首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vacuolar proteinase yscB (PrB) has been implicated in the final maturation of procarboxypeptidase yscY (pro-CpY) to the mature wild-type form CpYb of 61 kDa. In PrB-deficient mutants, only the proteinase yscA processed form CpYa of 62 kDa is found [Mechler, B., Müller, H. & Wolf, D. H. (1987) EMBO J. 6, 2157-2163]. We report now that, akin to CpY, two forms of mature proteinase yscA (PrA) can be distinguished. In PrB-deficient mutant cells, PrAa, migrating at about 43 kDa in SDS/PAGE, is found, whereas PrAb, found in wild-type cells, had the known molecular mass of 42 kDa. In the PrB-deficient strain, pro-PrA and pro-CpY matured only to the higher-molecular-mass forms, PrAa and CpYa, and the maturation of both precursors was slower than in the isogenic wild-type strain. Pulse-labeling experiments indicated that the mature forms, PrAb or CpYb, are generated directly in the PrB-containing wild-type strain in vivo. In vitro experiments showed that PrB is able to trigger maturation of its 42-kDa pro-PrB precursor to mature PrB in the absence of PrA. Mature PrB and its proteolytic activity, however, shows a higher stability in the presence of mature PrA. The data indicate a molecular and kinetic participation of proteinase yscB in vacuolar hydrolase precursor maturation.  相似文献   

2.
Proteinase B (PrB) is a subtilisin-like serine protease found in the vacuole of the yeast Saccharomyces cerevisiae. It is first made as a large precursor that consists of a putative signal sequence, a 260-amino acid pro region, the serine protease domain, and two small COOH-terminal post regions (Moehle, C. M., Dixon, C. K., and Jones, E. W. (1989) J. Cell Biol. 108, 309-324). This precursor is glycosylated and proteolytically processed at least three times before mature enzyme is formed. To determine whether an intact PrB catalytic site is required for proteolytic processing of the precursor, point mutations were generated at the codons for the active site serine or aspartate residues by site-directed mutagenesis. The effect of these mutations on PrB processing suggests that the large pro region may be cleaved by an intramolecular, autocatalytic mechanism. The properties of a prb1 mutant that accumulates a 37-kDa precursor in addition to mature sized mutant PrB antigen suggests that the final proteolytic cleavage step is also autocatalytic. A prb1 deletion that lacks codons for the large pro region was made to test whether this part of the precursor is required for formation of mature PrB. Analysis of this mutant revealed two functions for this region: it prevents N-linked glycosylation of the serine protease domain and it allows the PrB precursor to be processed by proteinase A. The pro region can fulfill this latter function if added as a separate molecule, so long as glycosylation of the catalytic domain is prevented by other means.  相似文献   

3.
The yeast Candida boidinii PEP4 and PRB1 genes, encoding proteinase A (PrA) and proteinase B (PrB), respectively, have been cloned and their primary structures were analyzed. The open reading frames of the PEP4 gene (1263 bp encoding a protein of 420 amino acids) and the PRBI gene (1683 bp encoding a protein of 560 amino acids) were found. The deduced amino acid sequences of PrA and PrB are very similar to Saccharomyces cerevisiae PrA and PrB (64% and 61% identities, respectively). Both PEP4 and PRBI genes were disrupted in the C. boidinii genome by one-step gene disruption. The resultant pep4delta and the pep4delta prb1delta strains lost protease activity when compared with the wild-type original strain. The constructed C. boidinii strains are expected to be useful hosts for heterologous protein production.  相似文献   

4.
An inactive precursor form of proteinase A (PrA) transits through the early secretory pathway before final vacuolar delivery. We used gene fusions between the gene coding for PrA (PEP4) and the gene coding for the secretory enzyme invertase (SUC2) to identify vacuolar protein-sorting information in the PrA precursor. We found that the 76-amino-acid preprosegment of PrA contains at least two sorting signals: an amino-terminal signal peptide that is cleaved from the protein at the level of the endoplasmic reticulum followed by the prosegment which functions as a vacuolar protein-sorting signal. PrA-invertase hybrid proteins that carried this sequence information were accurately sorted to the yeast vacuole as determined by cell fractionation and immunolocalization studies. Hybrid proteins lacking all or a portion of the PrA prosegment were secreted from the cell. Our gene fusion data together with an analysis of the wild-type PrA protein indicated that N-linked carbohydrate modifications are not required for vacuolar sorting of this protein. Furthermore, results obtained with a set of deletion mutations constructed in the PrA prosegment indicated that this sequence also contributes to proper folding of this polypeptide into a stable transit-competent molecule.  相似文献   

5.
Transport of aminopeptidase I (API) to the vacuole appears to be insensitive to blockage of the secretory pathway. Here we show that the N-terminal extension of the 61 kDa precursor of API (pAPI) is proteolytically processed in two sequential steps. The first step involves proteinase A (PrA) and produces a 55 kDa unstable intermediate (iAPI). The second step involves proteinase B (PrB) and converts iAPI into the 50 kDa stable, mature enzyme (mAPI). Reversion of the cup1 growth phenotype by a pAPI-CUP1 chimera indicates that pAPI is transported to the vacuole by a post-translational mechanism. Deletion of the first 16 amino acids results in accumulation of the truncated protein in the cytosol, indicating that pAPI is actively transported to the vacuole. The chimera pAPI-myc, constructed by fusing a myc tag to the C-terminus of pAPI, was exploited to dissect the mechanism of pAPI transport. Cell fractionation studies show the presence of iAPI-myc and mAPI in a fraction of vacuoles purified by density centrifugation. This and the sequential conversion of pAPI-myc into iAPI-myc and mAPI lacking the myc tag is consistent with insertion of pAPI into the vacuolar membrane through its N-terminal extension. The specific mechanism of API sorting demonstrates a new pathway of protein transport in vacuolar biogenesis.  相似文献   

6.
The biosynthesis and processing of the vacuolar (lysosomal) acid trehalase (molecular mass about 220 kDa) was followed in vivo using mutants conditionally defective in the secretory pathway. A precursor of 41 kDa was found in sec61 mutant cells deficient in translocation of secretory protein precursors into the lumen of the endoplasmic reticulum. Endoglycosidase H and N-glycosidase F treatment of purified acid trehalase in vitro resulted in a 41 kDa band, indicating that the precursor form found in sec61 mutant cells corresponds to the carbohydrate-free form of the enzyme. sec 18 mutant cells, blocked in the delivery of secretory proteins from the endoplasmic reticulum to the Golgi body accumulate a form with a molecular mass of 76 kDa which probably corresponds to a partially glycosylated precursor of the mature acid trehalase. This precursor partially disappears in favour of the appearance of a higher molecular weight component of 180 kDa in sec7 mutants which are blocked in the delivery step of secretory proteins from the Golgi body to the vacuole. In wild-type cells the fully glycosylated mature form of acid trehalase of about 220 kDa was observed accompanied by some 180 kDa and 76 kDa material.  相似文献   

7.
vps35 mutants of Saccharomyces cerevisiae exhibit severe defects in the localization of carboxypeptidase Y, a soluble vacuolar hydrolase. We have cloned the wild-type VPS35 gene by complementation of the vacuolar protein sorting defect exhibited by the vps35-17 mutant. Sequence analysis revealed an open reading frame predicted to encode a protein of 937 amino acids that lacks any obvious hydrophobic domains. Subcellular fractionation studies indicated that 80% of Vps35p peripherally associates with a membranous particulate cell fraction. The association of Vps35p with this fraction appears to be saturable; when overproduced, the vast majority of Vps35p remains in a soluble fraction. Disruption of the VPS35 gene demonstrated that it is not essential for yeast cell growth. However, the null allele of VPS35 results in a differential defect in the sorting of vacuolar carboxypeptidase Y (CPY), proteinase A (PrA), proteinase B (PrB), and alkaline phosphatase (ALP). proCPY was quantitatively missorted and secreted by delta vps35 cells, whereas almost all of proPrA, proPrB, and proALP were retained within the cell and converted to their mature forms, indicating delivery to the vacuole. Based on these observations, we propose that alternative pathways exist for the sorting and/or delivery of proteins to the vacuole.  相似文献   

8.
The Saccharomyces cerevisiae PHO8 gene product, repressible alkaline phosphatase (ALP), is a glycoprotein enzyme that is localized to the yeast vacuole (lysosome). Using antibodies raised against synthetic peptides corresponding to two distinct hydrophilic sequences in ALP, we have been able to examine the biosynthesis, sorting and processing of this protein. ALP is synthesized as an inactive precursor containing a C-terminal propeptide that is cleaved from the protein in a PEP4-dependent manner. The precursor and mature protein are anchored in the membrane by an N-terminal hydrophobic domain that also appears to function as an uncleaved internal signal sequence. ALP has the topology of a type-II integral membrane protein containing a short basic N-terminal cytoplasmic tail that is accessible to exogenous protease when associated both with the endoplasmic reticulum and the vacuole. Similar to the soluble vacuolar hydrolases carboxypeptidase Y (CPY) and proteinase A (PrA), ALP transits through the early stages of the secretory pathway prior to vacuolar delivery. Two observations indicate, however, that ALP is localized to the vacuole by a mechanism which is in part different from that used by CPY and PrA: (i) maturation of proALP, which is indicative of vacuolar delivery, is less sensitive than CPY and PrA to the defects exhibited by certain of the vacuolar protein sorting (vps) mutants; and (ii) maturation of proALP proceeds normally in the presence of a potent vacuolar ATPase inhibitor, bafilomycin A1, which is known to block vacuole acidification and leads to the mis-sorting and secretion of precursor forms of CPY and PrA. These results indicate that ALP will be a useful model protein for studies of membrane protein sorting in yeast.  相似文献   

9.
The display of a protease, carboxypeptidase Y (CPY) or procarboxypeptidase Y (proCPY), which is the vacuolar protease, on the yeast-cell surface was successfully performed using yeast-cell-surface engineering for the first time. Through that we could confirm the processing of vacuolar proteases containing proteinase A (PrA) and proteinase B (PrB) which are related to the maturation of proCPY, using a novel cell-surface engineering technique. Various protease-knockout strains of Saccharomyces cerevisiae with the CPY-displaying system were constructed to evaluate the operation of the activation process of CPY. The display of CPY (CPY-agg, which is a fusion protein of CPY with C-terminal half of α-agglutinin) on the cell surface was confirmed by immunofluorescence staining. The activity of the CPY-agg was determined after the conversion of proCPY to active CPY by treatment of whole cells with proteinase K. In the proCPY-displaying CPY-knockout strain and PrB-knockout strain, CPY was displayed as an active (mature) form, but in the proCPY-displaying PrA-knockout strain, CPY was present as an inactive form (proCPY). These facts indicate that PrA had been already activated before its transport to the vacuole and that active mature PrA might convert proCPY to CPY before the transport of proCPY to the vacuole. From these results, it was suggested that by using the yeast-cell-surface engineering at the location of the initial step, the autocatalytic activation from proPrA to PrA might occur before the vacuolar branch separates from the main secretory pathway.  相似文献   

10.
Vacuolar processing enzymes (VPEs) are cysteine proteinases responsible for maturation of various vacuolar proteins in plants. A larger precursor to VPE synthesized on rough endoplasmic reticulum is converted to an active enzyme in the vacuoles. In this study, a precursor to castor bean VPE was expressed in a pep4 strain of the yeast Saccharomyces cerevisiae to examine the mechanism of activation of VPE. Two VPE proteins of 59 and 46 kDa were detected in the vacuoles of the transformant. They were glycosylated in the yeast cells, although VPE is not glycosylated in plant cells in spite of the presence of two N-linked glycosylation sites. During the growth of the transformant, the level of the 59 kDa VPE increased slightly until a rapid decrease occurred after 9 h. By contrast, the 46 kDa VPE appeared simultaneously with the disappearance of the 59 kDa VPE. Vacuolar processing activity increased with the accumulation of the 46 kDa VPE, but not of the 59 kDa VPE. The specific activity of the 46 kDa VPE was at a similar level to that of VPE in plant cells. The 46 kDa VPE instead of proteinase A mediated the conversion of procarboxypeptidase Y to the mature form. This indicates that proteinase A responsible for maturation of yeast vacuolar proteins can be replaced functionally by plant VPE. These findings suggest that an inactive VPE precursor synthesized on the endoplasmic reticulum is transported to the vacuoles in the yeast cells and then processed to make an active VPE by self-catalytic proteolysis within the vacuoles.  相似文献   

11.
The yeast Saccharomyces cerevisiae has been shown to contain a major 125-kDa membrane glycoprotein which is anchored in the lipid bilayer by a glycophosphatidylinositol anchor. This protein was purified to near homogeneity and was used to raise a rabbit antibody. Biosynthesis of the 125-kDa protein was studied by immunoprecipitation of 35SO4-labeled material from wild-type cells or a secretion mutant (sec18) in which the vesicular traffic from the endoplasmic reticulum (ER) to the Golgi is blocked. The 125-kDa protein is first made in the ER as a 105-kDa precursor which already contains a glycophosphatidylinositol anchor and which is slowly transformed into the 125-kDa form upon chase (t1/2 approximately 10-15 min). The 105-kDa precursor can be reduced to an 83-kDa form by the enzymatic removal of N-glycans. The removal of N-glycans from the mature 125-kDa protein yields a 95-kDa species. Thus, removal of the N-glycans does not reduce the ER and mature forms to the same molecular mass, indicating that not only elongation of N-glycans but also another post-translational modification takes place during maturation. Selective tagging of surface proteins by treatment of 35SO4-labeled cells with trinitrobenzene sulfonic acid at 0 C followed by immunoprecipitation of the tagged proteins shows that the 125-kDa protein, but not the 105-kDa precursor, becomes transported to the cell surface. This tagging of cells after various lengths of chase also shows that the surface appearance of the protein is biphasic with about one half of the mature 125-kDa protein remaining intracellular for over 2 h. Glycosylation and/or glycophosphatidylinositol anchor addition is important for the stability of the 125-kDa protein since the protein remains undetectable in sec53, a temperature-sensitive mutant which does not make GDP-mannose at 37 C and does not add glycophosphatidylinositol anchors at 37 degrees C.  相似文献   

12.
pep5 mutants of Saccharomyces cerevisiae accumulate inactive precursors to the vacuolar hydrolases. The PEP5 gene was isolated from a genomic DNA library by complementation of the pep5-8 mutation. Deletion analysis localized the complementing activity to a 3.3-kb DNA fragment. DNA sequence analysis of the PEP5 gene revealed an open reading frame of 1029 codons with a calculated molecular mass for the encoded protein of 117,403 D. Deletion/disruption of the PEP5 gene did not kill the cells. The resulting strains grow very slowly at 37 degrees. The disruption mutant showed greatly decreased activities of all vacuolar hydrolases examined, including PrA, PrB, CpY, and the repressible alkaline phosphatase. Apparently normal precursors forms of the proteases accumulated in pep5 mutants, as did novel forms of PrB antigen. Antibodies raised to a fusion protein that contained almost half of the PEP5 open reading frame allowed detection by immunoblot of a protein of relative molecular mass 107 kD in extracts prepared from wild-type cells. Cell fractionation showed the PEP5 gene product is enriched in the vacuolar fraction and appears to be a peripheral vacuolar membrane protein.  相似文献   

13.
A Srivastava  E W Jones 《Genetics》1998,148(1):85-98
The PEP12 homolog Pth1p (Pep twelve homolog 1) is predicted to be similar in size to Pep12p, the endosomal syntaxin homolog that mediates docking of Golgi-derived transport vesicles and, like other members of the syntaxin family, is predicted to be a cytoplasmically oriented, integral membrane protein with a C-terminal transmembrane domain. Kinetic analyses indicate that deltapth1/vam3 mutants fail to process the soluble vacuolar hydrolase precursors and that PrA, PrB and most of CpY accumulate within the cell in their Golgi-modified P2 precursor forms. This is in contrast to a pep12 mutant in which P2CpY is secreted from the cell. Furthermore, pep12 is epistatic to pth1/vam3 with respect to the CpY secretion phenotype. Alkaline phosphatase, a vacuolar membrane hydrolase, accumulates in its precursor form in the deltapth1/vam3 mutant. Maturation of pro-aminopeptidase I, a hydrolase precursor delivered directly to the vacuole from the cytoplasm, is also blocked in the deltapth1/vam3 mutant. Subcellular fractionation localizes Pth1/Vam3p to vacuolar membranes. Based on these data, we propose that Pth1/Vam3p is the vacuolar syntaxin/t-SNARE homolog that participates in docking of transport vesicles at the vacuolar membrane and that the function of Pth1/Vam3p impinges on at least three routes of protein delivery to the yeast vacuole.  相似文献   

14.
Exportable proteins that have significant defects in nascent polypeptide folding or subunit assembly are frequently retained in the endoplasmic reticulum and subject to endoplasmic reticulum-associated degradation by the ubiquitin-proteasome system. In addition to this, however, there is growing evidence for post-endoplasmic reticulum quality control mechanisms in which mutant or non-native exportable proteins may undergo anterograde transport to the Golgi complex and post-Golgi compartments before intracellular disposal. In some instances, these proteins may undergo retrograde transport back to the endoplasmic reticulum with re-targeting to the endoplasmic reticulum-associated degradation pathway; in other typical cases, they are targeted into the endosomal system for degradation by vacuolar/lysosomal proteases. Such quality control targeting is likely to involve recognition of features more commonly expressed in mutant proteins, but may also be expressed by wild-type proteins, especially in cells with perturbation of local environments that are essential for normal protein trafficking and stability in the secretory pathway and at the cell surface .  相似文献   

15.
To investigate the biogenesis of the yeast vacuole, we have sought novel marker proteins localized to the vacuolar membrane. Glycoproteins were prepared from vacuolar membrane vesicles by concanavalin A-Sepharose column chromatography and used to raise monoclonal antibodies. The antibodies obtained recognize several vacuolar proteins that have N-linked oligosaccharide chains. A set of the antibodies reacts with a vacuolar glycoprotein with a major molecular species of 72 kDa (vgp72), which appears to associate peripherally with the vacuolar membrane. The biosynthesis of vgp72 has been examined in detail by pulse-chase experiments and by analyses using various secretory mutants (sec18, sec7, and sec1) and a vacuolar protease mutant (pep4). vgp72 first appears in the endoplasmic reticulum as a 74-kDa species and is quickly modified in the Golgi apparatus to two distinct species: a 79-kDa form, and a heterogeneously glycosylated form (90-150 kDa). Subsequently, both species are proteolytically processed in the vacuole giving rise to a 72-kDa species as well as heavily glycosylated form. Thus, the biogenesis of vgp72 utilizes the early part of the secretory pathway as is the case of vacuolar soluble enzymes. A unique feature is that two species that are different in the extent of glycosylation appear to follow the same destination to the vacuolar membrane.  相似文献   

16.
Sulfhydryl-endopeptidase (SH-EP) is a papain-type vacuolar proteinase expressed in cotyledons of germinated Vigna mungo seeds, and the enzyme possesses a C-terminal propeptide containing KDEL tail, an endoplasmic reticulum retention signal for soluble proteins. SH-EP is transported to vacuoles via a KDEL vesicle (KV) through a Golgi complex-independent route. To see the function of the KDEL sequence of SH-EP, wild-type SH-EP and its KDEL deletion mutant (SH-EPDeltaKDEL) were heterologously expressed in Arabidopsis and in cultured tobacco Bright Yellow 2 cells, and their intracellular transport pathways and localizations were analyzed. A combination of the results from analyses for transformed Arabidopsis and tobacco (Nicotiana tabacum) cells indicated that wild-type SH-EP is packed into KV-like vesicles through the KDEL sequence and is transported to vacuoles in the cells of transformants. In contrast, KV was not formed/induced in the cells expressing SH-EPDeltaKDEL, and the mutant protein was mainly secreted. Therefore, the C-terminal KDEL sequence of the KDEL-tailed cysteine proteinase is thought to be involved in the formation of KV, and in the efficient vacuolar transport of the proteins through KV.  相似文献   

17.
The yeast vacuolar proton-translocating ATPase (V-ATPase) is a multisubunit complex comprised of peripheral membrane subunits involved in ATP hydrolysis and integral membrane subunits involved in proton pumping. The yeast vma21 mutant was isolated from a screen to identify mutants defective in V-ATPase function. vma21 mutants fail to assemble the V-ATPase complex onto the vacuolar membrane: peripheral subunits accumulate in the cytosol and the 100-kDa integral membrane subunit is rapidly degraded. The product of the VMA21 gene (Vma21p) is an 8.5-kDa integral membrane protein that is not a subunit of the purified V-ATPase complex but instead resides in the endoplasmic reticulum. Vma21p contains a dilysine motif at the carboxy terminus, and mutation of these lysine residues abolishes retention in the endoplasmic reticulum and results in delivery of Vma21p to the vacuole, the default compartment for yeast membrane proteins. Our findings suggest that Vma21p is required for assembly of the integral membrane sector of the V-ATPase in the endoplasmic reticulum and that the unassembled 100-kDa integral membrane subunit present in delta vma21 cells is rapidly degraded by nonvacuolar proteases.  相似文献   

18.
19.
The coding sequence for the human transferrin receptor gene has been mutated in order to abolish the attachment of the oligosaccharide closest to the transmembrane sequence. Expression of the mutant receptor in Chinese hamster ovary cells resulted, after analysis under nonreducing conditions, in an 85- and a 73-kDa receptor species. After reduction, the 85-kDa receptors were mostly converted to 73 kDa, although with short labeling periods some 85-kDa receptor remained suggesting that the mutated gene was capable of coding for the entire polypeptide which was then proteolytically processed. This was supported by in vitro translation of mRNA from either wild type or mutant cells which in both cases yielded an 80-kDa protein, the full size of the nonglycosylated protein. The solubility characteristics of the mutant receptor suggest that it contains the COOH-terminal extracellular domain but not the transmembrane sequence. This is supported by the endoglycosidase H sensitivity of the 73-kDa protein which is compatible with the retention of two of the original three high mannose oligosaccharides. The receptor that lacks one oligosaccharide is unable to form intermonomer disulfide bridges or to migrate to the cell surface and is located in the endoplasmic reticulum where it is further degraded after a lag period of about 30 min.  相似文献   

20.
Organelle acidification plays a demonstrable role in intracellular protein processing, transport, and sorting in animal cells. We investigated the relationship between acidification and protein sorting in yeast by treating yeast cells with ammonium chloride and found that this lysosomotropic agent caused the mislocalization of a substantial fraction of the newly synthesized vacuolar (lysosomal) enzyme proteinase A (PrA) to the cell surface. We have also determined that a subset of the vpl mutants, which are deficient in sorting of vacuolar proteins (Rothman, J. H., and T. H. Stevens. 1986. Cell. 47:1041-1051; Rothman, J. H., I. Howald, and T. H. Stevens. EMBO [Eur. Mol. Biol. Organ.] J. In press), failed to accumulate the lysosomotropic fluorescent dye quinacrine within their vacuoles, mimicking the phenotype of wild-type cells treated with ammonium. The acidification defect of vpl3 and vpl6 mutants correlated with a marked deficiency in vacuolar ATPase activity, diminished levels of two immunoreactive subunits of the protontranslocating ATPase (H+-ATPase) in purified vacuolar membranes, and accumulation of the intracellular portion of PrA as the precursor species. Therefore, some of the VPL genes are required for the normal function of the yeast vacuolar H+-ATPase complex and may encode either subunits of the enzyme or components required for its assembly and targeting. Collectively, these findings implicate a critical role for acidification in vacuolar protein sorting and zymogen activation in yeast, and suggest that components of the yeast vacuolar acidification system may be identified by examining mutants defective in sorting of vacuolar proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号