首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A facultative methylotroph, Protaminobacter ruber was grown under two different conditions (aerobically grown under light, and aerobically in the dark after a light period). Bacteriochlorophyll was synthesized inducibly in the cells which were initially grown in the ligt and then grown in the dark, while bacteriochlorophyll was not found in the cells cultured under continuous light. Cytochrome c-554 was solely synthesized parallel to bacteriochlorophyll after switching from light to dark conditions. Both cytochrome c-554 and bacteriochlorophyll levels in the membrane preparation reached to a plateau in 24 h after switching from light and dark conditions. This cytochrome was membrane-bound and its M r was 45,000 by sodium dodecylsulfate polyacrylamide gel electrophoresis. The midpoint potential was 358 mV at pH 7. Other major membrane-bound cytochromes and two soluble cytochromes were present in both types of cells and their content did not change irrespective of growth conditions.Abbreviations SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis - Bchl bacteriochlorophyll  相似文献   

2.
The cytochromes of photosynthetically grown Rhodopseudomonas blastica have been thermodynamically characterized using the technique of redox titrations. Six cytochromes were present; two cytochromes c, E m7= +295mV, E m7=+345mV; and four cytochromes b, E m7=+290mV, E m7=+130mV, E m7=+60mV, E m7=-4mV. These cytochromes were tightly bound except for cytochrome c with E m7 of+345mV which was mostly present in the soluble cell extracts.The effects of cyanide on both the cytochrome c oxidase activity and the NADH-dependent respiration, revealed the presence of a branched respiratory chain, one branch leading to a cyanide-resistant oxidase containing pathway and the other including the cyanide-sensitive cytochrome c-oxidase.The effects of antimycin A, myxothiazol and 5-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) on the steadystate NADH-dependent respiration were also studied. Antimycin A and myxothiazol appeared to act at the level of the ubiquinol-cytochrome c oxidoreductase while UHDBT drastically affected both respiratory branches.Absorption spectra of chromatophore photopigments resulted to be similar to those reported in many species of facultative photosynthetic bacteria although carotenoid absorption maxima were blue-shifted by 5 nm.The light-induced oxygen reduction performed by chromatophores from R. blastica suggested a strict interaction between photosynthetic and respiratory apparatuses.  相似文献   

3.
Photosynthetic membranes comprise a network of light harvesting and reaction center pigment-protein complexes responsible for the primary photoconversion reactions: light absorption, energy transfer and electron cycling. The structural organization of membranes of the purple bacterial species Rb. sphaeroides has been elucidated in most detail by means of polarized light spectroscopy and atomic force microscopy. Here we report a functional characterization of native and untreated membranes of the same species adsorbed onto a gold surface. Employing fluorescence confocal spectroscopy and light-induced electrochemistry we show that adsorbed membranes maintain their energy and electron transferring functionality. Gold-adsorbed membranes are shown to generate a steady high photocurrent of 10 μA/cm2 for several minutes and to maintain activity for up to three days while continuously illuminated. The surface-adsorbed membranes exhibit a remarkable functionality under aerobic conditions, even when exposed to light intensities well above that of direct solar irradiation. The component at the interface of light harvesting and electron cycling, the LH1 complex, displays exceptional stability, likely contributing to the robustness of the membranes. Peripheral light harvesting LH2 complexes show a light intensity dependent decoupling from photoconversion. LH2 can act as a reversible switch at low-light, an increased emitter at medium light and photobleaches at high light.  相似文献   

4.
Cytoplasmic membrane vesicles were prepared by a lysozyme-salt treatment from Arthrobacter P1 grown on methylamine as the carbon and energy source. In the presence of an ascorbate-phenazine methosulphate electron donor system, these vesicles accumulated methylamine in unmodified form by an inducible transport system. This system has a high affinity for methylamine (Kapp=20–25 M). The effect of the ionophores valinomycin and nigericin combined with membrane potential () and pH-gradient (pH) measurements demonstrated that methylamine uptake is electrogenic and driven by the . Optimal activity is observed at pH 6.5 and 30°C. Methylamine uptake was not affected by the presence of ammonium ions but was inhibited by the primary amines ethylamine (competitively), propylamine, butylamine and benzylamine. In addition, formaldehyde and acetate, at a concentration of 1 mM, inhibited methylamine uptake almost completely. These compounds were shown to be non-competitive inhibitors. A strong inhibition observed in the presence of plumbagin could be relieved by addition of dithiothreitol. This indicates that the oxidation-reduction state of, probably, carrier dithiol-disulfide-groups is an important factor in methylamine translocation in Arthrobacter P1.  相似文献   

5.
The importance of the second transmembrane span of subunit a of the ATP synthase from Escherichia coli has been established by two approaches. First, biochemical analysis of five cysteine-substitution mutants, four of which were previously constructed for labeling experiments, revealed that only D119C, found within the second transmembrane span, was deleterious to ATP synthase function. This mutant had a greatly reduced growth yield, indicating inefficient ATP synthesis, but it retained a significant level of ATP-driven proton translocation and sensitivity to N,N(')-dicyclohexyl-carbodiimide, indicating more robust function in the direction of ATP hydrolysis. Second, the entire second transmembrane span was probed by alanine-insertion mutagenesis at six different positions, from residues 98 to 122. Insertions at the central four positions from residues 107 to 117 resulted in the inability to grow on succinate minimal medium, although normal levels of membrane-bound ATPase activity and significant levels of subunit a were detected. Double mutants were constructed with a mutation that permits cross-linking to the b subunit. Cross-linked products in the mutant K74C/114iA were seen, indicating no major disruption of the a-b interface due to the insertion at 114. Analysis of the K74C/110iA double mutant indicated that K74C is a partial suppressor of 110iA. In summary, the results support a model in which the amino-terminal, cytoplasmic end of the second transmembrane span has close contact with subunit b, while the carboxy-terminal, periplasmic end is important for proton translocation.  相似文献   

6.
Sulfate is a partial inhibitor at low and a non-essential activator at high [ATP] of the ATPase activity of F(1). Therefore, a catalytically-competent ternary F(1) x ATP x sulfate complex can be formed. In addition, the ANS fluorescence enhancement driven by ATP hydrolysis in submitochondrial particles is also stimulated by sulfate, clearly showing that the ATP hydrolysis in its presence is coupled to H(+) translocation. However, sulfate is a strong linear inhibitor of the mitochondrial ATP synthesis. The inhibition was competitive (K (i) = 0.46 mM) with respect to Pi and mixed (K (i) = 0.60 and K'(i) = 5.6 mM) towards ADP. Since it is likely that sulfate exerts its effects by binding at the Pi binding subdomain of the catalytic site, we suggest that the catalytic site involved in the H(+) translocation driven by ATP hydrolysis has a more open conformation than the half-closed one (beta(HC)), which is an intermediate in ATP synthesis. Accordingly, ATP hydrolysis is not necessarily the exact reversal of ATP synthesis.  相似文献   

7.
Péter Maróti 《BBA》2019,1860(4):317-324
In the native and most mutant reaction centers of bacterial photosynthesis, the electron transfer is coupled to proton transfer and is rate limiting for the second reduction of QB??→?QBH2. In the presence of divalent metal ions (e.g. Cd2+) or in some (“proton transfer”) mutants (L210DN/M17DN or L213DN), the proton delivery to QB? is made rate limiting and the properties of the proton pathway can be directly examined. We found that small weak acids and buffers in large concentrations (up to 1?M) were able to rescue the severely impaired proton transfer capability differently depending on the location of the defects: lesions at the protein surface (proton gate H126H/H128H?+?Cd2+), beneath the surface (M17DN?+?Cd2+, L210DN/M17DN) or deep inside the protein (L213DN) could be completely, partially or to very small extent recovered, respectively. Small zwitterionic acids (azide/hydrazoic acid) and buffers (tricine) proved to be highly effective rescuers consistent with their enhanced binding affinity and access to any of the proton acceptors (including QB? itself) in the pathway. As a consequence, back titration of the protons at L212Glu could be observed as a pH-dependence of the rate constant of the charge recombination in the presence of azide or formate. Model calculations support the collective influence of the acid cluster on the change of the protonation states upon extension of the cluster with the bound small acid. In proton transfer mutants, the rescuing agents decreased the free energy of activation together with their enthalpic and entropic components. This is in agreement with the hypothesis that they function as protein-penetrating protonophores delivering protons into the chain and select dominating paths out of many alternate routes. We estimate that the proton delivery will be accelerated in one pathway out of 100–200 alternate pathways. The implications for design of the chemical recovery of impaired intra-protein proton transfer pathways in proton transfer mutants are discussed.  相似文献   

8.
Kinetics of electron transfer, following variation of actinic light intensity, for photosynthetic reaction centers (RCs) of purple bacteria (isolated and membrane-bound) were analyzed by measuring absorbance changes in the primary photoelectron donor absorption band at 865 nm. The bleaching of the primary photoelectron donor absorption band in RCs, following a sudden increase of illumination from the dark to an actinic light intensity of I exp, obeys a simple exponential law with the rate constant , in which α is a parameter relating the light intensity, measured in mW/cm2, to a corresponding theoretical rate in units of reciprocal seconds, and k rec is the effective rate constant of the charge recombination in the photosynthetic RCs. In this work, a method for determining the α parameter value is developed and experimentally verified for isolated and membrane-bound RCs, allowing for rigorous modeling of RC macromolecule dynamics under varied photoexcitation conditions. Such modeling is necessary for RCs due to alterations of the forward photoexcitation rates and relaxation rates caused by illumination history and intramolecular structural dynamics effects. It is demonstrated that the classical Bouguer–Lambert–Beer formalism can be applied for the samples with relatively low scattering, which is not necessarily the case with strongly scattering media or high light intensity excitation. An erratum to this article can be found at  相似文献   

9.
In Nocardia sp. 239 d-phenylalanine is converted into l-phenylalanine by an inducible amino acid racemase. The further catabolism of this amino acid involves an NAD-dependent l-phenylalanine dehydrogenase. This enzyme was detected only in cells grown on l- or d-phenylalanine and in batch cultures highest activities were obtained at relatively low amino acid concentrations in the medium. The presence of additional carbon- or nitrogen sources invariably resulted in decreased enzyme levels. From experiments with phenylalanine-limited continuous cultures it appeared that the rate of synthesis of the enzyme increased with increasing growth rates. The regulation of phenylalanine dehydrogenase synthesis was studied in more detail during growth of the organism on mixtures of methanol and l-phenylalanine. Highest rates of l-phenylalanine dehydrogenase production were observed with increasing ratios of l-phenylalanine/methanol in the feed of chemostat cultures. Characteristic properties of the enzyme were investigated following its (partial) purification from l- and d-phenylalanine-grown cells. This resulted in the isolation of enzymes with identical properties. The native enzyme had a molecular weight of 42 000 and consisted of a single subunit; it showed activity with l-phenylalanine, phenylpyruvate, 4-hydroxyphenyl-pyruvate, indole-3-pyruvate and -ketoisocaproate, but not with imidazolepyruvate, d-phenylalanine and other l-amino acids tested. Maximum activities with phenylpyruvate (310 mol min-1 mg-1 of purified protein) were observed at pH 10 and 53°C. Sorbitol and glycerol stabilized the enzyme.Abbreviations RuMP ribulose monophosphate - HPS hexulose-6-phosphate synthase - HPT hexulose-6-phosphate isomerase - FPLC fast protein liquid chromatography  相似文献   

10.
The proton translocation stoichiometry (H+/ATP ratio) was investigated in membrane vesicles from a Synechocystis 6803 mutant in which the serine at position 37 in the hydrophilic loop of the c-subunit from the wild type was replaced by a negatively charged glutamic acid residue (strain plc37). At this position the c-subunit of chloroplasts and the cyanobacterium Synechococcus 6716 already contains glutamic acid. H+/ATP ratios were determined with active ATP synthase in thermodynamic equilibrium between phosphate potential (G p ) and the proton gradient ( H +) induced by acid–base transition. The mutant displayed a significantly higher H+/ATP ratio than the control strain (wild type with kanamycin resistance) at pH 8 (4.3 vs. 3.3); the higher ratio also being observed in chloroplasts and Synechococcus 6716. Furthermore, the pH dependence of the H+/ATP of strain plc37 resembles that of Synechococcus 6716. When the pH was increased from 7.6 to 8.4, the H+/ATP of the mutant increased from 4.2 to 4.6 whereas in the control strain the ratio decreased from 3.8 to 2.8. Differences in H+/ATP between the mutant and the control strain were confirmed by measuring the light-induced phosphorylation efficiency (P/2e), which changed as expected, i.e., the P/2e ratio in the mutant was significantly less than that in the wild type. The need for more H+ ions used per ATP in the mutant was also reflected by the significantly lower growth rate of the mutant strain. The results are discussed against the background of the present structural and functional models of proton translocation coupled to catalytic activity of the ATP synthase.  相似文献   

11.
The reaction between membrane-bound cytochrome c and the reaction center bacteriochlorophyll g dimer P798 was studied in the whole cells and isolated membranes of Heliobacterium gestii. In the whole cells, the flash-oxidized P798+ was rereduced in multiple exponential phases with half times (t 1/2s) of 10 s, 300 s and 4 ms in relative amplitudes of 40, 35 and 25%, respectively. The faster two phases were in parallel with the oxidation of cytochrome c. In isolated membranes, a significantly slow oxidation of the membrane-bound cytochrome c was detected with t 1/2 = 3 ms. This slow rate, however, again became faster with the addition of Mg2+. The rate showed a high temperature dependency giving apparent activation energies of 88.2 and 58.9 kJ/mol in the whole cells and isolated membranes, respectively. Therefore, membrane-bound cytochrome c donates electrons to the P798+ in a collisional reaction mode like the reaction of water-soluble proteins. The rereduction of the oxidized cytochrome c was suppressed by the addition of stigmatellin both in the whole cells and isolated membranes. This indicates that the electron transfer from the cytochrome bc complex to the photooxidized P798+ is mediated by the membrane-bound cytochrome c. The multiple flash excitation study showed that 2–3 hemes c were connected to the P798. By the heme staining after the SDS-PAGE analysis of the membraneous proteins, two cytochromes c were detected on the gel indicating apparent molecular masses of 17 and 30 kDa, respectively. The situation resembles the case in green sulfur bacteria, that is, the membrane-bound cyotochrome c z couples electron transfer between the cytochrome bc complex and the P840 reaction center complex.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

12.
ATPase was detected in the membranes of a motile Streptococcus. Maximal enzymic activity was observed at pH 8 and ATP/Mg2+ ratio of 2. Mn2+ and Ca2+ could replace Mg2+ to some extent. Besides ATP, GTP and ITP were substrates. The enzyme was inhibited by N,N-dicyclohexylcarbodiimide but not by sodium azide, uncouplers or bathophenanthroline.An electrochemical gradient of protons, which was artificially imposed across the membranes of Streptococcus cells by manipulation of either the K+ diffusion potential or the transmembrane pH gradient, led to ATP synthesis. ATP synthesis was abolished by proton conductors, an inhibitor of the ATPase or an increase in the extracellular K+ concentration. A comparison between the phosphate potential and the electrochemical proton gradient showed that the data found are in agreement with a stoichiometry of 2 protons translocated per molecule ATP synthesized.Abbreviations electrochemical gradient of protons - DMO 5,5-dimethyl-2,4-oxazolidinedione - CCCP carbonylcyanide m-chlorophenylhydrazone - FCCP carbonylcyanide p-trifluoromethoxyphenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DNP 2,4-dimitrophenol  相似文献   

13.
V. Mell  H. Senger 《Planta》1978,143(3):315-322
Photosystem II (PS II) reactions of chloroplast particles show the same variations during the synchronous life cycle of Scenedesmus obliquus, strain D3 (Gaffron Biol. Zbl. 59, 302 1939), as the whole cells they derived from. Photosystem I (PS I) reactions of whole cells and of subchloroplast particles show little or no variation in their activity, whereas PS I reactions of chloroplast particles vary like PS II reactions during the life cycle. The variation in chloroplast particles could be attributed to the change in the reoxidation capacity of plastoquinone still attached to PS I. Digitonin-treatment of chloroplast particles from Scenedesmus and subsequent sucrose density gradient separation yielded 3 distinct fractions: Fraction I contained pure PS I particles with the most efficient PS I-mediated methylviologen (MV) reduction with subsequent oxygen uptake (3 mmol O2/mg Chl·h); no Hill reaction; and a high chlorophyll a/b ratio, and a vast amount of unbound protein xanthophyll complexes. Fraction II is enriched in PS II particles, with little PS I activity (less than 10% of the PS I particles) and a low chlorophyll a/b ratio. The activity of the water-splitting system was completely lost. This fraction must also contain most of the light-harvesting pigment system. Fraction III is also enriched in PS II with even less PS I activity, but the ratio of chlorophyll a/b is slightly higher than in whole cells and the water-splitting system is intact. -carotene was part of all fractions whereas functional xanthophylls seemed to be restricted to the PS II particles. From the constant chlorophyll P/700 ratio we had to conclude that size of the photosynthetic unit does not change during the life cycle of a synchronized Scenedesmus obliquus culture.Abbreviations DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea - DCPIP dichlorphenolindophenol - MV methylviologen (paraquat) - PS I photosystem I - PS II photosystem II - DPC diphenyl-carbazide  相似文献   

14.
Rhizobium ORS 571, isolated from stem nodules of the tropical legumeSesbania rostrata is able to grow in the chemostat with molecular nitrogen as sole nitrogen source at a specific growth rate of 0.1 h-1. Samples from nitrogenfixing cultures showed high acetylene reduction activities: 1,500 nmol ethylene formed per milligram dry weight per hour. Under nitrogen-fixing conditions an uptake hydrogenase is induced. Ammonia-assimilating cultures, without additional hydrogen, did not induce hydrogenase. The addition of hydrogen to succinate-limited nitrogen-fixing cultures resulted in an increase in the molar growth yield on succinate (Y succinate) from 27 to 35 and a slight decrease in the molar growth yield on oxygen ( ), showing that hydrogen oxidation is less energy-yielding than the oxidation of endogenous substrates. Respiration-driven proton translocation measured with starved cells indicated the functioning of site 1 and 2 of oxidative phosphorylation. Cytochrome spectra showed that cytochromea 600, present at high dissolved oxygen tension (d.o.t.) almost completely disappeared at low d.o.t. In flash-photolysis spectra only thea-type cytochrome could be detected as an oxidase in cells both grown at high and low d.o.t. Growth yields in ammonia-assimilating cultures were higher than those measured in nitrogen-fixing cultures. Assuming two sites of oxidative phosphorylation, a molar growth yield on ATP (Y ATP) of about 3 and 6 was calculated for respecticely nitrogen-fixing and ammonia-assimilating cultures. TheY ATP under nitrogen-fixing conditions is dependent on the amount of H2 formed per mol N2 fixed (H2/N2 ratio). A method has been described to calculate the total amount of ATP use by nitrogenase during the fixation of 1 mol N2 (ATP/N2 ratio) and H2/N2 ratios in aerobic nitrogen fixing organisms. This calculation yielded that nitrogen fixation inRhizobium ORS 571 is a high ATP-consuming process. The calculated ATP/N2 and H2/N2 ratios were respectively 42 and 7.5.Abbreviations d.o.t. dissolved oxygen tension A preliminary account of this work was presented at the 5th International Symposium on Nitrogen Fixation, September 1983, Noordwijkerhout, The Netherlands  相似文献   

15.
Regulation of respiration and ATP synthesis in higher organisms: Hypothesis   总被引:12,自引:0,他引:12  
The present view on the regulation of respiration and ATP synthesis in higher organisms implies only Michaelis-Menten type kinetics and respiratory control as regulatory principles. Recent experimental observations, suggesting further regulatory mechanisms at respiratory chain complexes, are reviewed. A new hypothesis is presented implying regulation of respiration and ATP synthesis in higher organisms mainly via allosteric modification of respiratory chain complexes, in particular of cytochromec oxidase. The allosteric effectors, e.g., metabolites, cofactors, ions, hormones, and the membrane potential are suggested to change the activity and the coupling degree of cytochromec oxidase by binding to specific sites at nuclear coded subunits. Recent results on the structure and activity of cytochromec oxidase, supporting the hypothesis, are reviewed.Dedicated to Professor Dr. Carl Martius on the occasion of his 80th birthday.  相似文献   

16.
Continuous cultures of Chloroflexus aurantiacus were cultivated in a chemostat in the light with varying bacteriochlorophyll (BChl) a/c ratios by changing the growth rate. Under these culture conditions all cells were homogeneously and reproducibly equipped with chlorosomes. In order to determine the number and size of chlorosomes in relation to different BChl contents morphometric measurements were performed on electron micrographs. The linear increase of BChl a contents coincided with an increasing number of chlorosomes per membrane area and per bacterium rather than with an enlargement of the average size of chlorosomes. The numbers of chlorosomes and therefore the percentage of chlorosome-covered cytoplasmic membrane increased linearly with increasing BChl a contents. The average size of the baseplates was largely constant in all cultures (mean 3,222±836 nm2). However, within individual cells the size of baseplates varied by a factor of 3.0, especially by the variation of the length. The exponential increase in BChl c contents coincided with an increasing number of chlorosomes (up to a factor of 2.3) and an enlargement of the average chlorosome volume (up to a factor of 1.9). The number of BChl a molecules per chlorosome was about 1,484±165, thus the number of reaction centers per chlorosome was 58±12. The data suggest, firstly, that BChl a is confined to areas (cytoplasmic membrane plus baseplate) as represented by the chlorosome attachment sites; secondly, that the degree of packing of BChl c molecules within chlorosomes increases with increasing BChl c contents.  相似文献   

17.
Flash-induced optical kinetics at room temperature of cytochrome (Cyt) c 551 and an Fe-S center (CFA/CFB) bound to a purified reaction center (RC) complex from the green sulfur photosynthetic bacterium Chlorobium tepidum were studied. At 551 nm, the flash-induced absorbance change decayed with a t 1/2 of several hundred ms, and the decay was accelerated by 1-methoxy-5-methylphenazinium methyl sulfate (mPMS). In the blue region, the absorbance change was composed of mPMS-dependent (Cyt) and mPMS-independent component (CFA/CFB) which decayed with a t 1/2 of 400–650 ms. Decay of the latter was effectively accelerated by benzyl viologen (Em –360 mV) and methyl viologen (–440 mV), and less effectively by triquat (–540 mV). The difference spectrum of Cyt c had negative peaks at 551, 520 and 420 nm, with a positive rise at 440 to 500 nm. The difference spectrum of CFA/CFB resembled P430 of PSI, and had a broad negative peak at 430435 nm.Abbreviations (B)Chl (bacterio)chlorophyll - Cyt cytochrome - FA, FB and FX iron-sulfur center A, B and X of Photosystem I - CFA, CFB and CFX FA-,FB- and FX-like Fe-S center of Chlorobium - mPMS 1-methoxy-5-methylphenazinium methyl sulfate - PSI Photosystem I - RC reaction center  相似文献   

18.
Calcium (Ca) is critical for crustaceans due to their molting cycle and its presence in the carapace as calcium carbonate, apart from the usual functions of Ca, such as cell signalling. Ca transport in Dilocarcinus pagei, a freshwater crab, was studied in isolated cells from hepatopancreas to further characterize Ca transport mechanisms in these crabs. Cells were isolated and loaded with Fluo-3, a calcium fluorescent dye. Three different cell treatments were performed: Group 1 cells were Ca free during cell dissociation, and calcium was present (at 1 mM) for fluorescence cell loading and transport experiments (FC); Group 2 cells were calcium free during cell dissociation and for transport experiments, but not during cell loading (LC); and Group 3 cells were Ca free during cell dissociation, cell loading and transport experiments (WC). Intracellular Ca was recorded through time after ATP was added to the cells and ATP caused an increase in Ca efflux within 30s in all cells. WC cells showed the smallest Ca efflux compared to the other cells, probably because it was intracellularly Ca "depleted". Vanadate and amiloride decreased the Ca efflux when ATP was added to the cells, while verapamil did not cause any effect in Ca efflux, confirming the presence of a Ca(2+)-ATPase sensitive to vanadate in hepatopancreas of D. pagei. In a different set of experiments, cells were also exposed to a Ca pulse of 1 and 10mM during 180 s. 10mM Ca increased intracellular Ca compared to 1mM, and the increase was not recovered during the experimental time. Additionally, Ca influx was reduced by verapamil and amiloride, but not completely. The results suggest that Ca influx probably occurs through an undefined exchanger, apart from Ca channels (verapamil sensitive) and electrogenic 1 Na(+)(1H(+))/1 Ca(2+) exchanger (amiloride-sensitive). Similarities between freshwater and seawater crabs, lobsters and crayfish in relation to plasma membrane Ca transporters, although the environment where they live is quite diverse, suggest that universal mechanisms for Ca homeostasis are widespread among crustaceans.  相似文献   

19.
Flash-induced kinetics of the membrane potential increase related to electron transfer within the cytochrome (cyt) b/c1 complex (Phase III) and that of cyt c1+c2 reduction have been measured as a function of myxothiazol concentration in isolated chromatophores and whole cells of Rhodobacter sphaeroides. Upon addition of nonsaturating concentrations of myxothiazol, kinetics of Phase III display two phases, Phase IIIa and Phase IIIb. The amplitude of Phase IIIa, completed in about 10 ms, is proportional to the fraction of non-inhibited cyt b/c1 complexes, while its half-time is independent of the myxothiazol concentration. A fast cyt c1+c2 reduction phase is correlated to Phase IIIa. These experiments demonstrate that, in a range of time of several ms, diffusion of cyt c2 is restricted to domains formed by a supercomplex including two reaction centers (RCs) and a single cyt b/c1 complex, as proposed by Joliot et al. (Biochim Biophys Acta 975: 336–345, 1989). Phase IIIb, completed in about 100 ms, shows that positive charges or inhibitor molecules are exchanged between supercomplexes in this range of time. These exchanges occur within domains including 2 to 3 supercomplexes, i.e. in membrane domains smaller than a single chromatophore. These conclusions apply to both isolated chromatophores and whole cells.Abbreviations cyt cytochrome - MOPS 3-(N-morpholino)propane sulfonic acid - PMS phenazine methosulfate - P primary donor - Rb. Rhodobacter - RC reaction center  相似文献   

20.
IF1 is an endogenous inhibitor protein of mitochondrial ATP synthase. It is evolutionarily conserved throughout all eukaryotes and it has been proposed to play crucial roles in prevention of the wasteful reverse reaction of ATP synthase, in the metabolic shift from oxidative phosphorylation to glycolysis, in the suppression of ROS (reactive oxygen species) generation, in mitochondria morphology and in haem biosynthesis in mitochondria, which leads to anaemia. Here, we report the phenotype of a mouse strain in which IF1 gene was destroyed. Unexpectedly, individuals of this IF1-KO (knockout) mouse strain grew and bred without defect. The general behaviours, blood test results and responses to starvation of the IF1-KO mice were apparently normal. There were no abnormalities in the tissue anatomy or the autophagy. Mitochondria of the IF1-KO mice were normal in morphology, in the content of ATP synthase molecules and in ATP synthesis activity. Thus, IF1 is not an essential protein for mice despite its ubiquitous presence in eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号