首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ganglioside GD3 biosynthesis in normal and mutant mouse embryos   总被引:1,自引:0,他引:1  
CMP-sialic acid:GM3 sialyltransferase (GD3 synthase; EC 2.4.99.8) was characterized in a membrane-enriched preparation (P2 pellet) from mouse embryos at embryonic day 12 (E-12). Gangliosides GD3 and GM3 were the major radiolabeled products of the reaction. Optimum GD3 synthase activity was obtained at pH 6.0 using 0.1% detergent Triton CF-54. The Km values for GM3 and CMP-sialic acid were 55 and 80 microM, respectively. The Vmax value was calculated as 622 pmol/mg protein/hr. Ganglioside GD3, as end product, induced a two-step reduction of enzyme activity in the range of concentrations from 0 to 34 microM (40%) and from 150 to 300 microM (65%). The rate of GD3 formation was similar in whole embryos and in embryo head and body regions. GD3 synthase activity in tw1/tw1 mutant mouse embryos, which express defects in neuronal differentiation, was only 40% of that in normal wild-type (+/+) embryos. Enzyme activity in heterozygous (+/twl) embryos was similar to that in +/+ embryos. These findings suggest that the reduced GD3 synthase activity in the mutants might arise as a consequence of failed nervous system development and might reflect a secondary rather than a primary effect of the mutation.  相似文献   

2.
Three sialyltransferase activities involved in ganglioside biosynthesis were studied in Golgi-enriched preparations of rat liver: the formation of GM3, GD3 and GD1a. The conditions for the quantitative assays of these enzymatic reactions were standardized and optimized, with Triton X-100 being used as detergent. The apparent Km values of each sialyltransferase for N-acetyl-2-(5'-cytidylyl)neuraminic acid (1.5 mM with GM3 synthase, 0.2 mM with GD3 synthase, and 0.5 mM with GD1a synthase) and the respective glycolipid substrates (0.08 mM for lactosylceramide, 0.1 mM for GM3, and 0.5 mM for GM1) were determined. Competition experiments showed that the three sialyltransferase activities are three individual catalytic entities. Moreover, evidence was found that product inhibition may play a role in the regulation of the activity of sialyltransferases.  相似文献   

3.
Cheng J  Yu H  Lau K  Huang S  Chokhawala HA  Li Y  Tiwari VK  Chen X 《Glycobiology》2008,18(9):686-697
CstII from bacterium Campylobacter jejuni strain OH4384 has been previously characterized as a bifunctional sialyltransferase having both alpha2,3-sialyltransferase (GM3 oligosaccharide synthase) and alpha2,8-sialyltransferase (GD3 oligosaccharide synthase) activities which catalyze the transfer of N-acetylneuraminic acid (Neu5Ac) from cytidine 5'-monophosphate (CMP)-Neu5Ac to C-3' of the galactose in lactose and to C-8 of the Neu5Ac in 3'-sialyllactose, respectively (Gilbert M, Karwaski MF, Bernatchez S, Young NM, Taboada E, Michniewicz J, Cunningham AM, Wakarchuk WW. 2002. The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J Biol Chem. 277:327-337). We report here the characterization of a truncated CstII mutant (CstIIDelta32(I53S)) cloned from a synthetic gene whose codons are optimized for an Escherichia coli expression system. In addition to the alpha2,3- and alpha2,8-sialyltransferase activities reported before for the synthesis of GM3- and GD3-type oligosaccharides, respectively, the CstIIDelta32(I53S) has alpha2,8-sialyltransferase (GT3 oligosaccharide synthase) activity for the synthesis of GT3 oligosaccharide. It also has alpha2,8-sialidase (GD3 oligosaccharide sialidase) activity that catalyzes the specific cleavage of the alpha2,8-sialyl linkage of GD3-type oligosaccharides and alpha2,8-trans-sialidase (GD3 oligosaccharide trans-sialidase) activity that catalyzes the transfer of a sialic acid from a GD3 oligosaccharide to a different GM3 oligosaccharide (3'-sialyllactoside). The donor substrate specificity study of the CstIIDelta32(I53S) GD3 oligosaccharide synthase activity indicates that the enzyme is flexible in using different CMP-activated sialic acids and their analogs for the synthesis of GD3 oligosaccharides containing natural and nonnatural modifications at the terminal sialic acid.  相似文献   

4.
Using a sucrose density gradient fractionation of a highly purified Golgi apparatus from rat liver, we determined the sub-Golgi distribution of CMP-NeuAc:GM3 ganglioside alpha 2----8sialyltransferase (GM3-SAT) and CMP-NeuAc:GT1b ganglioside alpha 2----8sialyltransferase (GT1b-SAT), in comparison with that of the other glycosyltransferase activities involved in ganglioside biosynthesis. While GM3-SAT was recovered in several density fractions, GT1b-SAT was mainly found on less dense sub-Golgi membranes; this indicates that these two activities are physically separate. Moreover, with regard to the monosialo pathway, CMP-NeuAc:lactosylceramide alpha 2----3sialyltransferase, UDP-GalNAc:GM3 ganglioside beta 1----4N-acetylgalactosaminyltransferase, UDP-Gal:GM2 ganglioside beta 1----3galactosyltransferase, and CMP-NeuAc:GM1 ganglioside alpha 2----3sialyltransferase were resolved from more dense to less dense fractions, respectively. In the disialo pathway, UDP-GalNAc:GD3 ganglioside beta 1----4N-acetylgalactosaminyltransferase, UDP-Gal:GD2 ganglioside beta 1----3galactosyltransferase and CMP-NeuAc:GD1b ganglioside alpha 2----3sialyltransferase co-distributed with the corresponding activities of the monosialo pathway. These last results indicate that many Golgi glycosyltransferases involved in ganglioside biosynthesis are localized in the order in which they act.  相似文献   

5.
Previous studies indicated a reproducible pattern of altered glycosphingolipid biosynthesis accompanying late stages of liver tumorigenesis in the rat induced by the carcinogen 2-acetylaminofluorene. The sequence began with a dramatic elevation in CMP-sialic acid:lactosylceramide sialyltransferase and was followed by sequential elevations and eventual depressions in other enzymes catalyzing sugar transfers to glycolipid acceptors. The present study focused on the early events of glycolipid biosynthesis during the first 11 weeks of 2-acetylaminofluorene administration according to the same feeding schedule as used previously. Transient elevations in CMP-sialic acid synthetase and elevations in neutral glycosphingolipid precursors to gangliosides were found to precede the major elevations in CMP-sialic acid:lactosylceramide sialyltransferase (GM3 synthetase) noted earlier. Two cycles of response were observed prior to the initiation of the sustained enhancement of biosynthesis of precursor ganglioside, GM3, and/or a significant increase in total or lipid-soluble sialic acid. In vitro rates of sialyl transfer from CMP-sialic acid to endogenous protein acceptors were not altered. The results suggest that the previous observations of altered ganglioside biosynthesis following 2-acetylaminofluorene administration are not an isolated occurrence but may represent late events in a sequence or 'cascade' of biochemical change involving, as well, biosynthesis of ganglioside precursors, CMP-sialic acid and neutral glycosphingolipids.  相似文献   

6.
GM3-synthase, also known as sialyltransferase I (ST-I), catalyzes the transfer of a sialic acid residue from CMP-sialic acid onto lactosylceramide to form ganglioside GM3. In order to clone this enzyme, as well as other sialyltransferases, we developed an approach that we termed combinatorial PCR. In this approach, degenerate primers were designed on the basis of conserved sequence motifs of the ST3 family of sialyltransferases (STs). The nucleotide sequence of the primers was varied to cover all amino acid variations occurring in each motif. In addition, in some primers the sequence was varied to cover possible homologous substitutions that are absent in the available motifs. A panel of cDNA from 12 mouse and 8 human tissues was used to enable cloning of tissue- and stage-specific sialyltransferases. Using this approach, the fragments of 11 new putative sialyltransferases were isolated and sequenced so far. Analysis of the expression pattern of a particular sialyltransferase across the panel of cDNA from the different tissues provided information about the tissue specificity of ST expression. We chose two new ubiquitously expressed human and mouse STs to clone full-length copies and to assay for GM3-synthase activity. One of the STs, which exhibited the highest homology to ST3 Gal III, showed activity toward lactosylceramide (LacCer) and was termed ST3 Gal V according to the suggested nomenclature [1]. The other ubiquitously expressed sialyltransferase was termed ST3Gal VI. All isolated sialyltransferases were screened for alternatively spliced forms (ASF). Such forms were found for both human ST3Gal V and ST3Gal VI in human fetal brain cDNA library. The detailed cloning strategy, functional assay, and full length cDNA and protein sequences of GM3 synthase (ST3Gal V, or ST-I) are presented.  相似文献   

7.
Several GM3 derivatives have been synthesized. Among them were lyso-GM3 derivatives and GM3 analogues with modifications in the sialic acid moiety. They were used as glycolipid acceptors in assays for GM2 and GD3 synthase of rat liver Golgi. Analysis of the resulting enzyme activities and of the reaction products revealed different substrate specificities for GM2 and GD3 synthase although the normal glycolipid acceptor for both transferases is ganglioside GM3. Specificity of GD3 synthase is strongly determined by the substrate's negative charge and the acyl residue in amide bond to the amino group of neuraminic acid, while GM2 synthase reacts quite indifferently to these changes in the sialic moiety of the substrate. Both enzymes seem to be sensitive to the spatial extension at the neuraminic acid's carboxylic group.  相似文献   

8.
Lauryldimethylamine oxide (LDAO) was employed in the purification of the GM3 ganglioside forming enzyme, CMP-sialic acid:lactosylceramide alpha 2-3 sialyltransferase (SAT-1) (4). This detergent has advantages over the typically employed Triton detergents in the solubilization and stabilization of this sialyltransferase. Crude protein fractions solubilized from rat liver Golgi by several such detergents are very similar in composition as determined by two-dimensional gel electrophoresis. However, LDAO appears to activate and stabilize SAT-1 activity. It is possible that SAT-1 activation involves the structurally similar hydrophobic moieties and quaternary amino groups of LDAO and phosphatidylcholine.  相似文献   

9.
Roles for UDP-GlcNAc 2-epimerase/ManNAc 6-kinase (GNE) beyond controlling flux into the sialic acid biosynthetic pathway by converting UDP-GlcNAc to N-acetylmannosamine are described in this report. Overexpression of recombinant GNE in human embryonic kidney (HEK AD293) cells led to an increase in mRNA levels for ST3Gal5 (GM3 synthase) and ST8Sia1 (GD3 synthase) as well as the biosynthetic products of these sialyltransferases, the GM3 and GD3 gangliosides. Conversely, down-regulation of GNE by RNA interference methods had the opposite, but consistent, effect of lowering ST3Gal5 and ST8Sia1 mRNAs and reducing GM3 and GD3 levels. Control experiments ensured that GNE-mediated changes in sialyltransferase expression and ganglioside biosynthesis were not the result of altered flux through the sialic acid pathway. Interestingly, exogenous GM3 and GD3 also changed the expression of GNE and led to reduced ST3Gal5 and ST8Sia1 mRNA levels, demonstrating a reciprocating feedback mechanism where gangliosides regulate upstream biosynthetic enzymes. Cellular responses to the GNE-mediated changes in ST3Gal5 and ST8Sia1 expression and GM3 and GD3 levels were investigated next. Conditions that led to reduced ganglioside production (e.g. short hairpin RNA exposure) stimulated proliferation, whereas conditions that resulted in increased ganglioside levels (e.g. recombinant GNE and exogenous gangliosides) led to reduced proliferation with a concomitant increase in apoptosis. Finally, changes to BiP expression and ERK1/2 phosphorylation consistent with apoptosis and proliferation, respectively, were observed. These results provide examples of specific biochemical pathways, other than sialic acid metabolism, that are influenced by GNE.  相似文献   

10.
Gangliosides such as GD3, GM2, and GD2 are abundantly expressed on the cell surfaces of various malignant cells, suggesting the potential for anti-ganglioside antibody therapy for tumors. Anti-ganglioside GD2 antibody treatment is currently undergoing clinical trials for melanoma and neuroblastoma. We previously reported high in vivo antitumor effects of anti-GM2 ganglioside antibody against lung cancer. To determine whether anti-GM2 antibody may be clinically indicated for gastrointestinal cancers, we evaluated the mRNA expression of alpha2,8 sialyltransferase, a GD3 synthase, and beta1,4 N-acetylgalactosaminyltransferase (beta1,4 GalNAc-T), a GM2/GD2 synthase, in gastrointestinal cancers. We performed modified semi-quantitative RT-PCR, which reduces complexity incidental to radiolabeling on samples taken from small surgically removed clinical specimens. Stomach (19/22) and colorectal (21/30) cancers showed decreased expression of alpha2,8 sialyltransferase as compared with respective normal tissues (P < 0.05). In contrast, increased expression of beta1,4 GalNAc-T was detected in both types of tumors. Clinicopathological analysis revealed significantly higher expression level of alpha2,8 sialyltransferase in the poorly differentiated than in the well-differentiated stomach cancer group (P < 0.05). Furthermore, the expression level of alpha2,8 sialyltransferase was significantly decreased in male as compared with female colorectal cancer patients (P < 0.05). These results suggest that expression level of GM2 ganglioside is elevated in gastrointestinal cancer, and that anti-GM2 antibody may be applicable to its treatment.  相似文献   

11.
The activity of GD3 synthase modulates the ganglioside pattern in rat liver   总被引:1,自引:0,他引:1  
Variations of the ganglioside composition in the livers of Wistar rats correlated with the activity of GD3 synthase in the corresponding liver homogenates. With increasing enzyme activity, higher proportions of b-series gangliosides (GD3, GD1b, GT1b) were detected. No significant changes in the activity of GM2 synthase or GM1 synthase were observed, indicating a regulatory function for GD3 synthase in this tissue. Young animals showed an average GD3 synthase activity of 0.5-0.6 nmol.h-1.mg protein-1 without sex-dependent variations. Among the older animals, however, males expressed an activity five-fold higher than females, suggesting that this enzyme might be affected by hormones.  相似文献   

12.
To probe the functions of membrane gangliosides, the availability of ganglioside-depleted cells would be a valuable resource. To attempt to identify a useful genetic model of ganglioside depletion, we assessed ganglioside metabolism in murine GM3 synthase (GM3S)-/- knockout primary embryonic fibroblasts (MEF), because normal fibroblast gangliosides (GM3, GM2, GM1, and GD1a), all downstream products of GM3S, should be absent. We found that heterozygote MEF (GM3S+/-) did have a 36% reduced content of qualitatively normal gangliosides (7.0+/-0.8 nmol LBSA/mg cell protein; control: 11+/-1.6 nmol). However, two unexpected findings characterized the homozygous (GM3-/-) MEF. Despite complete knockout of GM3S, (i) GM3-/- MEF retained substantial ganglioside content (21% of normal or 2.3+/-1.1 nmol) and (ii) these gangliosides were entirely different from those of wild type MEF by HPTLC. Mass spectrometry identified them as GM1b, GalNAc-GM1b, and GD1alpha, containing both N-acetyl and N-glycolylneuraminic acid and diverse ceramide structures. All are products of the 0 pathway of ganglioside synthesis, not normally expressed in fibroblasts. The results suggest that complete, but not partial, inhibition of GM3 synthesis results in robust activation of an alternate pathway that may compensate for the complete absence of the products of GM3S.  相似文献   

13.
Gangliosides are a family of glycosphingolipids that contain sialic acid. Although they are abundant on neuronal cell membranes, their precise functions and importance in the central nervous system (CNS) remain largely undefined. We have disrupted the gene encoding GD3 synthase (GD3S), a sialyltransferase expressed in the CNS that is responsible for the synthesis of b-series gangliosides. GD3S-/- mice, even with an absence of b-series gangliosides, appear to undergo normal development and have a normal life span. To further restrict the expression of gangliosides, the GD3S mutant mice were crossbred with mice carrying a disrupted GalNAcT gene encoding beta1,4-N-acetylgalactosaminyltransferase. These double mutant mice expressed GM3 as their major ganglioside. In contrast to the single mutant mice, the double mutants displayed a sudden death phenotype and were extremely susceptible to induction of lethal seizures by sound stimulus. These results demonstrate unequivocally that gangliosides play an essential role in the proper functioning of the CNS.  相似文献   

14.
Developmental changes in ganglioside composition and biosynthesis was studied in rat brain between embryonic day (E) 14 and birth. In E14 brains, GM3 and GD3 were predominant. At E16, "b" series gangliosides, such as GD1b, GT1b, and GQ1b, increased in content. After E18, "a" series gangliosides such as GM1, GD1a, and GT1a increased in content, and the content of GM3 and GD3 markedly decreased. Because of these changes in composition, we determined the activities, in homogenates of embryonic brains, of two key enzymes of ganglioside synthesis: sialyltransferase for the synthesis of GD3 from GM3 and N-acetylgalactosaminyltransferase for GM2 synthesis from GM3. The sialyltransferase activity (GM3----GD3) was constant between E14 and E18 but decreased rapidly from E18 to birth. In contrast, the N-acetylgalactosaminyltransferase activity (GM3----GM2) increased between E14 and E18 but was constant from E18 to birth. These changes in ganglioside composition and enzymatic activities indicate that during development there is a shift from synthesis of the simplest gangliosides of the "a" and "b" pathways to synthesis of the more complex gangliosides.  相似文献   

15.
Golgi vesicles were isolated and purified from rat liver, in which the specific activities of glycosyltransferases (e.g. GM3:CMP-NeuAc sialyltransferase, GD3 synthase; GM3:UDP-GalNAc galactosaminyltransferase, GM2 synthase) were 50-60-times enriched relative to microsomes or total homogenate. Synthesis of gangliosides GM2 and GM1 in such Golgi vesicles is, in the absence of any detergents, stimulated 6-fold and 20-fold respectively by phosphatidylglycerol. Other phospholipids like phosphatidylethanolamine and phosphatidylserine are also significantly stimulatory. With 50 micrograms Golgi protein and 1 nmol UDP-GalNAc, optimal stimulation of GM2 synthase was obtained with 20 micrograms of phosphatidylglycerol and 7.5 nmol of the lipid acceptor GM3. Under the same experimental conditions this stimulation exceeds (by about 40%) that obtained with optimal amount (200 micrograms) of the detergent octylglucoside. Phosphatidylglycerol, on the other hand, has virtually no stimulatory activity on the synthesis of ganglioside GD3 either in the presence of Mg2+ or Mn2+, indicating that facilitation by phospholipid of GM3 transport into Golgi vesicles was not the basis of stimulation of GM2 synthesis. Tunicamycin inhibits the synthesis of gangliosides GM2 and GM1 in isolated Golgi vesicles, but only in the absence of detergents. In the presence of phosphatidylglycerol, GM2 synthesis, for example, was inhibited by 60% by 2 micrograms tunicamycin and more than 85% by 10 micrograms tunicamycin, per 50 micrograms Golgi membrane protein. The inhibition was stronger on GM1 synthesis: 85% with 2.5 micrograms of the antibiotic. The dependence on phosphatidylglycerol and the degree of inhibition by tunicamycin of the synthetic activities are strictly dependent on the intactness of the Golgi vesicles: both phenomena become increasingly less evident when the vesicles are pelleted, and frozen and thawed several times, and completely disappear when the vesicles are solubilized by detergents or disrupted by ultrasonication. Furthermore, tunicamycin inhibition is reversible by increased concentration of phosphatidylglycerol. All these results indicate that phosphatidylglycerol does not stimulate, and tunicamycin does not inhibit, the transferases themselves; rather, the two opposing effects might relate to carrier-mediated transport, e.g. of nucleotide sugars, across Golgi vesicles.  相似文献   

16.
本实验室曾报道在所检测的不同种族来源与不同致癌剂所诱发的肝细胞肝癌中均有神经节苷脂GD_3组份的明显增高,本文就这一现象的机制进行了探讨。实验结果表明在人肝癌手术标本、人肝癌细胞株SMMC,3′-甲基奶油黄(3′Me-DAB)和二乙基亚硝胺(DENA)所诱发的大鼠肝癌以及大鼠肝癌株BERH-2中GD_3合成酶的活性均有不程度的增高,同对GD_3前体的合成酶(GM_3合成酶)的活性也有所增高。这就提示肝癌中GD_3增高的原因之一在于GD_3合成酶的活性增高与前体供应充足的结果。另外,本文还对GD_3合成酶的提纯做了初步尝试。主要采用Tritonx-100抽提和CDP-hydrazide Sepharose 4B亲合层析的方法从二乙基亚硝胺诱发的大鼠肝癌中提纯了GD_3合成酶。提纯倍数为12500倍,产率0.4%。提纯的GD_3合成酶在醋酸纤维膜上经等电聚焦电泳鉴定示单一条带,其pI值为5.25左右。关于糖脂唾液酸转移酶的纯化工作目前还未见报道。  相似文献   

17.
Abstract: To characterize the sialyltransferase-IV activity in brain tissues, the activities of GM1b-, GD1a-, GT1b-, and GQ1c-synthases in adult cichlid fish and rat brains were examined using GA1, GM1, GD1b, or a cod brain ganglioside mixture as the substrate. The GD1a-synthase activity in the total membrane fraction from cichlid fish brain required divalent cations such as Mg2+ or Mn2+ and Triton CF-54 for its full activity. The Vmax value was 1,340 pmol/mg of protein/h at an optimal pH of 6.5, whereas the apparent Km values for CMP-sialic acid and GM1 were 172 and 78 µM, respectively. Cichlid fish and rat brains also contained GM1b-, GT1b-, and GQ1c-synthase activities. The ratio of GM1b-, GD1a-, and GT1b-synthase activities in fish brain was 1.00:0.89:1.13, respectively, and in rat brain 1.00:0.60:0.63. Incubation of fish brain membranes with a cod brain ganglioside mixture, which contains GT1c, and [3H]CMP-sialic acid produced radiolabeled GQ1c. It is interesting that the adult rat brain also contains an appreciable level of GQ1c-synthase activity despite its very low concentrations of c-series gangliosides. The GD1a- or GQ1c-synthase activity in fish and rat brain was inhibited specifically by coincubation with the glycolipids that serve as the substrates for other sialyltransferase-IV reactions. Thus, the GD1a-synthase activity was inhibited by GA1 and GD1b, but not by LacCer, GM3, or GD3. In a similar manner, the synthesis of GQ1c was suppressed by GA1, GM1, and GD1b, but not by LacCer, GM3, or GD3. The GD1a-synthase activity directed toward endogenous GM1 was inhibited by GA1 or GT1b, whereas the endogenous GT1b-synthase activity was suppressed by GA1 or GM1. GA1, GM1, and GD1b did not affect the endogenous GM3- and GD3-synthase activities. These results clearly demonstrate that sialyltransferase-IV in brain tissues catalyzes the reaction for GQ1c synthesis in the c-pathway as well as the corresponding steps in the asialo-, a-, and b-pathway in ganglioside biosynthesis.  相似文献   

18.
19.
The influence of sex steroid hormones on the activities of GM3 and GD3 synthases in isolated hepatocytes was studied. Progesterone (0.1 - 2.0 microM), beta-estradiol (0.1 - 1 microM), and testosterone (0.1 - 1 microM) activate GD3 but not GM3 synthase when added directly to hepatocytes cultured in modified William's E medium.  相似文献   

20.
Composition of gangliosides from ovine testis and spermatozoa   总被引:1,自引:0,他引:1  
Gangliosides were extracted and purified from ovine testis and ejaculated spermatozoa which contained, respectively, 57 and 9 nmol lipid-bound sialic acid per gram wet weight. Fourteen gangliosides were resolved by thin-layer chromatography of testicular gangliosides, of which eleven were purified in sufficient quantity to enable a complete compositional analysis of the carbohydrate residues to be performed. None of the gangliosides contained fucose, but several contained N-glycolylneuraminic acid as a component of the sialic acid species. Relative migration on thin-layer chromatograms relative to known standards, compositional analysis, and selective degradation by specific enzymes were used as the basis for identification. Testis contained members of the ganglio series (GM1, GD1a, GD1b, GT1b, GQ1b), hematoside series (GM3, GD3), and sialosylparagloboside in the molar ratio of 54:40:6, respectively. Testicular GM3, GM1, GD3, GD1a, GD1b and GT1b ran as double bands on thin-layer chromatography which could be accounted for by observed differences in the fatty acid moiety. In addition, the slower migrating band of each pair contained some or all of its sialic acid residues as N-glycolylneuraminic acid, whereas the faster migrating band contained exclusively N-acetylneuraminic acid, except for GM3 where N-acetylneuraminic acid was the sole species in both bands. Thin-layer chromatography of sperm gangliosides revealed seven bands comigrating with equivalent testicular gangliosides. These coincided with the slower migrating bands of testicular GM3, GM1, GD3, GD1a, both bands of GD1b, and possibly both bands of GT1b. Sperm contained only trace amounts of sialosylparagloboside but, in addition, two unidentified bands which were absent from testis were also observed. The molar ratio of the ganglio series to the hematoside series in sperm was 42:58 with GM3 accounting for 42% of total gangliosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号