated receptors initiate signaling cascades leading to cellular activation. The T cell antigen receptor (TCR) on the surface of T cells is phosphorylated by the kinase Lck and dephosphorylated by the phosphatase CD45 on multiple immunoreceptor tyrosine-based activation motifs (ITAMs). Intriguingly, Lck sequentially phosphorylates ITAMs and ZAP-70, a cytosolic kinase, binds to phosphorylated ITAMs with differential affinities. The purpose of multiple ITAMs, their sequential phosphorylation, and the differential ZAP-70 affinities are unknown. Here, we use a systems model to show that this signaling architecture produces emergent ultrasensitivity resulting in switch-like responses at the scale of individual TCRs. Importantly, this switch-like response is an emergent property, so that removal of multiple ITAMs, sequential phosphorylation, or differential affinities abolishes the switch. We propose that highly regulated TCR phosphorylation is achieved by an emergent switch-like response and use the systems model to design novel chimeric antigen receptors for therapy.  相似文献   

9.
The balance between positive and negative signals plays a key role in determining T cell function. CTL-associated Ag-4 is a surface receptor that can inhibit T cell responses induced upon stimulation of the TCR and its CD28 coreceptor. Little is known regarding the signaling mechanisms elicited by CTLA-4. In this study we analyzed CTLA-4-mediated inhibition of TCR signaling in primary resting human CD4(+) T cells displaying low, but detectable, CTLA-4 cell surface expression. CTLA-4 coligation with the TCR resulted in reduced downstream protein tyrosine phosphorylation of signaling effectors and a striking inhibition of extracellular signal-regulated kinase 1/2 activation. Analysis of proximal TCR signaling revealed that TCR zeta-chain phosphorylation and subsequent zeta-associated protein of 70 kDa (ZAP-70) tyrosine kinase recruitment were not significantly affected by CTLA-4 engagement. However, the association of p56(lck) with ZAP-70 was inhibited following CTLA-4 ligation, correlating with reduced actions of p56(lck) in the ZAP-70 immunocomplex. Moreover, CTLA-4 ligation caused the selective inhibition of CD3-mediated phosphorylation of the positive regulatory ZAP-70 Y319 site. In addition, we demonstrate protein tyrosine phosphatase activity associated with the phosphorylated CTLA-4 cytoplasmic tail. The major phosphatase activity was attributed to Src homology protein 2 domain-containing tyrosine phosphatase 1, a protein tyrosine phosphatase that has been shown to be a negative regulator of multiple signaling pathways in hemopoietic cells. Collectively, our findings suggest that CTLA-4 can act early during the immune response to regulate the threshold of T cell activation.  相似文献   

10.
An investigation into the role of CD45 isoforms in T cell antigen receptor signal transduction was carried out by transfecting CD45-negative CD4(+)CD8(+) HPB-ALL T cells with the CD45R0, CD45RBC, and CD45RABC isoforms. Fluorescence resonance energy transfer analysis showed that the CD45R0 isoform, but not the CD45RBC or CD45RABC isoforms, was found as homodimers and also preferentially associated with CD4 and CD8 at the cell-surface. A comparison was therefore made of T cell antigen receptor signaling between sub-clones expressing either CD45R0 or CD45RBC. Under basal conditions CD4-associated p56(lck) tyrosine kinase activity and cellular protein tyrosine phosphorylation levels were higher in the CD45R0(+) than in the CD45RBC(+) sub-clones. Upon CD3-CD4 ligation, TCR-zeta phosphorylation, ZAP-70 recruitment to the p21/p23 TCR-zeta phosphoisomers, ZAP-70 phosphorylation, as well as p56(lck), c-Cbl and Slp-76 phosphorylation, were all markedly increased in CD45R0(+) compared with CD45RBC(+) cells. T cell antigen receptor (TCR) stimulation alone also promoted c-Cbl phosphorylation in CD45R0(+) but not in CD45RBC(+) cells. Our results are consistent with a model in which association of CD45R0 with CD4 generates a more active pool of CD4-associated p56(lck) kinase molecules. Upon CD3-CD4 co-ligation, the active p56(lck) increases the intensity of T cell antigen receptor signal transduction coupling by promoting TCR-zeta chain phosphorylation and ZAP-70 recruitment.  相似文献   

11.
Supra-agonist peptides enhance the reactivation of memory CTL responses   总被引:2,自引:0,他引:2  
Single amino acid substitutions at TCR contacts may transform a natural peptide Ag in CTL ligands with partial agonist, antagonist, or null activity. We obtained peptide variants by changing nonanchor amino acid residues involved in MHC class I binding. These peptides were derived from a subdominant HLA-A2-presented, latent membrane protein 2-derived epitope expressed in EBV-infected cells and in EBV-associated tumors. We found that small structural changes produced ligands with vastly different activities. In particular, the variants that associated more stably to HLA-A2/molecules did not activate any CTL function, behaving as null ligands. Interestingly, T cell stimulations performed with the combination of null ligands and the natural epitope produced significantly higher specific CTL reactivation than reactivation of CTLs induced by the wild-type epitope alone. In addition, these particular variants activated memory CTL responses in the presence of concentrations of natural epitope that per se did not induce T cell responses. We show here that null ligands increased ZAP-70 tyrosine kinase activation induced by the natural epitope. Our results demonstrate for the first time that particular peptide variants, apparently behaving as null ligands, interact with the TCR, showing a supra-agonist activity. These variant peptides did not affect the effector T cell functions activated by the natural epitope. Supra-agonist peptides represent the counterpart of antagonists and may have important applications in the development of therapeutic peptides.  相似文献   

12.
Following T cell antigen receptor (TCR) engagement, the protein tyrosine kinase (PTK) ZAP-70 is rapidly phosphorylated on several tyrosine residues, presumably by two mechanisms: an autophosphorylation and a trans-phosphorylation by the Src-family PTK Lck. These events have been implicated in both positive and negative regulation of ZAP-70 activity and in coupling this PTK to downstream signaling pathways in T cells. We show here that Tyr315 and Tyr319 in the interdomain B of ZAP-70 are autophosphorylated in vitro and become phosphorylated in vivo upon TCR triggering. Moreover, by mutational analysis, we demonstrate that phosphorylation of Tyr319 is required for the positive regulation of ZAP-70 function. Indeed, overexpression in Jurkat cells and in a murine T cell hybridoma of a ZAP-70 mutant in which Tyr319 was replaced by phenylalanine (ZAP-70-Y319F) dramatically impaired anti-TCR-induced activation of the nuclear factor of activated T cells and interleukin-2 production, respectively. Surprisingly, an analogous mutation of Tyr315 had little or no effect. The inhibitory effect of ZAP-70-Y319F correlated with a substantial loss of its activation-induced tyrosine phosphorylation and up-regulation of catalytic activity, as well as with a decreased in vivo capacity to phosphorylate known ZAP-70 substrates, such as SLP-76 and LAT. Collectively, our data reveal the pivotal role of Tyr319 phosphorylation in the positive regulation of ZAP-70 and in TCR-mediated signaling.  相似文献   

13.
Lymphocytes must promote protective immune responses while still maintaining self-tolerance. Stimulation through the T cell receptor (TCR) can lead to distinct responses in naive and memory CD4 T cells. Whereas peptide antigen stimulates both naive and memory T cells, soluble anti-CD3 antibodies and bacterial superantigens stimulate only naive T cells to proliferate and secrete cytokines. Further, superantigens, like staphylococcal enterotoxin B (SEB), cause memory T cells to become anergic while soluble anti-CD3 does not. In the present report, we show that signal transduction through the TCR is impaired in memory cells exposed to either anti-CD3 or SEB. A block in signaling leads to impaired activation of the kinase ZAP-70 so that downstream signals and cell proliferation do not occur. We further show that the signaling defect is unique to each agent. In anti-CD3-treated memory T cells, the src kinase Lck is only transiently activated and does not phosphorylate and activate ZAP-70. In SEB-treated memory T cells, ZAP-70 does not interact with the TCR/CD3 complex to become accessible to Lck. Finally, we provide evidence that alternative signaling pathways are initiated in SEB-treated memory cells. Altered signaling, indicated by an elevation in activity of the src kinase Fyn, may be responsible for memory cell anergy caused by SEB. Thus, differentiation of naive T cells into memory cells is accompanied by alterations in TCR-mediated signaling that can promote heightened recall immunity or specific tolerance.  相似文献   

14.
The zeta chain-associated 70-kDa protein (ZAP-70) of tyrosine kinase plays a critical role in T cell receptor-mediated signal transduction and the immune response. A high level of ZAP-70 expression is observed in leukemia, which suggests ZAP-70 as a logical target for immunomodulatory therapies. (-)-Epigallocatechin gallate (EGCG) is one of the major green tea catechins that is suggested to have a role as a preventive agent in cancer, obesity, diabetes, and cardiovascular disease. Here we identified ZAP-70 as an important and novel molecular target of EGCG in leukemia cells. ZAP-70 and EGCG displayed high binding affinity (Kd = 0.6207 micromol/liter), and additional results revealed that EGCG effectively suppressed ZAP-70, linker for the activation of T cells, phospholipase Cgamma1, extracellular signaling-regulated kinase, and MAPK kinase activities in CD3-activated T cell leukemia. Furthermore, the activation of activator protein-1 and interleukin-2 induced by CD3 was dose-dependently inhibited by EGCG treatment. Notably, EGCG dose-dependently induced caspase-mediated apoptosis in P116.cl39 ZAP-70-expressing leukemia cells, whereas P116 ZAP-70-deficient cells were resistant to EGCG treatment. Molecular docking studies, supported by site-directed mutagenesis experiments, showed that EGCG could form a series of intermolecular hydrogen bonds and hydrophobic interactions within the ATP binding domain, which may contribute to the stability of the ZAP-70-EGCG complex. Overall, these results strongly indicated that ZAP-70 activity was inhibited specifically by EGCG, which contributed to suppressing the CD3-mediated T cell-induced pathways in leukemia cells.  相似文献   

15.
T cell activation by the specific Ag results in dramatic changes of the T cell phenotype that include a rapid and profound down-regulation and degradation of triggered TCRs. In this work, we investigated the fate of the TCR-associated ZAP-70 kinase in Ag-stimulated T cells. T cells stimulated by peptide-pulsed APCs undergo an Ag dose-dependent decrease of the total cellular content of ZAP-70, as detected by FACS analysis and confocal microscopy on fixed and permeabilized T cell-APC conjugates and by Western blot on total cell lysates. The time course of ZAP-70 consumption overlaps with that of zeta-chain degradation, indicating that ZAP-70 is degraded in parallel with TCR internalization and degradation. Pharmacological activation of protein kinase C (PKC) does not induce ZAP-70 degradation, which, on the contrary, requires activation of protein tyrosine kinases. Two lines of evidence indicate that the Ca2+-dependent cysteine protease calpain plays a major role in initiating ZAP-70 degradation: 1) treatment of T cells with cell-permeating inhibitors of calpain markedly reduces ZAP-70 degradation; 2) ZAP-70 is cleaved in vitro by calpain. Our results show that, in the course of T cell-APC cognate interaction, ZAP-70 is rapidly degraded via a calpain-dependent mechanism.  相似文献   

16.
Structural basis for the inhibition of tyrosine kinase activity of ZAP-70   总被引:2,自引:0,他引:2  
Deindl S  Kadlecek TA  Brdicka T  Cao X  Weiss A  Kuriyan J 《Cell》2007,129(4):735-746
ZAP-70, a cytoplasmic tyrosine kinase required for T cell antigen receptor signaling, is controlled by a regulatory segment that includes a tandem SH2 unit responsible for binding to immunoreceptor tyrosine-based activation motifs (ITAMs). The crystal structure of autoinhibited ZAP-70 reveals that the inactive kinase domain adopts a conformation similar to that of cyclin-dependent kinases and Src kinases. The autoinhibitory mechanism of ZAP-70 is, however, distinct and involves interactions between the regulatory segment and the hinge region of the kinase domain that reduce its flexibility. Two tyrosine residues in the SH2-kinase linker that activate ZAP-70 when phosphorylated are involved in aromatic-aromatic interactions that connect the linker to the kinase domain. These interactions are inconsistent with ITAM binding, suggesting that destabilization of this autoinhibited ZAP-70 conformation is the first step in kinase activation.  相似文献   

17.
The formation of a conjugate between a T cell and an APC requires the activation of integrins on the T cell surface and remodeling of cytoskeletal elements at the cell-cell contact site via inside-out signaling. The early events in this signaling pathway are not well understood, and may differ from the events involved in adhesion to immobilized ligands. We find that conjugate formation between Jurkat T cells and EBV-B cells presenting superantigen is mediated by LFA-1 and absolutely requires Lck. Mutations in the Lck kinase, Src homology 2 or 3 domains, or the myristoylation site all inhibit conjugation to background levels, and adhesion cannot be restored by the expression of Fyn. However, ZAP-70-deficient cells conjugate normally, indicating that Lck is required for LFA-1-dependent adhesion via other downstream pathways. Several drugs that inhibit T cell adhesion to ICAM-1 immobilized on plastic, including inhibitors of mitogen-activated protein/extracellular signal-related kinase kinase, phosphatidylinositol-3 kinase, and calpain, do not inhibit conjugation. Inhibitors of phospholipase C and protein kinase C block conjugation of both wild-type and ZAP-70-deficient cells, suggesting that a phospholipase C that does not depend on ZAP-70 for its activation is involved. These results are not restricted to Jurkat T cells; Ag-specific primary T cell blasts behave similarly. Although the way in which Lck signals to enhance LFA-1-dependent adhesion is not clear, we find that cells lacking functional Lck fail to recruit F-actin and LFA-1 to the T cell:APC contact site, whereas ZAP-70-deficient cells show a milder phenotype characterized by disorganized actin and LFA-1 at the contact site.  相似文献   

18.
ZAP-70 is a cytoplasmic protein tyrosine kinase that is required for T cell antigen receptor (TCR) signaling. Both mice and humans deficient in ZAP-70 fail to develop functional T cells, thus demonstrating its necessity for T cell development and function. There is currently no highly specific, cell-permeable, small molecule inhibitor for ZAP-70; therefore, we generated a mutant ZAP-70 allele that retains kinase activity but is sensitive to inhibition by a mutant-specific inhibitor. We validated the chemical genetic inhibitor system in Jurkat T cell lines, where the inhibitor blocked ZAP-70-dependent TCR signaling in cells expressing the analog-sensitive allele. Interestingly, the inhibitor also ablated CD28 superagonist signaling, thereby demonstrating the utility of this system in dissecting the requirement for ZAP-70 in alternative mechanisms of T cell activation. Thus, we have developed the first specific chemical means of inhibiting ZAP-70 in cells, which serves as a valuable tool for studying the function of ZAP-70 in T cells.  相似文献   

19.
The protein tyrosine kinase ZAP-70 plays a pivotal role involved in signal transduction through the T cell receptor and CD2. Defects in ZAP-70 result in severe combined immunodeficiency. We report that Herpesvirus saimiri, which does not code for a ZAP-70 homologue, can replace this tyrosine kinase. H. saimiri is an oncogenic virus that transforms human T cells to stable growth based on mutual CD2-mediated activation. Although CD2-mediated proliferation of ZAP-70-deficient uninfected T cells was absent, we could establish H. saimiri-transformed T cell lines from two unrelated patients presenting with ZAP-70 deficiencies. In these cell lines, CD2 and CD3 activation were restored in terms of [Ca(2+)](i), MAPK activation, cytokine production, and proliferation. Activation-induced tyrosine phosphorylation of zeta remained defective. The transformed cells expressed very high levels of the ZAP-70-related kinase Syk. This increased expression was not observed in the primary T cells from the patients and was not due to the transformation by the virus because transformed cell lines established from control T cells did not present this particularity. In conclusion, wild type H. saimiri can restore CD2- and CD3-mediated activation in signaling-deficient human T cells. It extends our understanding of interactions between the oncogenic H. saimiri and the infected host cells.  相似文献   

20.
T cells play an important role in the adaptive immune system, quickly activating effector functions in response to small numbers of antigenic peptides but rarely activating in response to constant interaction with most endogenous peptides. Emerging experimental evidence suggests that key membrane-bound signaling proteins such as the T cell receptor and the adaptor protein Lat are spatially organized into small clusters on the T cell membrane. We use spatially resolved, stochastic computer simulations to study how the inhomogeneous distribution of molecules affects the portion of the T cell signaling network in which the kinase ZAP-70, originating in T cell receptor clusters, phosphorylates Lat. To gain insight into the effects of protein clustering, we compare the signaling response from membranes with clustered proteins to the signaling response from membranes with homogeneously distributed proteins. Given a fixed amount of ZAP-70 (a proxy for degree of TCR stimulation) that must diffuse into contact with Lat molecules, the spatially homogeneous system responds faster and results in higher levels of phosphorylated Lat. Analysis of the spatial distribution of proteins demonstrates that, in the homogeneous system, nearest ZAP-70 and Lat proteins are closer on average and fewer Lat molecules share the same closest ZAP-70 molecule, leading to the faster response time. The results presented here suggest that spatial clustering of proteins on the T cell membrane may suppress the propagation of signal from ZAP-70 to Lat, thus providing a regulatory mechanism by which T cells suppress transient, spurious signals induced by stimulation of T cell receptors by endogenous peptides. Because this suppression of spurious signals may occur at a cost to sensitivity, we discuss recent experimental results suggesting other potential mechanisms by which ZAP-70 and Lat may interact to initiate T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号