首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Masuda  Y Hisada  R Sasaki 《FEBS letters》1992,298(2-3):169-172
Erythropoietin (EPO) stimulates proliferation and differentiation of late erythroid precursor cells (CFU-E) and thereby determines the rate of erythropoiesis. Liver is the major erythropoietic site in a fetus. We dealt with developmental changes in CFU-E and EPO receptor (EPO-R) of fetal mouse liver. The affinity of the EPO-R to EPO was unchanged during fetal development. The population size of CFU-E, the number of EPO-R per liver cell, and EPO-R mRNA decreased as gestation proceeded, in a pattern indicating that the expression of EPO-R on erythroid precursor cells in fetal mouse liver is governed mostly by the process of mRNA production.  相似文献   

2.
Identification of erythropoietin receptors on fetal liver erythroid cells   总被引:3,自引:0,他引:3  
Erythropoietin (EPO) has a central role in the growth and development of erythroid cells. Using a biologically active radioiodinated derivative, EPO receptors were identified on fetal mouse liver cells mostly consisting of erythroid cells. 125I-EPO was cross-linked to two receptors forms with apparent molecular masses of 110 and 95 kilodaltons, respectively and both having similar affinity toward EPO.  相似文献   

3.
4.
Erythropoietin (EPO) can rescue erythroid cells from apoptosis during erythroid development, leading to red cell production. However, the detailed mechanism of how EPO protects erythroid cells from apoptosis is still open to question. To address this problem, we used a human EPO-dependent leukemia cell line UT-7/EPO and normal erythroid progenitor cells. After deprivation of EPO, UT-7/EPO cells underwent apoptosis, accompanied by down-regulation of the Bcl-xL protein. In addition, the cleaved products of caspase-3, p11 and p21, and a few cleaved forms of inhibitor of caspase-activated DNase (ICAD) were detected in these cells. When the cells were pre-treated with the pancaspase inhibitor Z-VAD-FMK, the ratio of apoptotic cells was significantly reduced, suggesting that EPO protects the UT-7/EPO cells from apoptosis via inhibition of caspase activities. When an MEK 1/2 inhibitor U0126 inhibited activities of extracellular signal-regulated kinases (ERKs), the expression of Bcl-xL protein was down-regulated and subsequently apoptosis was induced. Interestingly, Z-VAD-FMK blocked U0126-induced down-regulation of Bcl-xL protein and apoptosis, strongly suggesting that Bcl-xL expression is regulated by caspases which lies downstream of ERK activation pathway in EPO signaling. Importantly, these findings were also observed in normal erythroid progenitor cells. In conclusion, the activation of ERKs by EPO up-regulates Bcl-xL expression via inhibition of caspase activities, resulting in the protection of erythroid cells from apoptosis.  相似文献   

5.
Erythropoietin (EPO) is a prime regulator of the growth and differentiation of erythroid blood cells. The EPO receptor (EPO-R) is expressed in late erythroid progenitors (mature BFU-E and CFU-E), and EPO induces proliferation and differentiation of these cells. By introducing, with a retroviral vector, a normal EPO-R cDNA into murine adult bone marrow cells, we showed that EPO is also able to induce proliferation in pluripotent progenitor cells. After 7 days of coculture with virus-producing cells, bone marrow cells were plated in methylcellulose culture in the presence of EPO, interleukin-3, or Steel factor alone or in combination. In the presence of EPO alone, EPO-R virus-infected bone marrow cells gave rise to mixed colonies comprising erythrocytes, granulocytes, macrophages and megakaryocytes. The addition of interleukin-3 or Steel factor to methylcellulose cultures containing EPO did not significantly modify the number of mixed colonies. The cells which generate these mixed colonies have a high proliferative potential as shown by the size and the ability of the mixed colonies to give rise to secondary colonies. Thus, it appears that EPO has the same effect on EPO-R-expressing multipotent cell proliferation as would a combination of several growth factors. Finally, our results demonstrate that inducing pluripotent progenitor cells to proliferate via the EPO signaling pathway has no major influence on their commitment.  相似文献   

6.
L Xiao  Z Li  P Xu  Z Li  J Xu  Z Yang 《PloS one》2012,7(7):e41993
Erythropoietin (EPO), known for its role in erythroid differentiation, has been shown to be an important growth factor for brain and heart. EPO is synthesized by fibroblast-like cells in the renal cortex. Prompted by this anatomical relationship and its significant impact on the maturation process of brain and heart, we asked whether EPO could play a role during the development of renal cortex. The relationship between the development of renal cortex and the change of EPO receptor (EPOR), through which EPO could act as a renotropic cytokine, became interesting to us. In this study, the day of birth was recorded as postnatal day 0(P0). P7, P14, P21, P28, P35, P42 and mature mice (postnatal days>56) were used as the animal model of different developmental stages. Immunohistochemistry and Western blotting were used to detect the expression of EPOR in mouse renal cortex. Results showed that expression of EPOR decreased with the development of renal cortex and became stable when kidney became mature. The expression of EPOR was detected at the renal tubule of all developmental stages and a relatively higher expression was observed at P14. However, at the renal corpuscle the expression was only observed at P7 and quickly became undetectable after that. All these suggested that a translocation of EPOR from renal corpuscle to renal tubule may take place during the developmental process of renal cortex. Also, EPO may be an essential element for the maturation of renal cortex, and the requirement for EPO was changed during postnatal development process.  相似文献   

7.
8.
Expression of the erythropoietin receptor on a human myeloma cell line   总被引:1,自引:0,他引:1  
We demonstrated the expression of the erythropoietin (EPO) receptor by a human myeloma cell line (MM-S1) which was established in our laboratory. EPO dose-dependently stimulated the proliferation of MM-S1 cells. Binding of radioiodinated EPO (125I-Epo) to MM-S1 cells was competitively inhibited by unlabeled EPO, but not by other recombinant cytokines. Specific binding of 125I-Epo to MM-S1 cells was saturable, and the Scatchard analysis revealed 330 EPO binding sites per cell with a Kd of 0.56 nmol/L. Bound EPO was internalized by MM-S1 cells during incubation at 37 degrees C. This is the first report describing the expression of the EPO receptor by human cells other than those of the erythroid lineage.  相似文献   

9.
Synergistic interactions between cytokines underlie developmental processes fundamental to tissue and cellular engineering. However, a mechanistic understanding of the cell-specific and population-mediated effects is often lacking. In this study, we have investigated the synergistic generation of erythroid cells in response to erythropoietin (EPO) and stem cell factor (SCF). We have used a quantitative approach to determine if the effects of EPO and SCF superpose in a supra-additive fashion on the cell proliferation rate or on the death rate, suggesting a contribution from a joint cytokine effect (co-signaling). Primary mouse bone marrow hematopoietic cells and the stem cell-like FDCP-mix cell line were used to investigate the effects of EPO and SCF (individually or in combination) on erythroid output. Carboxyfluorescein diacetate succinimidyl ester (CFSE)-based cell-division tracking and mathematical modeling were used to measure cell type-specific proliferation and death rates. We observed a significant synergistic effect of EPO and SCF on the net generation of benzidine positive (erythroid) colony-forming cells, CD71++ (early erythroblasts) cells and TER-119+ (late erythroblasts and reticulocytes) cells in culture. When the observed increases in cell number were decomposed into proliferation and death rates, the cytokines were shown to act independently at different stages of erythroid development; SCF promoted the early proliferation of primitive cells, while EPO primarily promoted the survival of differentiating erythroid progenitor cells. Our analysis demonstrates that EPO and SCF have distinct and predominantly sequential effects on erythroid differentiation. This study emphasizes the necessity to separate proliferation rates from death rates to understand apparent cytokine synergies.  相似文献   

10.
Current novel therapeutic agents for the treatment of sickle cell anaemia (SCA) focus on increasing foetal haemoglobin (HbF) levels in SCA patients. Unfortunately, the only approved HbF‐inducing agent, hydroxyurea, has long‐term unpredictable side effects. Studies have shown the potential of plant compounds to modulate HbF synthesis in primary erythroid progenitor stem cells. We isolated a novel HbF‐inducing Terminalia catappa distilled water active fraction (TCDWF) from Terminalia catappa leaves that induced the commitment of erythroid progenitor stem cells to the erythroid lineage and relatively higher HbF synthesis of 9.2‐ and 6.8‐fold increases in both erythropoietin (EPO)‐independent and EPO‐dependent progenitor stem cells respectively. TCDWF was differentially cytotoxic to EPO‐dependent and EPO‐independent erythroid progenitor stem cell cultures as revealed by lactate dehydrogenase release from the cells. TCDWF demonstrated a protective effect on EPO‐dependent and not EPO‐independent progenitor cells. TCDWF induced a modest increase in caspase 3 activity in EPO‐independent erythroid progenitor stem cell cultures compared with a significantly higher (P?0.05) caspase 3 activity in EPO‐dependent ones. The results demonstrate that TCDWF may hold promising HbF‐inducing compounds, which work synergistically, and suggest a dual modulatory effect on erythropoiesis inherent in this active fraction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
It has been proposed that the basis of severe malarial anaemia, a major cause of morbidity and mortality in endemic areas, is multifactorial. Inappropriately low reticulocytosis is observed in malaria patients suggesting that insufficient erythropoiesis is a major factor. Clinical studies provide conflicting data concerning the production of adequate levels of erythropoietin (EPO) during malaria. Plasmodium chabaudi AS causes non-lethal infection in resistant C57BL/6 mice, and lethal infection in susceptible A/J mice. In P. chabaudi AS infected C57BL/6 and A/J mice, which experience varying degrees of severity of anaemia, kidney EPO production is appropriate to the severity of anaemia and is regulated by haematocrit level. Neutralisation of endogenous EPO during infection leads to lethal anaemia while timely administration of exogenous EPO rescues mice although reticulocytosis is suppressed in proportion to the parasitemia level. Characterisation of alterations in splenic erythroid compartments in naive and P. chabaudi AS infected A/J mice revealed that infection, with or without EPO treatment, leads to sub-optimal increases in TER119+ erythroblasts compared to EPO-treated naive mice. A lower percentage of TER119+ erythroblasts in infected mice undergo terminal differentiation to become mature haemoglobin-producing cells. Furthermore, there is a shift in transferrin receptor (CD71) expression from TER119+ cells to a non-erythroid population. Deficiencies in the number and maturation of TER119+ erythroblasts during infection coincide with blunted proliferation to EPO stimulation in vitro by splenocytes, although a high frequency express EPO receptor (EPOR). Together, these data suggest that during malaria, EPO-induced proliferation of early EPOR+ erythroid progenitors is suppressed, leading to sub-optimal generation of TER119+ erythroblasts. Moreover, a shift in CD71 expression may result in impaired terminal maturation of erythroblasts. Thus, suppressed proliferation, differentiation, and maturation of erythroid precursors in association with inadequate reticulocytosis may be the basis of insufficient erythropoiesis during malaria.  相似文献   

12.
The terminal development of erythroid progenitor cells is promoted in part through the interaction of erythropoietin (EPO) with its cell surface receptor. This receptor and a growing family of related cytokine receptors share homologous extracellular features, including a well-conserved WSXWS motif. To explore the functional significance of this motif in the murine EPO receptor, five WSAWSE mutants were prepared and their signal-transducing, ligand binding, and endocytotic properties were compared. EPO receptors mutated at tryptophan residues (W-232, W-235----G; W-235----G; W-235----F) failed to mediate EPO-induced growth or pp100 phosphorylation, while S-236----T and E-237----K mutants exhibited partial to full activity (50 to 100% of wild-type growth and induced phosphorylation). Ligand affinity was reduced for mutant receptors (two- to fivefold), yet expression at the cell surface for all receptors was nearly equivalent. Also, the ability of mutated receptors to internalize ligand was either markedly reduced or abolished (W-235----F), indicating a role for the WSAWSE region in hormone internalization. Interestingly, receptor forms lacking 97% of the cytosolic domain (no signal-transducing capacity; binding affinity reduced two- to threefold) internalized EPO efficiently. This and all WSAWSE receptor forms studied also mediated specific cross-linking of 125I-EPO to three accessory membrane proteins (M(r)s, 120,000, 105,000, and 93,000). These findings suggest that the WSAWSE domain of the EPO receptor is important for EPO-induced signal transduction and ligand internalization. In contrast, although the cytosolic domain is required for growth signaling, it appears nonessential for efficient endocytosis.  相似文献   

13.
DiFalco MR  Congote LF 《Cytokine》2002,18(1):51-60
Azidothymidine (AZT)-induced anemia in mice can be reversed by the administration of IGF-IL-3 (fusion protein of insulin-like growth factor II (IGF II) and interleukin 3). Although interleukin 3 (IL-3) and erythropoietin (EPO) are known to act synergistically on hematopoietic cell proliferation in vitro, injection of IGF-IL-3 and EPO in AZT-treated mice resulted in a reduction of red cells and an increase of plasma EPO levels as compared to animals treated with IGF-IL-3 or EPO alone. We tested the hypothesis that the antagonistic effect of IL-3 and EPO on erythroid cells may be mediated by endothelial cells. Bovine liver erythroid cells were cultured on monolayers of human bone marrow endothelial cells previously treated with EPO and IGF-IL-3. There was a significant reduction of thymidine incorporation into both erythroid and endothelial cells in cultures pre-treated with IGF-IL-3 and EPO. Endothelial cell culture supernatants separated by ultrafiltration and ultracentrifugation from cells treated with EPO and IL-3 significantly reduced thymidine incorporation into erythroid cells as compared to identical fractions obtained from the media of cells cultured with EPO alone. These results suggest that endothelial cells treated simultaneously with EPO and IL-3 have a negative effect on erythroid cell production.  相似文献   

14.
15.
Increased fetal hemoglobin (HbF) in erythroid precursors of patients with beta-hemoglobinopathies (sickle cell anemia and beta-thalassemia), in which adult hemoglobin synthesis is defective, ameliorates the clinical symptoms of the underlying diseases. The production of erythroid precursors depends on the action of erythropoietin (EPO), which prevents their apoptosis and stimulates their proliferation. EPO binds to its surface receptor, induces its homodimerization, and initiates a cascade of phosphorylation and dephosphorylation of a series of proteins by kinases and phosphatases, respectively. Vanadate inhibits various phosphatases, including those that are involved in the EPO pathway, thereby intensifying the signal. In this study, we investigated the effect of vanadate on the proliferation and maturation of human erythroid precursors in culture. When vanadate was added to cells derived from normal donors, cell maturation was delayed, as indicated by cell morphology, cell growth kinetics, the rate of appearance of hemoglobin-containing cells, and the expression of surface antigens (CD117, CD71, and glycophorin A). Analysis by high-performance liquid chromatography and flow cytometry of the hemoglobin profile of vanadate-treated normal cells revealed a higher proportion of HbF than was found in untreated cells. When vanadate was added to cells derived from patients with beta-thalassemia, a significant increase in HbF was observed. The results suggest that intensification of the EPO signal by vanadate results in maturation arrest and increased HbF production. Thus, inhibitors that are more specific and less toxic than vanadate may present a novel option for elevating HbF in patients with beta-hemoglobinopathies, as well as for intensifying the EPO response in other forms of anemia.  相似文献   

16.
Erythropoietin(EPO) is the major regulator of mamalian erythropoisis,which stimulates the growth and differentiation of hematopoietic cells through interaction with its receptor(EPO-R),Here we use HEL cells (a human erythro-leukemia cell line) as a model to elucidate the pathway of signal transduction in the EPO-induced HEL cells.Our data show that the EPOR (EPO receptor) on the surface of HEL cells interacts with the Janus tyrosine protein kinase(Jak2) to transduce intracellular signals through phosphorylation of cytoplasmic proteins in EPO-treated HEL cells.Both STAT1 and STAT5 in this cell line are tyrosine-phosphorylated and translocated to nucleus following the dinding of EPO to HEL cells.Furthermore,the dinding of both STAT1 and STAT5 proteins to specific DNA elements(SIE and PIE elements) is revealed in an EPO-dependent manner,Our data demonstrate that the pathway of signal transduction following the binding of EPO to HEL cells is similar to immature eryhroid cell from the spleen of mice infected with anemia strain of Friend virus.  相似文献   

17.
Erythropoietin (EPO) and Stem Cell Factor (SCF) have partially distinct functions in erythroid cell development. The primary functions of EPO are to prevent apoptosis and promote differentiation, with a minor role as a mitogen. On the other hand SCF acts primarily as a mitogenic factor promoting erythroid cell proliferation with a minor role in inhibition of apoptosis. The concerted effects of these two growth factors are responsible for guiding initial commitment, expansion and differentiation of progenitors. The aim of the study was to identify signaling elements pertinent to translational control and elucidate whether both cytokines can contribute to protein translation providing some functional redundancy as seen with respect to apoptosis. The current study focused on non-apoptotic functions of SCF mediated through mTOR/p70S6 leading to protein translation and cell proliferation. We utilized a human primary erythroid progenitors and erythroblasts that are responsive to EPO and SCF to investigate the activation of mTOR/p70S6 kinases and their downstream effectors, the pathway primarily responsible for protein translation. We showed that mTOR, p70S6 kinases and their downstream signaling elements 4EBP1 and S6 ribosomal protein are all activated by SCF but not by EPO in primary erythroid progenitors. We also found that SCF is the sole contributor to activation of the protein translational machinery and activation of mTOR/p70S6 pathway is confined to the proliferative phase of erythroid differentiation program. Altogether these results demonstrate that unlike the survival function which is supported by both EPO and SCF protein translation essential for proliferation is governed by only SCF.  相似文献   

18.
We developed an efficient production system of the soluble extracellular domain of the human erythropoietin receptor (sEPO-R) and characterized the binding of erythropoietin (EPO) with the purified recombinant protein. The sEPO-R, fused to the maltose binding protein (MBP), was expressed as a soluble protein in the periplasm of Escherichia coli (E. coli) and did not accumulate in inclusion bodies. After lysis of the bacteria by an osmotic shock, the fusion protein was purified by affinity chromatography on amylose followed by size exclusion chromatography (SEC). Specific binding of 125I-labelled EPO to the sEPO-R was demonstrated by competitive and saturation binding assays. A single affinity class (Kd = 0.25 nM) of the binding site was evident by Scatchard analysis. This value is similar to the Kd observed between EPO and the EPO-R of high affinity present on human erythroid progenitors. The complex has a molecular size corresponding to a 1:1 complex of EPO and the fusion protein.  相似文献   

19.
人红细胞生成素受体 (h EPOR)是人红细胞生成素的作用配体 ,其胞外区是 h EPO的作用域 ,它的克隆、表达对两种分子的相互作用机制以及 EPO类似物 (新型造血药物 )的筛选都有十分重要的意义。以人胎肝为材料 ,通过对其总 RNA的提取 ,利用 RT- PCR方法扩增 h EPOR的胞外区基因和跨膜区基因及推导相应的氨基酸残基排列 ,结果与国外文献报道相比较从而检验其正确性。  相似文献   

20.
Two distinct hemopoietic growth factors, interleukin 3 (IL-3) and erythropoietin (EPO), support the growth and development of erythroid cells in a sequential manner in vitro. Stimulation of multipotential stem cells by IL-3 appears to develop committed erythroid progenitor cells that respond to EPO. When several murine IL-3-dependent cell lines were assayed for their ability to respond to EPO, the growth and survival of the three cell lines showing the profiles of either myeloid or mast cell lineage (IC-2, DA-1, FDC-P2) were stimulated by EPO in a dose-dependent fashion. To determine whether the biologic effects were mediated through the specific receptors for EPO, we performed binding experiments on these cells with radioiodinated EPO. All of these cells displayed significant levels of specific binding for EPO. Among a family of hemopoietic growth factors, only unlabeled EPO was able to compete for the binding of radioiodinated EPO to the cells. Analysis of the binding data revealed the existence of a single case of binding sites in extremely low abundance. IC-2 cells were used to study the effects of IL-3 on the regulation of expression of EPO receptors. It was demonstrated that a decrease in IL-3 concentration in the culture medium increased the responsiveness to EPO and the amount in specific binding of EPO as well. These results suggest that some IL-3-dependent cell lines have functional EPO receptors and their expression may be modulated by IL-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号