首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model of biofilm detachment   总被引:4,自引:0,他引:4  
A general mathematical framework for modeling biofilm detachment is presented. The approach is founded on a material balance on biomass that equates the detachment rate to the product of a detachment frequency and a detaching particle mass. The model provides a theoretical basis for deriving many of the empirical detachment rate expressions in common use and can thus lend some insight into their physical and biological significance. By allowing for variation in the detachment frequency with depth in the biofilm, the model permits derivation of detachment expressions that reflect a dependence on chemical or physiological gradients in the biofilm. Analysis of literature data sets from two different biofilm systems suggests, in both cases, that detachment is a growth-associated phenomenon. (c) 1993 John Wiley & Sons, Inc.  相似文献   

2.
Dynamics of biofilm detachment in biofilm airlift suspension reactors   总被引:3,自引:0,他引:3  
The dynamic change in the overall detachment rate of spherical biofilms in a biofilm airlift suspension reactor was measured after a downshift of the substrate loading rate to zero while all other conditions remained constant. In contrast to the expectations, the overall detachment rate decreased rapidly to a nearly stable level. Correlations available from literature were not able to describe this phenomenon. Concepts were formulated which can describe the observations from this study. Research under dynamic conditions and careful monitoring of the biofilm surface area and biofilm morphology are necessary to elucidate and discriminate biofilm detachment mechanisms. (c) 1995 John Wiley & Sons, Inc.  相似文献   

3.
Three hypothetical mechanisms of detachment were incorporated into a three-dimensional computer model of biofilm development. The model integrated processes of substrate utilization, substrate diffusion, growth, cell advection, and detachment in a cellular automata framework. The purpose of this investigation was to characterize each of the mechanisms with respect to four criteria: the resulting biofilm structure, the existence of a steady state, the propensity for sloughing events, and the dynamics during starvation. The three detachment mechanisms analyzed represented various physical and biological influences hypothesized to affect biofilm detachment. The first invoked the concept of fluid shear removing biomass that protrudes far above the surface and is therefore subjected to relatively large drag forces. The second pathway linked detachment to changes in the local availability of a nutrient. The third pathway simulated an erosive process in which individual cells are lost from the surface of a biofilm cell cluster. The detachment mechanisms demonstrated diverse behaviors with respect to the four analysis criteria. The height-dependant mechanism produced flat, steady state biofilms that lacked sloughing events. Detachment based on substrate limitation produced significant sloughing events. The resulting biofilm structures included distinct, hollow clusters separated by channels. The erosion mechanism produced neither a non-zero steady state nor sloughing events. A mechanism combining all three-detachment mechanisms produced mushroom-like structures. The dynamics of biofilm decay during starvation were distinct for each detachment mechanism. These results show that detachment is a critical determinant of biofilm structure and of the dynamics of biofilm accumulation and loss.  相似文献   

4.
1. Epilithic biofilm biomass was measured for 14 months in two sites, located up‐ and downstream of the city of Toulouse in the Garonne River (south‐west France). Periodical sampling provided a biomass data set to compare with simulations from the model of Uehlinger, Bürher and Reichert (1996: Freshwater Biology, 36 , 249–263.), in order to evaluate the impact of hydraulic disturbance. 2. Despite differences in application conditions (e.g. river size, discharge, frequency of disturbance), the base equation satisfactorily predicted biomass between low and high water periods of the year, suggesting that the flood disturbance regime may be considered a universal mechanism controlling periphyton biomass. 3. However modelling gave no agreement with biomass dynamics during the 7‐month long low water period that the river experienced. The influence of other biomass‐regulating factors (temperature, light and soluble reactive phosphorus) on temporal biomass dynamics was weak. 4. Implementing a supplementary mechanism corresponding to a temperature‐dependent self‐generated loss because of heterotrophic processes allowed us to accurately reproduce the observed pattern: a succession of two peaks. This case study suggests that during typical summer low water periods (flow stability and favourable temperature) river biofilm modelling requires self‐generated detachment to be considered.  相似文献   

5.
In this work, a three‐dimensional model of fluid–structure interactions (FSI) in biofilm systems is developed in order to simulate biofilm detachment as a result of mechanical processes. Therein, fluid flow past the biofilm surface results in a mechanical load on the structure which in turn causes internal stresses in the biofilm matrix. When the strength of the matrix is exceeded parts of the structure are detached. The model is used to investigate the influence of several parameters related to the mechanical strength of the biofilm matrix, Young's modulus, Reynolds number, and biofilm structure on biofilm detachment. Variations in biofilm strength and flow conditions significantly influence the simulation outcome. With respect to structural properties the model is widely independent from a change of Young's modulus. A further result of this work indicates that the change of biofilm structure due to growth or other processes will significantly change the stress distribution in the biofilm and thereby the detachment rate. An increase of the mechanical load by increasing fluid flow results in a flat surface of the remaining biofilm structure. It is concluded that the change of structure during biofilm development is the key determinant in terms of the detachment behavior. Biotechnol. Bioeng. 2009;103: 177–186. © 2008 Wiley Periodicals, Inc.  相似文献   

6.
One of the least understood processes affecting biofilm accumulation is detachment. Detachment is the removal of cells and cell products from an established biofilm and subsequent entrainment in the bulk liquid. The goal of this research was to determine the effects of shear stress and substrate loading rate on the rate of biofilm detachment.Monopopulation Pseudomonas aeruginosa and undefined mixed population biofilms were grown on glucose in a RotoTorque biofilm reactor. Three levels of shear stress and substrate loading rate were used to determine their effects on the rate of detachment. Suspended cell concentrations were monitored to determine detachment rates, while other variables were measured to determine their influence on the detachment rate. Results indicate that detachment rate is directly related to biofilm growth rate and that factors which limit growth rate will also limit detachment rate. No significant influence of shear on detachment rate was observed.A new kinetic expression that incorporates substrate utilization rate, yield, and biofilm thickness was compared to published detachment expressions and gives a better correlation of data obtained both in this research and from previous research projects, for both mono- and mixed-population biofilms. (c) John Wiley & Sons, Inc.  相似文献   

7.
8.
This work presents a multispecies biofilm model that describes the co‐existence of nitrate‐ and sulfate‐reducing bacteria in the H2‐based membrane biofilm reactor (MBfR). The new model adapts the framework of a biofilm model for simultaneous nitrate and perchlorate removal by considering the unique metabolic and physiological characteristics of autotrophic sulfate‐reducing bacteria that use H2 as their electron donor. To evaluate the model, the simulated effluent H2, UAP (substrate‐utilization‐associated products), and BAP (biomass‐associated products) concentrations are compared to experimental results, and the simulated biomass distributions are compared to real‐time quantitative polymerase chain reaction (qPCR) data in the experiments for parameter optimization. Model outputs and experimental results match for all major trends and explain when sulfate reduction does or does not occur in parallel with denitrification. The onset of sulfate reduction occurs only when the nitrate concentration at the fiber's outer surface is low enough so that the growth rate of the denitrifying bacteria is equal to that of the sulfate‐reducing bacteria. An example shows how to use the model to design an MBfR that achieves satisfactory nitrate reduction, but suppresses sulfate reduction. Biotechnol. Bioeng. 2013; 110: 763–772. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Mathematical modelling of biofilm structures   总被引:1,自引:0,他引:1  
The morphology of biofilms received much attention in the last years. Several concepts to explain the development of biofilm structures have been proposed. We believe that biofilm structure formation depends on physical as well as general and specific biological factors. The physical factors (e.g. governing substrate transport) as well as general biological factors such as growth yield and substrate conversion rates are the basic factors governing structure formation. Specific strain dependent factors will modify these, giving a further variation between different biofilm systems. Biofilm formation seems to be primarily dependent on the interaction between mass transport and conversion processes. When a biofilm is strongly diffusion limited it will tend to become a heterogeneous and porous structure. When the conversion is the rate-limiting step, the biofilm will tend to become homogenous and compact. On top of these two processes, detachment processes play a significant role. In systems with a high detachment (or shear) force, detachment will be in the form of erosion, giving smoother biofilms. Systems with a low detachment force tend to give a more porous biofilm and detachment occurs mainly by sloughing. Biofilm structure results from the interplay between these interactions (mass transfer, conversion rates, detachment forces) making it difficult to study systems taking only one of these factors into account. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
A packed bed biofilm reactor inoculated with pure culture Pseudomonas aeruginosa was run under high substrate loading and constant flow rate conditions. The 3.1-cm-diameter cylindrical reactor was 5 cm in length and packed with 1-mm glass beads. Daily observations of biofilm thickness, influent and effluent glucose substrate concentration, and effluent dissolved and total organic carbon were made during the 13-day experiment. Biofilm thickness appeared to rech quasi-steady-state condition after 10 days. A published biofilm process simulation program (AQUASIM) was used to analyze experimental data. Comparison of observed and simulated variables revealed three distinct phases of biofilm accumulation during the experiment: an initial phase, a growth phase, and a mature biofilm phase. Different combinations of biofilm and mass transport process variables were found to be important during each phase. Biofilm detachment was highly correlated with shear at the biofilm surface during all three phases of biofilm development. (c) 1995 John Wiley & Sons, Inc.  相似文献   

11.
12.
Candida albicans and Cutibacterium acnes are opportunistic pathogens that co-colonize the human body. They are involved in biofilm-related infections of implanted medical devices. The objective of this study was to evaluate the ability of these species to interact and form polymicrobial biofilms. SEM imaging and adhesion assays showed that C. acnes adhesion to C. albicans did not have a preference for a specific morphological state of C. albicans; bacteria adhered to both hyphal and yeast forms of C. albicans. C. albicans did not influence growth of C. acnes under anaerobic growth conditions, however under aerobic growth condition, C. albicans enhanced early C. acnes biofilm formation. This favorable impact of C. albicans was not mediated by secreted compounds accumulating in the medium, but required the presence of metabolically active C. albicans. The ability of these microorganisms to interact together could modulate the physiopathology of infections.  相似文献   

13.
水动力条件下藻类动态模拟   总被引:17,自引:0,他引:17  
丁玲  逄勇  李凌  高光 《生态学报》2005,25(8):1863-1868
藻类动态变化是其内部生理特征和外部驱动因素综合作用的结果。除了藻类自身生理因素及光、温度、营养盐等因素,水动力作用使底泥发生再悬浮所造成的营养盐的内源释放对藻类的影响也非常重要。1999年5月8日~6月24日在太湖湖泊生态系统研究站大型生态实验槽中进行了模拟水动力条件下的太湖藻类动态实验,并应用国外先进的PHREEQC软件从生物化学和生态动力学角度建立了藻类生态动力学模型。模型不仅考虑了氮循环及磷循环,还考虑了水动力条件引起的内源释放问题,根据2003年4月26~4月30日在河海大学环形水槽所做的底泥释放实验结果建立了水流和各形态氮磷营养盐释放的定量化关系。由于目前太湖的野外监测资料存在较明显的时空不一致性,模型参数率定的精度受到了较大影响。从室内模拟实验出发,通过对生态槽实验结果的模拟,确定和验证了模型的各参数值,计算结果显示模拟值能较好地拟合实验测量值,表明所建藻类生态动力学模型能较好地描述藻类及各种营养盐的动态变化,这对揭示藻类“水华”暴发机理有一定的意义。  相似文献   

14.
Anaerobic oxidation of methane coupled to denitrification (AOM-D) in a membrane biofilm reactor (MBfR), a platform used for efficiently coupling gas delivery and biofilm development, has attracted attention in recent years due to the low cost and high availability of methane. However, experimental studies have shown that the nitrate-removal flux in the CH4-based MBfR (<1.0 g N/m2-day) is about one order of magnitude smaller than that in the H2-based MBfR (1.1–6.7 g N/m2-day). A one-dimensional multispecies biofilm model predicts that the nitrate-removal flux in the CH4-based MBfR is limited to <1.7 g N/m2-day, consistent with the experimental studies reported in the literature. The model also determines the two major limiting factors for the nitrate-removal flux: The methane half-maximum-rate concentration (K2) and the specific maximum methane utilization rate of the AOM-D syntrophic consortium (kmax2), with kmax2 being more important. Model simulations show that increasing kmax2 to >3 g chemical oxygen demand (COD)/g cell-day (from its current 1.8 g COD/g cell-day) and developing a new membrane with doubled methane-delivery capacity (Dm) could bring the nitrate-removal flux to ≥4.0 g N/m2-day, which is close to the nitrate-removal flux for the H2-based MBfR. Further increase of the maximum nitrate-removal flux can be achieved when Dm and kmax2 increase together.  相似文献   

15.
Biofilm mechanical properties are essential in quantifying the rate of microbial detachment, a key process in determining the function and structure of biofilm systems. Although properties such as biofilm elastic moduli, yield stress and cohesive strength have been studied before, a wide range of values for the biofilm Young's modulus that differ by several orders of magnitude are reported in the literature. In this article, we use experimental data reported in Stoodley et al. [Stoodley et al., Biotechnol Bioeng (1999): 65(1):83-92] and present a methodology for the calculation of Young's modulus, which partially explains the large difference between the values reported in the literature.  相似文献   

16.
17.
A membrane-aerated biofilm reactor (MABR) was developed to degrade acetonitrile (ACN) in aqueous solutions. The reactor was seeded with an adapted activated sludge consortium as the inoculum and operated under step increases in ACN loading rate through increasing ACN concentrations in the influent. Initially, the MABR started at a moderate selection pressure, with a hydraulic retention time of 16 h, a recirculation rate of 8 cm/s and a starting ACN concentration of 250 mg/l to boost the growth of the biofilm mass on the membrane and to avoid its loss by hydraulic washout. The step increase in the influent ACN concentration was implemented once ACN concentration in the effluent showed almost complete removal in each stage. The specific ACN degradation rate achieved the highest at the loading rate of 101.1 mg ACN/g-VSS h (VSS, volatile suspended solids) and then declined with the further increases in the influent ACN concentration, attributed to the substrate inhibition effect. The adapted membrane-aerated biofilm was capable of completely removing ACN at the removal capacity of up to 21.1 g ACN/m2 day, and generated negligible amount of suspended sludge in the effluent. Batch incubation experiments also demonstrated that the ACN-degrading biofilm can degrade other organonitriles, such as acrylonitrile and benzonitrile as well. Denaturing gradient gel electrophoresis studies showed that the ACN-degrading biofilms contained a stable microbial population with a low diversity of sequence of community 16S rRNA gene fragments. Specific oxygen utilization rates were found to increase with the increases in the biofilm thickness, suggesting that the biofilm formation process can enhance the metabolic degradation efficiency towards ACN in the MABR. The study contributes to a better understanding in microbial adaptation in a MABR for biodegradation of ACN. It also highlights the potential benefits in using MABRs for biodegradation of organonitrile contaminants in industrial wastewater.  相似文献   

18.
The purpose of this work was to investigate the anaerobic transformation ofo-xylene in a laboratory biofilm system with nitrate as an electron acceptor.o-Xylene was degraded cometabolically with toluene as primary carbon source. A mass balance showed thato-xylene was not mineralized but transformed.o-Methyl-benzalcohol ando-methyl-benzaldehyde were identified as intermediates ofo-xylene transformation which resulted in the formation ofo-methyl-benzoic acid as an end product. A cross inhibition phenomenon was observed between toluene ando-xylene. The presence of toluene was necessary for stimulation ofo-xylene transformation, but above a toluene concentration of 1–3 mg/L theo-xylene removal rate dramatically decreased. In returno-xylene inhibited the toluene degradation at concentrations above 2–3 mg/L.  相似文献   

19.
Biofilm growth can impact the effectiveness of industrial processes that involve porous media. To better understand and characterize how biofilms develop and affect hydraulic properties in porous media, both spatial and temporal development of biofilms under flow conditions was investigated in a translucent porous medium by using Pseudomonas fluorescens HK44, a bacterial strain genetically engineered to luminesce in the presence of an induction agent. Real-time visualization of luminescent biofilm growth patterns under constant pressure conditions was captured using a CCD camera. Images obtained over 8 days revealed that variations in bioluminescence intensity could be correlated to biofilm cell density and hydraulic conductivity. These results were used to develop a real-time imaging method to study the dynamic behavior of biofilm evolution in a porous medium, thereby providing a new tool to investigate the impact of biological fouling in porous media under flow conditions.  相似文献   

20.
The architecture of a Sphingomonas biofilm was studied during early phases of its formation, using strain L138, a gfp-tagged derivative of Sphingomonas sp. strain LB126, as a model organism and flow cells and confocal laser scanning microscopy as experimental tools. Spatial and temporal distribution of cells and exopolymer secretions (EPS) within the biofilm, development of microcolonies under flow conditions representing varied Reynolds numbers, and changes in diffusion length with reference to EPS production were studied by sequential sacrificing of biofilms grown in multichannel flow cells and by time-lapse confocal imaging. The area of biofilm in terms of microscopic images required to ensure representative sampling varied by an order of magnitude when area of cell coverage (2 x 10(5) microm(2)) or microcolony size (1 x 10(6) microm(2)) was the biofilm parameter under investigation. Hence, it is necessary to establish the inherent variability of any biofilm metric one is attempting to quantify. Sphingomonas sp. strain L138 biofilm architecture consisted of microcolonies and extensive water channels. Biomass and EPS distribution were maximal at 8 to 9 mum above the substratum, with a high void fraction near the substratum. Time-lapse confocal imaging and digital image analysis showed that growth of the microcolonies was not uniform: adjacently located colonies registered significant growth or no growth at all. Microcolonies in the biofilm had the ability to move across the attachment surface as a unit, irrespective of fluid flow direction, indicating that movement of microcolonies is an inherent property of the biofilm. Width of water channels decreased as EPS production increased, resulting in increased diffusion distances in the biofilm. Changing hydrodynamic conditions (Reynolds numbers of 0.07, 52, and 87) had no discernible influence on the characteristics of microcolonies (size, shape, or orientation with respect to flow) during the first 24 h of biofilm development. Inherent factors appear to have overriding influence, vis-a-vis environmental factors, on early stages of microcolony development under these laminar flow conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号