首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 323 毫秒
1.
Alpha-(1-->2)-mannosidase I from the endoplasmic reticulum (ERManI), a Family 47 glycoside hydrolase, is a key enzyme in the N-glycan synthesis pathway. Catalytic-domain crystal structures of yeast and human ERMan1s have been determined, the former with a hydrolytic product and the latter without ligands, with the inhibitors 1-deoxymannojirimycin and kifunensine, and with a thiodisaccharide substrate analog. Both inhibitors were bound at the base of the funnel-shaped active site as the unusual 1C4 conformer, while the substrate analog glycon is a 3S1 conformer. In the current study, AutoDock was used to dock alpha-D-mannopyranosyl-(1-->2)-alpha-D-mannopyranose with its glycon in chair (1C4,4C1), half-chair (3H2,3H4,4H3), skew-boat (OS2,3S1,5S1), boat (2,5B,3,OB,B1,4,B2,5), and envelope (3E,4E,E3,E4) conformations into the yeast ERManI active site. Both docked energies and forces on docked ligand atoms were calculated to determine how the ligand distorts to the transition state. From these, we can conclude that (1) both 1C4 and OS2 can be the starting conformers; (2) the most likely binding pathway is 1C4-->3H2-->OS2-->3,OB-->3S1-->3E; (3) the transition state is likely to be close to a 3E conformation.  相似文献   

2.
The TIME-EA4, from silkworm diapause eggs of pure strain C108, Bombyx mori, has glycosylated chain as tetrasaccharide (Man(2)GlcNAc(2)) attaching to the Asn(22) of T3 peptide from tryptic digests. On the other hand, from Showa silkworm strain we additionally observed a pentasaccharide (Man(3)GlcNAc(2)) on T3 at the same linkage site. The linkage pattern of the 5-sugar chain was studied through Smith degradation combined with LC-MS and MS/MS analyses. These advanced methods led us to conclude that the pentasaccharide was branching as Man 1-->3(Man 1-->6)Man 1-->4GlcNAc 1-->4GlcNAc.  相似文献   

3.
Golgi alpha-mannosidase II is an enzyme that processes the intermediate oligosaccharide Gn(1)M(5)Gn(2) to Gn(1)M(3)Gn(2) during biosynthesis of N-glycans. Previously, we isolated a cDNA encoding a protein homologous to alpha-mannosidase II and designated it alpha-mannosidase IIx. Here, we show by immunocytochemistry that alpha-mannosidase IIx resides in the Golgi in HeLa cells. When coexpressed with alpha-mannosidase II, alpha-mannosidase IIx colocalizes with alpha-mannosidase II in COS cells. A protein A fusion of the catalytic domain of alpha-mannosidase IIx hydrolyzes a synthetic substrate, 4-umbelliferyl-alpha-D-mannoside, and this activity is inhibited by swainsonine. [(3)H]glucosamine-labeled Chinese hamster ovary cells overexpressing alpha-mannosidase IIx show a reduction of M(6)Gn(2) and an accumulation of M(4)Gn(2). Structural analysis identified M(4)Gn(2) to be Man alpha 1-->6(Man alpha 1-->2Man alpha 1-->3)Man beta 1-->4GlcNAc beta 1-->4GlcNAc. The results suggest that alpha-mannosidase IIx hydrolyzes two peripheral Man alpha 1-->6 and Man alpha 1-->3 residues from [(Man alpha 1-->6)(Man alpha 1-->3)Man alpha 1-->6](Man alpha 1-->2Man alpha 1-->3)Man beta 1-->4GlcNAc beta 1-->4GlcNAc, during N-glycan processing.  相似文献   

4.
Wu AM  Wu JH  Herp A  Chow LP  Lin JY 《Life sciences》2001,69(17):2027-2038
To elucidate of the mechanism of intoxication, the affinity of a toxic lectin, abrin A, from the seeds of Abrus precatorius for mammalian carbohydrate ligands, was studied by enzyme linked lectinosorbent assay and by inhibition of abrin A-glycan interaction. From the results, it is concluded that: (1) abrin A reacted well with Gal beta1-->4GlcNAc (II), Gal alpha1-->4Gal (E), and Gal beta1-->3GalNAc (T) containing glycoproteins. But it reacted weakly with sialylated gps and human blood group A,B,H active glycoproteins (gps); (2) the combining site of abrin A lectin should be of a shallow groove type as this lectin is able to recognize from monosaccharides with specific configuration at C-3, C-4, and deoxy C-6 of the (D)Fuc pyranose ring to penta-saccharides and probably internal Gal alpha,beta-->; and (3) its binding affinity toward mammalian structural features can be ranked in decreasing order as follows: cluster forms of II, T, B/E (Gal alpha1-->3/4Gal) > monomeric T > monomeric II > monomeric B/E, Gal > GalNAc > monomeric I > Man and Glc (inactive). These active glycotopes can be used to explain the possible structural requirements for abrin A toxin attachment.  相似文献   

5.
Herscovics A 《Biochimie》2001,83(8):757-762
Class I alpha 1,2-mannosidases (glycosylhydrolase family 47) are conserved through eukaryotic evolution. This protein family comprises three subgroups distinguished by their enzymatic properties. The first subgroup includes yeast (Saccharomyces cerevisiae) and human alpha 1,2-mannosidases of the endoplasmic reticulum that primarily form Man(8)GlcNAc(2) isomer B from Man(9)GlcNAc(2). The second subgroup includes mammalian Golgi alpha 1,2-mannosidases, as well as enzymes from insect cells and from filamentous fungi, that trim Man(9)GlcNAc(2) to Man(8)GlcNAc(2) isomers A and/or C intermediates toward the formation of Man(5)GlcNAc(2). Yeast and mammalian proteins of the third subgroup have no enzyme activity with Man(9)GlcNAc(2) as substrate. The members of subgroups 1 and 3 participate in endoplasmic reticulum quality control and promote proteasomal degradation of misfolded glycoproteins. The yeast endoplasmic reticulum alpha 1,2-mannosidase has served as a model for structure-function studies of this family. Its structure was determined by X-ray crystallography as an enzyme-product complex. It consists of a novel (alpha alpha)(7) barrel containing the active site that includes essential acidic residues and calcium. The structures of the subgroup 1 human endoplasmic reticulum alpha 1,2-mannosidase and of a subgroup 2 fungal alpha 1,2-mannosidase were determined by molecular replacement. Comparison of the enzyme structures is providing some insight into the reasons for their different specificities.  相似文献   

6.
The substrate specificity of neutral alpha-mannosidase purified from Japanese quail oviduct [Oku, H., Hase, S., & Ikenaka, T. (1991) J. Biochem. 110, 29-34] was analyzed by using 21 oligomannose-type sugar chains. The enzyme activated with Co2+ hydrolyzed the Man alpha 1-3 and Man alpha 1-6 bonds from the non-reducing termini of Man alpha 1-6(Man alpha 1-3)Man alpha 1-6(Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc (M5A), but hardly hydrolyzed the Man alpha 1-2 bonds of Man9GlcNAc2. The hydrolysis rate decreased as the reducing end of substrates became more bulky: the hydrolysis rate for the pyridylamino (PA) derivative of M5A as to that of M5A was 0.8; the values for M5A-Asn and Taka-amylase A having a M5A sugar chain being 0.5 and 0.04, respectively. The end product was Man beta 1-4GlcNAc2. For the substrates with the GlcNAc structure at their reducing ends (Man5GlcNAc, Man6GlcNAc and Man9GlcNAc), the hydrolysis rate was remarkably increased: Man5GlcNAc was hydrolyzed 16 times faster than M5A, and Man2GlcNAc 40 times faster than Man9GlcNAc2. The enzyme did not hydrolyze Man alpha 1-2 residue(s) linked to Man alpha 1-3Man beta 1-4GlcNAc. The end products were as follows: [formula; see text] These results suggest that oligomannose-type sugar chains with the GlcNAc structure at their reducing ends seem to be native substrates for neutral alpha-mannosidase and the enzyme seems to hydrolyze endo-beta-N-acetylgucosaminidase digests of oligomannose-type sugar chains in the cytosol.  相似文献   

7.
8.
Cytosolic neutral alpha-mannosidase is a putative catabolic enzyme that produces cytosolic free oligomannosides. Activation of the enzyme by Co(II) treatment has been reported using pyridylamino derivatives of Man(5)GlcNAc and Man(5)GlcNAc2, and p-nitrophenyl alpha-mannoside as substrates, with the Co(II)-treated enzyme releasing four alpha-mannose residues from Man(9)GlcNAc to give Manalpha1-6(Manalpha1-2Manalpha1-2Manalpha1-3)Manbeta1-4GlcNAc as an end product. When Man(9)GlcNAc, which is considered to be the actual substrate in the cytosol, was used as a substrate, we found that even before treatment with Co(II) the enzyme was able to cleave a single Manalpha1-2 residue from Man(9)GlcNAc to give Manalpha1-6(Manalpha1-2Manalpha1-3)Manalpha1-6(Manalpha1-2Manalpha1-2Manalpha1-3)Manbeta1-4GlcNAc as the end product. The K(m) value of the Co(II)-treated enzyme for Man(9)GlcNAc was found to be 37 microM, which is one-twelfth that of the non-treated enzyme, while the values were V(max) values were almost the same, indicating that the affinity of the substrate is higher with Co(II). These results indicate that Co(II) regulates the substrate specificity of the enzyme.  相似文献   

9.
Class I alpha1,2-mannosidases (glycosyl hydrolase family 47) involved in the processing of N-glycans during glycoprotein maturation have different specificities. Enzymes in the endoplasmic reticulum of yeast and mammalian cells remove a single mannose from Man(9)GlcNAc(2) to form Man(8)GlcNAc(2) isomer B (lacking the alpha1, 2-mannose residue of the middle alpha1, 3-arm), whereas other alpha1,2-mannosidases, including Golgi alpha1,2-mannosidases IA and IB, can convert Man(9)GlcNAc(2) to Man(5)GlcNAc(2). In the present work, it is demonstrated that with a single mutation in its catalytic domain (Arg(273) --> Leu) the yeast endoplasmic reticulum alpha1,2-mannosidase acquires the ability to transform Man(9)GlcNAc to Man(5)GlcNAc. High resolution proton nuclear magnetic resonance analysis of the products shows that the order of removal of mannose from Man(9)GlcNAc is different from that of other alpha1, 2-mannosidases that remove four mannose from Man(9)GlcNAc. These results demonstrate that Arg(273) is in part responsible for the specificity of the endoplasmic reticulum alpha1,2-mannosidase and that small differences in non-conserved amino acids interacting with the oligosaccharide substrate in the active site of class I alpha1, 2-mannosidases are responsible for the different specificities of these enzymes.  相似文献   

10.
Rockey WM  Laederach A  Reilly PJ 《Proteins》2000,40(2):299-309
The Lamarckian genetic algorithm of AutoDock 3.0 was used to dock alpha-maltotriose, methyl alpha-panoside, methyl alpha-isopanoside, methyl alpha-isomaltotrioside, methyl alpha-(6(1)-alpha-glucopyranosyl)-maltoside, and alpha-maltopentaose into the closed and, except for alpha-maltopentaose, into the open conformation of the soybean beta-amylase active site. In the closed conformation, the hinged flap at the mouth of the active site closes over the substrate. The nonreducing end of alpha-maltotriose docks preferentially to subsites -2 or +1, the latter yielding nonproductive binding. Some ligands dock into less optimal conformations with the nonreducing end at subsite -1. The reducing-end glucosyl residue of nonproductively-bound alpha-maltotriose is close to residue Gln194, which likely contributes to binding to subsite +3. In the open conformation, the substrate hydrogen-bonds with several residues of the open flap. When the flap closes, the substrate productively docks if the nonreducing end is near subsites -2 or -1. Trisaccharides with alpha-(1-->6) bonds do not successfully dock except for methyl alpha-isopanoside, whose first and second glucosyl rings dock exceptionally well into subsites -2 and -1. The alpha-(1-->6) bond between the second and third glucosyl units causes the latter to be improperly positioned into subsite +1; the fact that isopanose is not a substrate of beta-amylase indicates that binding to this subsite is critical for hydrolysis.  相似文献   

11.
Hen oviduct membranes are shown to catalyze the following enzyme reaction: GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4(Fuc alpha 1-6)GlcNAc-Asn + UDP-GlcNAc leads to GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)GlcNAc beta 1-4)Man beta 1-4GlcNAc beta 1-4(Fuc alpha 1-6)GlcNAc-Asn + UDP. The enzyme catalyzing this reaction has been named UDP-GlcNAc:glycopeptide beta 4-N-acetylglucosaminyltransferase III (GlcNAc-transferase III) to distinguish it from two other GlcNAc-transferases (I and II) present in hen oviduct and previously described in several mammalian tissues. GlcNAc-transferases I and II, respectively, attach GlcNAc in beta 1-2 linkage to the Man alpha 1-3 and Man alpha 1-6 arms of Asn-linked oligosaccharide cores. A specific assay for GlcNAc-transferase III was devised by using concanavalin A/Sepharose columns to separate the product of transferase III from other interfering radioactive glycopeptides formed in the reaction. The specific activity of GlcNAc-transferase III in hen oviduct membranes is about 5 nmol/mg of protein/h. Substrate specificity studies have shown that GlcNAc-transferase III requires both terminal beta 1-2-linked GlcNAc residues in its substrate for maximal activity. Removal of the GlcNAc residue on the Man alpha 1-6 arm reduces activity by at least 85% and removal of both GlcNAc residues reduces activity by at least 93%. Two large scale preparations of product were subjected to high resolution proton NMR spectroscopy to establish the incorporation by the enzyme of a GlcNAc in beta 1-4 linkage to the beta-linked Man. This GlcNAc residue is called a "bisecting" GlcNAc and appears to play important control functions in the synthesis of complex N-glycosyl oligosaccharides. Several enzymes in the biosynthetic scheme are unable to act on glycopeptide substrates containing a bisecting GlcNAc residue.  相似文献   

12.
In vitro incubation of the oligomannosyl oligosaccharides Man9GlcNAc and Man5GlcNAc with isolated disrupted lysosomes yields different oligosaccharide isomers resulting from mannosidase hydrolysis. These isomers were isolated by HPLC and characterized by 1H-NMR spectroscopy. The first steps of the degradation involve an (alpha 1-2)mannosidase activity and lead to the formation of one Man8GlcNAc, one Man7GlcNAc, two Man6GlcNAc and two Man5GlcNAc isomers. These reactions do not require Zn2+ as activator. On the other hand, the following steps, which lead to the formation of Man3GlcNAc and Man2GlcNAc, are Zn2(+)-dependent. This process is characterized by the preferential action of an (alpha 1-3)mannosidase activity, and the formation of Man(alpha 1-6)Man(alpha 1-6)Man(beta 1-4)GlcNAc and Man(alpha 1-6)Man(beta 1-4)GlcNAc. Therefore, the digestion of Man9GlcNAc inside the lysosome appears to follow a very specific pathway, since only nine intermediate compounds can be identified instead of the 38 possible isomers. Our results are consistent both with the existence of several specific enzymes for alpha 1-2, alpha 1-3 and alpha 1-6 linkages, and with the presence of a unique enzyme whose specificity would be dependent either on Zn2+ or on the spatial conformation of the glycan. Nevertheless, previous work on the structural analysis of oligosaccharides excreted in the urine of patients suffering from mannosidosis, demonstrates the absence of the core alpha 1-6-linked mannosyl residue in the major storage product derived from oligomannosyl oligosaccharides. This observation indicates the presence of a specific (alpha 1-6)mannosidase form, unaffected in mannosidosis.  相似文献   

13.
Class I alpha1,2-mannosidases (glycosylhydrolase family 47) are key enzymes in the maturation of N-glycans. This protein family includes two distinct enzymatically active subgroups. Subgroup 1 includes the yeast and human endoplasmic reticulum (ER) alpha1,2-mannosidases that primarily trim Man(9)GlcNAc(2) to Man(8)GlcNAc(2) isomer B whereas subgroup 2 includes mammalian Golgi alpha1,2-mannosidases IA, IB, and IC that trim Man(9)GlcNAc(2) to Man(5)GlcNAc(2) via Man(8)GlcNAc(2) isomers A and C. The structure of the catalytic domain of the subgroup 2 alpha1,2-mannosidase from Penicillium citrinum has been determined by molecular replacement at 2.2-A resolution. The fungal alpha1,2-mannosidase is an (alphaalpha)(7)-helix barrel, very similar to the subgroup 1 yeast (Vallée, F., Lipari, F., Yip, P., Sleno, B., Herscovics, A., and Howell, P. L. (2000) EMBO J. 19, 581-588) and human (Vallée, F., Karaveg, K., Herscovics, A., Moremen, K. W., and Howell, P. L. (2000) J. Biol. Chem. 275, 41287-41298) ER enzymes. The location of the conserved acidic residues of the catalytic site and the binding of the inhibitors, kifunensine and 1-deoxymannojirimycin, to the essential calcium ion are conserved in the fungal enzyme. However, there are major structural differences in the oligosaccharide binding site between the two alpha1,2-mannosidase subgroups. In the subgroup 1 enzymes, an arginine residue plays a critical role in stabilizing the oligosaccharide substrate. In the fungal alpha1,2-mannosidase this arginine is replaced by glycine. This replacement and other sequence variations result in a more spacious carbohydrate binding site. Modeling studies of interactions between the yeast, human and fungal enzymes with different Man(8)GlcNAc(2) isomers indicate that there is a greater degree of freedom to bind the oligosaccharide in the active site of the fungal enzyme than in the yeast and human ER alpha1,2-mannosidases.  相似文献   

14.
Glucosidase II (Glc'ase II) is a glycan-processing enzyme that trims two alpha1,3-linked Glc residues in succession from the glycoprotein oligosaccharide Glc2Man9GlcNAc2 to give Glc1Man9GlcNAc2 and Man9GlcNAc2 in the endoplasmic reticulum (ER). Monoglucosylated glycans, such as Glc1-Man9GlcNAc2, generated by this process play a key role in glycoprotein quality control in the ER, because they are primary ligands for the lectin chaperones calnexin (CNX) and calreticulin (CRT). A precise analysis of the substrate specificity of Glc'ase II is expected to further our understanding of the molecular basis to glycoprotein quality control, because Glc'ase II potentially competes with CNX/CRT for the same glycans, Glc1Man7-9GlcNAc2. In this study, a quantitative analysis of the specificity of Glc'ase II using a series of structurally defined synthetic glycans was carried out. In the presence of CRT, Glc'ase II-mediated trimming from Glc2Man9GlcNAc2 stopped at Glc1Man9GlcNAc2, supporting the notion that the glycan structure delivered to the CNX/CRT cycle is Glc1Man9GlcNAc2. Unexpectedly, our experiments showed that Glc1Man8(B)GlcNAc2 had nearly the same reactivity as Glc1Man9GlcNAc2, which was markedly greater than that of its positional isomer Glc1Man8(C)GlcNAc2. An analysis with glycoprotein-like probes revealed the stepwise formation of Glc1Man9GlcNAc2 and Man9GlcNAc2 from Glc2Man9GlcNAc2, even in the presence of CRT. It was also shown that Glc1Man8(B)GlcNAc2 had even greater reactivity than Glc1Man9GlcNAc2 at the glycoprotein level. Moreover, inhibitory activities by nonglucosylated glycans suggested that Glc'ase II recognized the C arm (Manalpha1, 2Manalpha1, 6Man-) of high mannose-type glycans.  相似文献   

15.
The catalytic domains of murine Golgi alpha1,2-mannosidases IA and IB that are involved in N-glycan processing were expressed as secreted proteins in P.pastoris . Recombinant mannosidases IA and IB both required divalent cations for activity, were inhibited by deoxymannojirimycin and kifunensine, and exhibited similar catalytic constants using Manalpha1,2Manalpha-O-CH3as substrate. Mannosidase IA was purified as a 50 kDa catalytically active soluble fragment and shown to be an inverting glycosidase. Recombinant mannosidases IA and IB were used to cleave Man9GlcNAc and the isomers produced were identified by high performance liquid chromatography and proton-nuclear magnetic resonance spectroscopy. Man9GlcNAc was rapidly cleaved by both enzymes to Man6GlcNAc, followed by a much slower conversion to Man5GlcNAc. The same isomers of Man7GlcNAc and Man6GlcNAc were produced by both enzymes but different isomers of Man8GlcNAc were formed. When Man8GlcNAc (Man8B isomer) was used as substrate, rapid conversion to Man5GlcNAc was observed, and the same oligosaccharide isomer intermediates were formed by both enzymes. These results combined with proton-nuclear magnetic resonance spectroscopy data demonstrate that it is the terminal alpha1, 2-mannose residue missing in the Man8B isomer that is cleaved from Man9GlcNAc at a much slower rate. When rat liver endoplasmic reticulum membrane extracts were incubated with Man9GlcNAc2, Man8GlcNAc2was the major product and Man8B was the major isomer. In contrast, rat liver Golgi membranes rapidly cleaved Man9GlcNAc2to Man6GlcNAc2and more slowly to Man5GlcNAc2. In this case all three isomers of Man8GlcNAc2were formed as intermediates, but a distinctive isomer, Man8A, was predominant. Antiserum to recombinant mannosidase IA immunoprecipitated an enzyme from Golgi extracts with the same specificity as recombinant mannosidase IA. These immunodepleted membranes were enriched in a Man9GlcNAc2to Man8GlcNAc2- cleaving activity forming predominantly the Man8B isomer. These results suggest that mannosidases IA and IB in Golgi membranes prefer the Man8B isomer generated by a complementary mannosidase that removes a single mannose from Man9GlcNAc2.   相似文献   

16.
The substrate specificity of rat liver cytosolic neutral alpha-D-mannosidase was investigated by in vitro incubation with a crude cytosolic fraction of oligomannosyl oligosaccharides Man9GlcNAc, Man7GlcNAc, Man5GlcNAc I and II isomers and Man4GlcNAc having the following structures: Man9GlcNAc, Man(alpha 1-2)Man(alpha 1-3)[Man(alpha 1-2)Man(alpha 1-6)]Man(alpha 1-6) [Man(alpha 1-2)Man(alpha 1-3)]Man(beta 1-4)GlcNAc; Man5GlcNAc I, Man(alpha 1-3)[Man(alpha 1-6)]-Man(alpha 1-6)Man(alpha 1-3)] Man(beta 1-4)GlcNAc; Man5GlcNAc II, Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3) [Man(alpha 1-6)]Man(beta 1-4)GlcNAc; Man4GlcNAc, Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3)Man(beta 1-4)GlcNAc. The different oligosaccharide isomers resulting from alpha-D-mannosidase hydrolysis were analyzed by 1H-NMR spectroscopy after HPLC separation. The cytosolic alpha-D-mannosidase activity is able to hydrolyse all types of alpha-mannosidic linkages found in the glycans of the oligomannosidic type, i.e. alpha-1,2, alpha-1,3 and alpha-1,6. Nevertheless the enzyme is highly active on branched Man9GlcNAc or Man5GlcNAc I oligosaccharides and rather inactive towards the linear Man4GlcNAc oligosaccharide. Structural analysis of the reaction products of the soluble alpha-D-mannosidase acting on Man5-GlcNAc I and Man9GlcNAc gives Man3GlcNAc, Man(alpha 1-6)[Man(alpha 1-3)]Man(beta 1-4)GlcNAc, and Man5GlcNAc II oligosaccharides, respectively. This Man5GlcNAc II, Man(alpha 1-2)Man(alpha 1-3)[Man(alpha 1-6)]Man(beta 1-4)GlcNAc, represents the 'construction' Man5 oligosaccharide chain of the dolichol pathway formed in the cytosolic compartment during the biosynthesis of N-glycosylprotein glycans. The cytosolic alpha-D-mannosidase is activated by Co2+, insensitive to 1-deoxymannojirimycin but strongly inhibited by swainsonine in the presence of Co2+ ions. The enzyme shows a highly specific action different from that previously described for the lysosomal alpha-D-mannosidases [Michalski, J.C., Haeuw, J.F., Wieruszeski, J.M., Montreuil, J. and Strecker, G. (1990) Eur. J. Biochem. 189, 369-379]. A possible complementarity between cytosolic and lysosomal alpha-D-mannosidase activities in the catabolism of N-glycosylprotein is proposed.  相似文献   

17.
Lysosomal alpha-mannosidase is a broad specificity exoglycosidase involved in the ordered degradation of glycoproteins. The bovine enzyme is used as an important model for understanding the inborn lysosomal storage disorder alpha-mannosidosis. This enzyme of about 1,000 amino acids consists of five peptide chains, namely a- to e-peptides and contains eight N-glycosylation sites. The N(497) glycosylation site of the c-peptide chain is evolutionary conserved among LAMANs and is very important for the maintenance of the lysosomal stability of the enzyme. In this work, relying on an approach based on mass spectrometric techniques in combination with exoglycosidase digestions and chemical derivatizations, we will report the detailed structures of the N-glycans and their distribution within six of the eight N-glycosylation sites of the bovine glycoprotein. The analysis of the PNGase F-released glycans from the bovine LAMAN revealed that the major structures fall into three classes, namely high-mannose-type (Fuc(0-1)Glc(0-1)Man(4-9)GlcNAc(2)), hybrid-type (Gal(0-1)Man(4-5)GlcNAc(4)), and complex-type (Fuc(0-1)Gal(0-2)Man(3)GlcNAc(3-5)) N-glycans, with core fucosylation and bisecting GlcNAc. To investigate the exact structure of the N-glycans at each glycosylation site, the peptide chains of the bovine LAMAN were separated using SDS-PAGE and in-gel deglycosylation. These experiments revealed that the N(497) and N(930) sites, from the c- and e-peptides, contain only high-mannose-type glycans Glc(0-1)Man(5-9)GlcNAc(2), including the evolutionary conserved Glc(1)Man(9)GlcNAc(2) glycan, and Fuc(0-1)Man(3-5)GlcNAc(2), respectively. Therefore, to determine the microheterogeneity within the remaining glycosylation sites, the glycoprotein was reduced, carboxymethylated, and digested with trypsin. The tryptic fragments were then subjected to concanavalin A (Con A) affinity chromatography, and the material bound by Con A-Sepharose was purified using reverse-phase high-performance liquid chromatography (HPLC). The tandem mass spectrometry (ESI-MS/MS) and the MALDI analysis of the PNGase F-digested glycopeptides indicated that (1) N(692) and N(766) sites from the d-peptide chain both bear glycans consisting of high-mannose (Fuc(0-1)Man(3-7)GlcNAc(2)), hybrid (Fuc(0-1) Gal(0-1)Man(4-5)GlcNAc(4)), and complex (Fuc(0-1)Gal(0-2)Man(3)GlcNAc(4-5)) structures; and (2) the N(367) site, from the b-peptide chain, is glycosylated only with high-mannose structures (Fuc(0-1)Man(3-5)GlcNAc(2)). Taking into consideration the data obtained from the analysis of either the in-gel-released glycans from the abc- and c-peptides or the tryptic glycopeptide containing the N(367) site, the N(133) site, from the a-peptide, was shown to be glycosylated with truncated and high-mannose-type (Fuc(0-1)Man(4-5)GlcNAc(2)), complex-type (Fuc(0-1)Gal(0-1)Man(3)GlcNAc(5)), and hybrid-type (Fuc(0-1)Gal(0-1)Man(5)GlcNAc(4)) glycans.  相似文献   

18.
T Szumilo  G P Kaushal  A D Elbein 《Biochemistry》1987,26(17):5498-5505
The presence of an N-acetylglucosaminyltransferase (GlcNAc-transferase) capable of adding a GlcNAc residue to GlcNAcMan3GlcNAc was demonstrated in mung bean seedlings. This enzyme was purified about 3400-fold by using (diethylaminoethyl)cellulose and phosphocellulose chromatographies and chromatography on Concanavalin A-Sepharose. The transferase was assayed by following the change in the migration of the [3H]mannose-labeled GlcNAc beta 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc on Bio-Gel P-4, or by incorporation of [3H]GlcNAc from UDP-[3H]GlcNAc into a neutral product, (GlcNAc)2Man3GlcNAc. Thus, the purified enzyme catalyzed the addition of a GlcNAc to that mannose linked in alpha 1,6 linkage to the beta-linked mannose. GlcNAc beta 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc was an excellent acceptor while Man alpha 1,6(Man alpha 1,3)Man beta 1,4GlcNAc, Man alpha 1,6(Man alpha 1,3)Man alpha 1,6(Man alpha 1,3)Man beta 1,4GlcNAc, and Man alpha 1,6(Man apha 1,3)Man alpha 1,6[GlcNAcMan alpha 1,3]Man beta 1,4GlcNAc were not acceptors. Methylation analysis and enzymatic digestions showed that both terminal GlcNAc residues on (GlcNAc)2Man3GlcNAc were attached to the mannoses in beta 1,2 linkages. The GlcNAc transferase had an almost absolute requirement for divalent cation, with Mn2+ being best at 2-3 mM. Mn2+ could not be replaced by Mg2+ or Ca2+, but Cd2+ showed some activity. The enzyme was also markedly stimulated by the presence of detergent and showed optimum activity at 0.15% Triton X-100. The Km for UDP-GlcNAc was found to be 18 microM and that for GlcNAcMan3GlcNAc about 16 microM.  相似文献   

19.
An alpha-1,2-mannosidase involved in the processing of N-linked oligosaccharides was prepared from the microsomal fraction of developing castor bean cotyledons. The processing alpha-mannosidase was solubilized with 1.0% Triton X-100 and purified by ion-exchange chromatography followed by two gel filtration steps. The enzyme obtained could convert Man9GlcNAc2-PA to Man5GlcNAc2-PA, but this enzyme was inactive with Man5GlcNAc2-PA, Man4GlcNAc2-PA, and p-nitrophenyl-alpha-D-mannopyranoside. The enzyme was optimally active between pH 5.5-6.0. The processing mannosidase was inhibited by deoxymannojirimycin, EDTA, and Tris ions but not by swainsonine. Structural analyses of the mannose-trimming intermediates produced by the alpha-mannosidase revealed that specific intermediates were formed during conversion of Man9GlcNAc2-PA to Man5GlcNAc2-PA.  相似文献   

20.
Hen oviduct membranes were shown to contain high activity of a novel enzyme, UDP-GlcNac:GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-R (GlcNAc to Man) beta 4-GlcNAc-transferase VI. The enzyme was shown to transfer GlcNAc in beta 1-4 linkage to the D-mannose residue of GlcNAc beta 1-6 (GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or methyl. Radioactive enzyme products were purified by several chromatographic steps, including high performance liquid chromatography, and structures were determined by proton nmr, fast atom bombardment-mass spectrometry, and methylation analysis to be GlcNAc beta 1-6 ([14C]GlcNAc beta 1-4) (GlcNAc beta 1-2) Man alpha-R. The enzyme is stimulated by Triton X-100 and has optimum activity at a relatively high MnCl2 concentration of about 100 mM; Co2+, Mg2+, and Ca2+ could partially substitute for Mn2+. A tissue survey demonstrated high GlcNAc-transferase VI activity in hen oviduct and lower activity in chicken liver and colon, duck colon, and turkey intestine. No activity was found in mammalian tissues. Hen oviduct membranes cannot act on GlcNAc beta 1-6Man alpha-R but have a beta 4-GlcNAc-transferase activity that converts GlcNAc beta 1-2Man alpha-R to GlcNAc beta 1-4(GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or 1-6Man beta methyl. The latter activity is probably due to GlcNAc-transferase IV which preferentially adds GlcNAc in beta 1-4 linkage to the Man alpha 1-3 arm of the GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn core structure of asparagine-linked glycans. The minimum structural requirement for a substrate of beta 4-GlcNAc-transferase VI is therefore the trisaccharide GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-; this trisaccharide is found on the Man alpha 6 arm of many branched complex asparagine-linked oligosaccharides. The data suggest that GlcNAc-transferase VI acts after the synthesis of the GlcNAc beta 1-2Man alpha 1-3-, GlcNAc beta 1-2Man alpha 1-6-, and GlcNAc beta 1-6 Man alpha 1-6-branches by GlcNAc-transferases I, II, and V, respectively, and is responsible for the synthesis of branched oligosaccharides containing the GlcNAc beta 1-6(GlcNAc beta 1-4)(GlcNAc beta 1-2)Man alpha 1-6Man beta moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号