首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Regions of conserved disorder prediction (CDP) were found in protein domains from all available InterPro member databases, although with varying frequency. These CDP regions were found in proteins from all kingdoms of life, including viruses. However, eukaryotes had 1 order of magnitude more proteins containing long disordered regions than did archaea and bacteria. Sequence conservation in CDP regions varied, but was on average slightly lower than in regions of conserved order. In some cases, disordered regions evolve faster than ordered regions, in others they evolve slower, and in the rest they evolve at roughly the same rate. A variety of functions were found to be associated with domains containing conserved disorder. The most common were DNA/RNA binding, and protein binding. Many ribosomal proteins also were found to contain conserved disordered regions. Other functions identified included membrane translocation and amino acid storage for germination. Due to limitations of current knowledge as well as the methodology used for this work, it was not determined whether these functions were directly associated with the predicted disordered region. However, the functions associated with conserved disorder in this work are in agreement with the functions found in other studies to correlate to disordered regions. We have established that intrinsic disorder may be more common in bacterial and archaeal proteins than previously thought, but this disorder is likely to be used for different purposes than in eukaryotic proteins, as well as occurring in shorter stretches of protein. Regions of predicted disorder were found to be conserved within a large number of protein families and domains. Although many think of such conserved domains as being ordered, in fact a significant number of them contain regions of disorder that are likely to be crucial to their functions.  相似文献   

2.
3.
Advances in proteomics technology have enabled new proteins to be discovered at an unprecedented speed, and high throughput experimental methods have been developed to detect protein interactions and complexes en masse. Such bottom-up, data-driven approach has resulted in data that may be uninformative or potentially errorful, requiring further validation and annotation. The InterDom database focuses on providing supporting evidence for the detected protein interactions based on putative protein domain interactions. Using an integrative approach, InterDom derives potential domain interactions by combining data from multiple sources, ranging from domain fusions, protein interactions and complexes, to scientific literature. The InterDom database is available at http://InterDom.lit.org.sg.  相似文献   

4.
Identifying relationships between function, amino acid sequence, and protein structure represents a major challenge. In this study, we propose a bioinformatics approach that identifies functional keywords in the Swiss-Prot database that correlate with intrinsic disorder. A statistical evaluation is employed to rank the significance of these correlations. Protein sequence data redundancy and the relationship between protein length and protein structure were taken into consideration to ensure the quality of the statistical inferences. Over 200,000 proteins from the Swiss-Prot database were analyzed using this approach. The predictions of intrinsic disorder were carried out using PONDR VL3E predictor of long disordered regions that achieves an accuracy of above 86%. Overall, out of the 710 Swiss-Prot functional keywords that were each associated with at least 20 proteins, 238 were found to be strongly positively correlated with predicted long intrinsically disordered regions, whereas 302 were strongly negatively correlated with such regions. The remaining 170 keywords were ambiguous without strong positive or negative correlation with the disorder predictions. These functions cover a large variety of biological activities and imply that disordered regions are characterized by a wide functional repertoire. Our results agree well with literature findings, as we were able to find at least one illustrative example of functional disorder or order shown experimentally for the vast majority of keywords showing the strongest positive or negative correlation with intrinsic disorder. This work opens a series of three papers, which enriches the current view of protein structure-function relationships, especially with regards to functionalities of intrinsically disordered proteins, and provides researchers with a novel tool that could be used to improve the understanding of the relationships between protein structure and function. The first paper of the series describes our statistical approach, outlines the major findings, and provides illustrative examples of biological processes and functions positively and negatively correlated with intrinsic disorder.  相似文献   

5.
6.
Biologically active proteins without stable ordered structure (i.e., intrinsically disordered proteins) are attracting increased attention. Functional repertoires of ordered and disordered proteins are very different, and the ability to differentiate whether a given function is associated with intrinsic disorder or with a well-folded protein is crucial for modern protein science. However, there is a large gap between the number of proteins experimentally confirmed to be disordered and their actual number in nature. As a result, studies of functional properties of confirmed disordered proteins, while helpful in revealing the functional diversity of protein disorder, provide only a limited view. To overcome this problem, a bioinformatics approach for comprehensive study of functional roles of protein disorder was proposed in the first paper of this series (Xie, H.; Vucetic, S.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V. N. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 2007, 5, 1882-1898). Applying this novel approach to Swiss-Prot sequences and functional keywords, we found over 238 and 302 keywords to be strongly positively or negatively correlated, respectively, with long intrinsically disordered regions. This paper describes approximately 90 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes, and coding sequence diversities possessing strong positive and negative correlation with long disordered regions.  相似文献   

7.
Intrinsically disordered proteins and intrinsically disordered protein regions are highly abundant in nature. However, the quantitative and qualitative measures of protein intrinsic disorder in species with known genomes are still not available. Furthermore, although the correlation between high fraction of disordered residues and advanced species has been reported, the details of this correlation and the connection between the disorder content and proteome complexity have not been reported as of yet. To fill this gap, we analysed entire proteomes of 3484 species from three domains of life (archaea, bacteria and eukaryotes) and from viruses. Our analysis revealed that the evolution process is characterized by distinctive patterns of changes in the protein intrinsic disorder content. We are showing here that viruses are characterized by the widest spread of the proteome disorder content (the percentage of disordered residues ranges from 7.3% in human coronavirus NL63 to 77.3% in Avian carcinoma virus). For several organisms, a clear correlation is seen between their disorder contents and habitats. In multicellular eukaryotes, there is a weak correlation between the complexity of an organism (evaluated as a number of different cell types) and its overall disorder content. For both the prokaryotes and eukaryotes, the disorder content is generally independent of the proteome size. However, disorder shows a sharp increase associated with the transition from prokaryotic to eukaryotic cells. This suggests that the increased disorder content in eukaryotic proteomes might be used by nature to deal with the increased cell complexity due to the appearance of the various cellular compartments.  相似文献   

8.

Background  

SUPFAM database is a compilation of superfamily relationships between protein domain families of either known or unknown 3-D structure. In SUPFAM, sequence families from Pfam and structural families from SCOP are associated, using profile matching, to result in sequence superfamilies of known structure. Subsequently all-against-all family profile matches are made to deduce a list of new potential superfamilies of yet unknown structure.  相似文献   

9.
Human centrosomal proteins show a significant, 3.5 fold, bias to be both unstructured and coiled-coils with respect to generic human proteins, based on results from state of the art bioinformatics tools. We hypothesize that this bias means that these proteins adopt an ensemble of disordered and partially helical conformations, with the latter becoming stabilized when these proteins form complexes. Characterization of the structural properties of 13 peptides from 10 different centrosomal proteins ranging in size from 20 to 61 residues by biophysical methods led us to confirm our hypothesis in most cases. Interestingly, the secondary structure adopted by most of these peptides becomes stabilized at acidic pH and it is concentration dependent. For two of them, PIK3R1453–513 and BRCA11253–1273, we observed not only the stabilization of helical structure through self-association, but also the presence of β-structures linked to the formation of high molecular weight oligomers. These oligomers are the predominant forms detected by CD, but unobservable by liquid state NMR. BRCA11397–1424 and MAP3K11396–441 populate helical structures that can also self-associate at pH 3 through oligomeric species. Four peptides, derived from three proteins, namely CCNA2103–123, BRCA11253–1273, BRCA11397–1424 and PIK3R1453–513, can form intermolecular associations that are concomitant with alpha or beta structure stabilization. The self-phosphorylation previously described for the kinase NEK2 did not lead to any stabilization in the peptide's structure of NEK2303–333, NEK2341–361, and NEK2410–430. Based on these results, obtained from a series of peptides derived from a significant number of different centrosomal proteins, we propose that conformational polymorphism, modulated by intermolecular interactions is a general property of centrosomal proteins.  相似文献   

10.
The ProDom database of protein domain families.   总被引:11,自引:1,他引:11       下载免费PDF全文
F Corpet  J Gouzy    D Kahn 《Nucleic acids research》1998,26(1):323-326
The ProDom database contains protein domain families generated from the SWISS-PROT database by automated sequence comparisons. It can be searched on the World Wide Web (http://protein.toulouse.inra. fr/prodom.html ) or by E-mail (prodom@toulouse.inra.fr) to study domain arrangements within known families or new proteins. Strong emphasis has been put on the graphical user interface which allows for interactive analysis of protein homology relationships. Recent improvements to the server include: ProDom search by keyword; links to PROSITE and PDB entries; more sensitive ProDom similarity search with BLAST or WU-BLAST; alignments of query sequences with homologous ProDom domain families; and links to the SWISS-MODEL server (http: //www.expasy.ch/swissmod/SWISS-MODEL.html ) for homology based 3-D domain modelling where possible.  相似文献   

11.
The availability of fast and robust algorithms for protein structure comparison provides an opportunity to produce a database of three-dimensional comparisons, called families of structurally similar proteins (FSSP). The database currently contains an extended structural family for each of 154 representative (below 30% sequence identity) protein chains. Each data set contains: the search structure; all its relatives with 70-30% sequence identity, aligned structurally; and all other proteins from the representative set that contain substructures significantly similar to the search structure. Very close relatives (above 70% sequence identity) rarely have significant structural differences and are excluded. The alignments of remote relatives are the result of pairwise all-against-all structural comparisons in the set of 154 representative protein chains. The comparisons were carried out with each of three novel automatic algorithms that cover different aspects of protein structure similarity. The user of the database has the choice between strict rigid-body comparisons and comparisons that take into account interdomain motion or geometrical distortions; and, between comparisons that require strictly sequential ordering of segments and comparisons, which allow altered topology of loop connections or chain reversals. The data sets report the structurally equivalent residues in the form of a multiple alignment and as a list of matching fragments to facilitate inspection by three-dimensional graphics. If substructures are ignored, the result is a database of structure alignments of full-length proteins, including those in the twilight zone of sequence similarity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Intrinsically disordered proteins and regions (IDPs and IDRs) lack stable 3D structure under physiological conditions in-vitro, are common in eukaryotes, and facilitate interactions with RNA, DNA and proteins. Current methods for prediction of IDPs and IDRs do not provide insights into their functions, except for a handful of methods that address predictions of protein-binding regions. We report first-of-its-kind computational method DisoRDPbind for high-throughput prediction of RNA, DNA and protein binding residues located in IDRs from protein sequences. DisoRDPbind is implemented using a runtime-efficient multi-layered design that utilizes information extracted from physiochemical properties of amino acids, sequence complexity, putative secondary structure and disorder and sequence alignment. Empirical tests demonstrate that it provides accurate predictions that are competitive with other predictors of disorder-mediated protein binding regions and complementary to the methods that predict RNA- and DNA-binding residues annotated based on crystal structures. Application in Homo sapiens, Mus musculus, Caenorhabditis elegans and Drosophila melanogaster proteomes reveals that RNA- and DNA-binding proteins predicted by DisoRDPbind complement and overlap with the corresponding known binding proteins collected from several sources. Also, the number of the putative protein-binding regions predicted with DisoRDPbind correlates with the promiscuity of proteins in the corresponding protein–protein interaction networks. Webserver: http://biomine.ece.ualberta.ca/DisoRDPbind/  相似文献   

13.
14.
The creation and analysis of the 3Dfold_test database are described. This database comprises a large set of pairs of spatially similar protein domain structures and a larger control set of “decoys,” spatially dissimilar protein structures with approximately the same size and compactness as each member of each pair. The database is available at  相似文献   

15.
DisProt: a database of protein disorder   总被引:1,自引:0,他引:1  
The Database of Protein Disorder (DisProt) is a curated database that provides structure and function information about proteins that lack a fixed three-dimensional (3D) structure under putatively native conditions, either in their entirety or in part. Starting from the central premise that intrinsic disorder is an important structural class of protein and in order to meet the increasing interest thereof, DisProt is aimed at becoming a central repository of disorder-related information. For each disordered protein, the database includes the name of the protein, various aliases, accession codes, amino acid sequence, location of the disordered region(s), and methods used for structural (disorder) characterization. If applicable, most entries also list the biological function(s) of each disordered region, how each region of disorder is used for function, as well as provide links to PubMed abstracts and major protein databases. AVAILABILITY: www.disprot.org  相似文献   

16.
The determination of factors that influence protein conformational changes is very important for the identification of potentially amyloidogenic and disordered regions in polypeptide chains. In our work we introduce a new parameter, mean packing density, to detect both amyloidogenic and disordered regions in a protein sequence. It has been shown that regions with strong expected packing density are responsible for amyloid formation. Our predictions are consistent with known disease-related amyloidogenic regions for eight of 12 amyloid-forming proteins and peptides in which the positions of amyloidogenic regions have been revealed experimentally. Our findings support the concept that the mechanism of amyloid fibril formation is similar for different peptides and proteins. Moreover, we have demonstrated that regions with weak expected packing density are responsible for the appearance of disordered regions. Our method has been tested on datasets of globular proteins and long disordered protein segments, and it shows improved performance over other widely used methods. Thus, we demonstrate that the expected packing density is a useful value with which one can predict both intrinsically disordered and amyloidogenic regions of a protein based on sequence alone. Our results are important for understanding the structural characteristics of protein folding and misfolding.  相似文献   

17.
18.
19.
We describe a database of protein structure alignments for homologous families. The database HOMSTRAD presently contains 130 protein families and 590 aligned structures, which have been selected on the basis of quality of the X-ray analysis and accuracy of the structure. For each family, the database provides a structure-based alignment derived using COMPARER and annotated with JOY in a special format that represents the local structural environment of each amino acid residue. HOMSTRAD also provides a set of superposed atomic coordinates obtained using MNYFIT, which can be viewed with a graphical user interface or used for comparative modeling studies. The database is freely available on the World Wide Web at: http://www-cryst.bioc.cam. ac.uk/-homstrad/, with search facilities and links to other databases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号