首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anecdotal observations suggest that hypoxia does not elicit dyspnea. An opposing view is that any stimulus to medullary respiratory centers generates dyspnea via "corollary discharge" to higher centers; absence of dyspnea during low inspired Po(2) may result from increased ventilation and hypocapnia. We hypothesized that, with fixed ventilation, hypoxia and hypercapnia generate equal dyspnea when matched by ventilatory drive. Steady-state levels of hypoxic normocapnia (end-tidal Po(2) = 60-40 Torr) and hypercapnic hyperoxia (end-tidal Pco(2) = 40-50 Torr) were induced in naive subjects when they were free breathing and during fixed mechanical ventilation. In a separate experiment, normocapnic hypoxia and normoxic hypercapnia, "matched" by ventilation in free-breathing trials, were presented to experienced subjects breathing with constrained rate and tidal volume. "Air hunger" was rated every 30 s on a visual analog scale. Air hunger-Pet(O(2)) curves rose sharply at Pet(O(2)) <50 Torr. Air hunger was not different between matched stimuli (P > 0.05). Hypercapnia had unpleasant nonrespiratory effects but was otherwise perceptually indistinguishable from hypoxia. We conclude that hypoxia and hypercapnia have equal potency for air hunger when matched by ventilatory drive. Air hunger may, therefore, arise via brain stem respiratory drive.  相似文献   

2.
The mechanism responsible for the decrease in ventilation during breathing of low fractional concentration of inspired O2 in the newborn infant is poorly understood. The present study tested the hypothesis that endogenous opiates account for this ventilatory decrease. Eleven healthy newborn infants breathed 15% O2, balance N2 for 5 min following an injection of saline and following an injection of naloxone. Neither injection caused a change in minute ventilation (VE) or ventilatory pattern when the infants were breathing room air. However, the decreased ventilation during hypoxia following naloxone was significantly less than that following saline. VE dropped about 14% following saline but only about 4% following naloxone. However, the adult ventilatory response to hypoxemia, i.e., a relatively sustained increase in VE, was not attained. Naloxone had no influence on the occurrence of periodic breathing during hypoxemia. Thus in the healthy full-term newborn infant, endogenous opiates account only for a part of the decreased ventilation during hypoxemia.  相似文献   

3.
Somatostatin inhibits the ventilatory response to hypoxia in humans   总被引:2,自引:0,他引:2  
The effects of a 90-min infusion of somatostatin (1 mg/h) on ventilation and the ventilatory responses to hypoxia and hypercapnia were studied in six normal adult males. Minute ventilation (VE) was measured with inductance plethysmography, arterial 02 saturation (SaO2) was measured with ear oximetry, and arterial PCO2 (Paco2) was estimated with a transcutaneous CO2 electrode. The steady-state ventilatory response to hypoxia (delta VE/delta SaO2) was measured in subjects breathing 10.5% O2 in an open circuit while isocapnia was maintained by the addition of CO2. The hypercapnic response (delta VE/delta PaCO2) was measured in subjects breathing first 5% and then 7.5% CO2 (in 52-55% O2). Somatostatin greatly attenuated the hypoxic response (control mean -790 ml x min-1.%SaO2 -1, somatostatin mean -120 ml x min-1.%SaO2 -1; P less than 0.01), caused a small fall in resting ventilation (mean % fall - 11%), but did not affect the hypercapnic response. In three of the subjects progressive ventilatory responses (using rebreathing techniques, dry gas meter, and end-tidal Pco2 analysis) and overall metabolism were measured. Somatostatin caused similar changes (mean fall in hypoxic response -73%; no change in hypercapnic response) and did not alter overall O2 consumption nor CO2 production. These results show an hitherto-unsuspected inhibitory potential of this neuropeptide on the control of breathing; the sparing of the hypercapnic response is suggestive of an action on the carotid body but does not exclude a central effect.  相似文献   

4.
Ventilatory responses to hypoxia and hypercapnia were measured by indirect plethysmography in unanesthetized unrestrained adult rats injected neonatally with capsaicin (50 mg/kg) or vehicle. Such capsaicin treatment ablates a subpopulation of primary afferent fibers containing substance P and various other neuropeptides. Ventilation was measured while the rats breathed air, 12% O2 in N2, 8% O2 in N2, 5% CO2 in O2, or 8% CO2 in O2. Neonatal treatment with capsaicin caused marked alterations in both the magnitude and composition of the hypoxic but not hypercapnic ventilatory response. The increase in minute ventilation evoked by hypoxia in the vehicle-treated rats resulted entirely from an increase in respiratory frequency. In the capsaicin-treated rats the hypoxic ventilatory response was significantly reduced owing to an attenuation of the frequency response. Although both groups responded to hypoxia with a shortening in inspiratory and expiratory times, rats treated with capsaicin displayed less shortening of both respiratory phases. By contrast, hypercapnia induced a brisk ventilatory response in the capsaicin-treated group that was similar in magnitude and pattern to that observed in the vehicle-treated group. Analysis of the components of the hypercapnic ventilatory responses revealed no significant differences between the two groups. We, therefore, conclude that neuropeptide-containing C-fibers are essential for the tachypnic component of the ventilatory response to hypoxia but not hypercapnia.  相似文献   

5.
Ventilatory response to sustained hypoxia in normal adults   总被引:6,自引:0,他引:6  
We examined the ventilatory response to moderate (arterial O2 saturation 80%), sustained, isocapnic hypoxia in 20 young adults. During 25 min of hypoxia, inspiratory minute ventilation (VI) showed an initial brisk increase but then declined to a level intermediate between the initial increase and resting room air VI. The intermediate level of VI was a plateau that did not change significantly when hypoxia was extended up to 1 h. The relation between the amount of initial increase and subsequent decrease in ventilation during constant hypoxia was not random; the magnitude of the eventual decline correlated confidently with the degree of initial hyperventilation. Evaluation of breathing pattern revealed that during constant hypoxia there was little alteration in respiratory timing and that the changes in VI were related to significant alterations in tidal volume and mean inspiratory flow (VT/TI). None of the changes was reproduced during a sham control protocol, in which room air was substituted for the period of low fractional concentration of inspired O2. We conclude that ventilatory response to hypoxia in adults is not sustained; it exhibits some biphasic features similar to the neonatal hypoxic response.  相似文献   

6.
Burrowing mammals usually have low respiratory sensitivity to hypoxia and hypercapnia. However, the interaction between ventilation (V), metabolism and body temperature (Tb) during hypoxic-hypercapnia has never been addressed. We tested the hypothesis that Clyomys bishopi, a burrowing rodent of the Brazilian cerrado, shows a small ventilatory response to hypoxic-hypercapnia, accompanied by a marked drop in Tb and metabolism. V, Tb and O(2) consumption (V?O(2)) of C. bishopi were measured during exposure to air, hypoxia (10% and 7% O(2)), hypercapnia (3% and 5% CO(2)) and hypoxic-hypercapnia (10% O(2)+ 3% CO(2)). Hypoxia of 7% but not 10%, caused a significant increase in V, and a significant drop in Tb. Both hypoxic levels decreased V?O(2) and 7% O(2) significantly increased V/V?O(2). Hypercapnia of 5%, but not 3%, elicited a significant increase in V, although no significant change in Tb, V?O(2) or V/V?O(2) was detected. A combination of 10% O(2) and 3% CO(2) had minor effects on V and Tb, while V?O(2) decreased and V/V?O(2) tended to increase. We conclude that C. bishopi has a low sensitivity not only to hypoxia and hypercapnia, but also to hypoxic-hypercapnia, manifested by a biphasic ventilatory response, a drop in metabolism and a tendency to increase V/V?O(2). The effect of hypoxic-hypercapnia was the summation of the hypoxia and hypercapnia effects, with respiratory responses tending to have hypercapnic patterns while metabolic responses, hypoxic patterns.  相似文献   

7.
Recovery of the ventilatory response to hypoxia in normal adults   总被引:10,自引:0,他引:10  
Recovery of the initial ventilatory response to hypoxia was examined after the ventilatory response had declined during sustained hypoxia. Normal young adults were exposed to two consecutive 25-min periods of sustained isocapnic hypoxia (80% O2 saturation in arterial blood), separated by varying interludes of room air breathing or an increased inspired O2 fraction (FIO2). The decline in the hypoxic ventilatory response during the 1st 25 min of hypoxia was not restored after a 7-min interlude of room air breathing; inspired ventilation (VI) at the end of the first hypoxic period was not different from VI at the beginning and end of the second hypoxic period. After a 15-min interlude of room air breathing, the hypoxic ventilatory response had begun to recover. With a 60-min interlude of room air breathing, recovery was complete; VI during the second hypoxic exposure matched VI during the first hypoxic period. Ventilatory recovery was accelerated by breathing supplemental O2. With a 15-min interlude of 0.3 FIO2 or 7 min of 1.0 FIO2, VI of the first and second hypoxic periods were equivalent. Both the decline and recovery of the hypoxic ventilatory response were related to alterations in tidal volume and mean inspiratory flow (VT/TI), with little alteration in respiratory timing. We conclude that the mechanism of the decline in the ventilatory response with sustained hypoxia may require up to 1 h for complete reversal and that the restoration is O2 sensitive.  相似文献   

8.
We examined the effects of carotid body denervation on ventilatory responses to normoxia (21% O2 in N2 for 240 s), hypoxic hypoxia (10 and 15% O2 in N2 for 90 and 120 s, respectively), and hyperoxic hypercapnia (5% CO2 in O2 for 240 s) in the spontaneously breathing urethane-anesthetized mouse. Respiratory measurements were made with a whole body, single-chamber plethysmograph before and after cutting both carotid sinus nerves. Baseline measurements in air showed that carotid body denervation was accompanied by lower minute ventilation with a reduction in respiratory frequency. On the basis of measurements with an open-circuit system, no significant differences in O2 consumption or CO2 production before and after chemodenervation were found. During both levels of hypoxia, animals with intact sinus nerves had increased respiratory frequency, tidal volume, and minute ventilation; however, after chemodenervation, animals experienced a drop in respiratory frequency and ventilatory depression. Tidal volume responses during 15% hypoxia were similar before and after carotid body denervation; during 10% hypoxia in chemodenervated animals, there was a sudden increase in tidal volume with an increase in the rate of inspiration, suggesting that gasping occurred. During hyperoxic hypercapnia, ventilatory responses were lower with a smaller tidal volume after chemodenervation than before. We conclude that the carotid bodies are essential for maintaining ventilation during eupnea, hypoxia, and hypercapnia in the anesthetized mouse.  相似文献   

9.
To investigate ventilatory response to mild hypoxia during non-rapid-eye-movement sleep, we administered approximately 16% O2 (which corresponds to concentrations found in commercial high altitude air craft) to 12 normal subjects by using a Venturi mask, which did not alter the breathing pattern during this study. Under mild hypoxia, inspiratory minute ventilation during sleep showed an initial rapid increase (P less than 0.001) but then declined significantly (P less than 0.001) and stabilized. Stable levels differed among individuals and, compared with those measured before hypoxia, were significantly lower in some subjects, higher in one, and essentially unchanged in the others. The initial rapid increase in minute ventilation after mild hypoxia during sleep correlated with the respective values of hypoxic ventilatory response during the awake state (P less than 0.01), but the final lowered levels did not. We conclude that the ventilatory response after mild hypoxia during sleep is biphasic and hypoxic depression exerts considerable influence on ventilation under mild hypoxia during sleep. So we should take hypoxic depression into consideration to evaluate the response to hypoxia during sleep.  相似文献   

10.
The purpose of this study was to investigate the role of peripheral chemoreceptor activity on the hypoxic and hypercapnic ventilatory drives in rabbits with induced hypothyroidism. Experiments were carried out in control and hypothyroid rabbits. Hypothyroidism was induced by an administration of an iodide-blocker, methimazole in food (75 mg/100 g food) for ten weeks. At the end of the tenth week, triiodothyronine (T3) and thyroxine (T4) levels significantly decreased (P<0.001) while thyroid stimulating hormone (TSH) increased (P<0.001). Tidal volume (VT), respiratory frequency (f/min), ventilation minute volume (VE) and systemic arterial blood pressure (BP) were recorded during the breathing of the normoxic, hypoxic (8% O2-92% N2) and hypercapnic (6% CO2-Air) gas mixtures, in the anaesthetised rabbits of both groups. At the end of each experimental phase, PaO2, PaCO2, and pHa were measured. The same experimental procedure was repeated after peripheral chemoreceptor denervation in both groups. VT significantly decreased in some of the rabbits with hypothyroidism during the breathing of the hypoxic gas mixture (nonresponsive subgroup) (P<0.05). After chemodenervation, a decrease in VT was observed in this nonresponsive subgroup during normoxia (P<0.05). The percent decrease in VT in nonresponsive subgroup of hypothyroid rabbits after chemodenervation was lower than that of the chemodenervated control animals (P<0.01). When these rabbits with hypothyroidism were allowed to breath the hypercapnic gas mixtures, increases in VT and VE were not significant. In conclusion, although there is a decrease in peripheral chemoreceptor activity in hypothyroidism, it does not seem to be the only cause of decrease in ventilatory drive during hypoxia and hypercapnia.  相似文献   

11.
Eight healthy volunteers performed gradational tests to exhaustion on a mechanically braked cycle ergometer, with and without the addition of an inspiratory resistive load. Mean slopes for linear ventilatory responses during loaded and unloaded exercise [change in minute ventilation per change in CO2 output (delta VE/delta VCO2)] measured below the anaerobic threshold were 24.1 +/- 1.3 (SE) = l/l of CO2 and 26.2 +/- 1.0 l/l of CO2, respectively (P greater than 0.10). During loaded exercise, decrements in VE, tidal volume, respiratory frequency, arterial O2 saturation, and increases in end-tidal CO2 tension were observed only when work loads exceeded 65% of the unloaded maximum. There was a significant correlation between the resting ventilatory response to hypercapnia delta VE/delta PCO2 and the ventilatory response to VCO2 during exercise (delta VE/delta VCO2; r = 0.88; P less than 0.05). The maximal inspiratory pressure generated during loading correlated with CO2 sensitivity at rest (r = 0.91; P less than 0.05) and with exercise ventilation (delta VE/delta VCO2; r = 0.83; P less than 0.05). Although resistive loading did not alter O2 uptake (VO2) or heart rate (HR) as a function of work load, maximal VO2, HR, and exercise tolerance were decreased to 90% of control values. We conclude that a modest inspiratory resistive load reduces maximum exercise capacity and that CO2 responsiveness may play a role in the control of breathing during exercise when airway resistance is artificially increased.  相似文献   

12.
The ventilatory response of newborn lambs to hypoxemia was evaluated in two groups of seven awake lambs studied at 2 and 7 days of life. Minute ventilation (VE) and airway occlusion pressure (P0.1) were monitored as the animals were exposed in sequence to room air, 12% O2 (15 min), 7% O2 (15 min), and room air. On 12 and 7% O2, 2-day-old lambs experienced a brisk hyperventilation followed by a VE depression, previously described in newborns of other species (diphasic response). The 7-day-old lambs had a clear diphasic VE response only on 7% O2 breathing. In the 2-day-old lambs, at the time of the relative VE depression to 12% O2, the respiratory centers showed a persisting responsiveness to further hypoxia; switching to 7% O2 caused a brisk increase in VE and P0.1 of 70 and 130%, respectively, which was followed again by a VE depression. The magnitude of the immediate VE response to hypoxia, taken as an index of the chemoreceptor strength, was inversely related to the magnitude of the VE depression (R = 0.81, P less than 0.001). It was concluded that 1) lambs as well as other neonates have an age-related diphasic VE response to hypoxia; 2) at the time of the VE depression, the respiratory centers maintain their responsiveness to further acute hypoxia; and 3) the weakness of the chemoreceptors in the newborn is a major determinant of the diphasic response.  相似文献   

13.
The effects of body position on ventilatory responses to chemical stimuli have rarely been studied in experimental animals, despite evidence that position may be a factor in respiratory results. The purpose of this study was to test whether body position could affect acute ventilatory responses to 4-min periods of moderate hypercapnia (5% CO(2) in O(2)) and poikilocapnic hypoxia (15% O(2) in N(2)) in the urethane-anaesthetised mouse. Respiratory measurements were conducted with mice in the prone and supine positions with a whole-body, single-chamber plethysmograph. During hypoxia, the time course of minute ventilation (V (E)) was similar in the two positions, but the breathing pattern was different. After the response peak, V (E) depended on respiratory frequency (f) and tidal volume (V(T)) in the prone position but mainly on V(T) in the supine position. In the supine position, f declined below the baseline values toward the end of hypoxic exposure. During hypercapnia, there were no ventilatory differences between the prone and supine positions. Brief hypoxic exposure elicited f depression in the supine position in the anaesthetised mouse. The depressive effect on f suggests that the supine position may not be optimal for sustaining ventilation, particularly during hypoxia.  相似文献   

14.
Changes in respiratory frequencies with hypoxic or hyperoxic exposure were studied in: 12 normoxic control rats (N) born and raised in normoxic environment at sea level; 12 rats (A) born and raised in normoxic environment at sea level exposed to normobaric hypoxia (10% O2 in N2) as adults; 12 rats of first generation (G1) raised in the above mentioned hypoxic environment since a few hours after birth; 12 rats of third generation (G3) conceived and born in the hypoxic environment of hypoxic parents of second generation and maintained continuously under hypoxic conditions until their utilization. The response of A rats to 10% O2 and 7% O2 breathing was elevated (57% and 86% over air breathing). The mean respiratory frequency of A rats exposed to 7% O2 rose to a greater extent than did that of N rats. The G1 and G3 rats were less responsive to 7% O2 (64% and 37% over air breathing, respectively) than N and A rats; however, in G1 rats the exposure to 7% O2 produced a greater rise of frequency than in G3 rats. Furthermore A rats, G1 rats and G3 rats were less responsive to 97% O2 breathing (19%, 19% and 11% below air breathing, respectively). Comparing these data with previous findings we suggest that, with chronic exposure to hypoxia, changes in ventilatory response to hypoxia and hyperoxia occur in the following manner: I) loss of response to hypoxia if chronic exposure is begun in the immediate postnatal period; 2) degree of response to hypoxia or hyperoxia influenced by duration of chronic exposure.  相似文献   

15.
In 10 normal young adults, ventilation was evaluated with and without pretreatment with aminophylline, an adenosine blocker, while they breathed pure O2 1) after breathing room air and 2) after 25 min of isocapnic hypoxia (arterial O2 saturation 80%). With and without aminophylline, 5 min of hyperoxia significantly increased inspiratory minute ventilation (VI) from the normoxic base line. In control experiments, with hypoxia, VI initially increased and then declined to levels that were slightly above the normoxic base line. Pretreatment with aminophylline significantly attenuated the hypoxic ventilatory decline. During transitions to pure O2 (cessation of carotid bodies' output), VI and breathing patterns were analyzed breath by breath with a moving-average technique, searching for nadirs before and after hyperoxia. On placebo days, at the end of hypoxia, hyperoxia produced nadirs that were significantly lower than those observed with room-air breathing and also significantly lower than when hyperoxia followed normoxia, averaging, respectively, 6.41 +/- 0.52, 8.07 +/- 0.32, and 8.04 +/- 0.39 (SE) l/min. This hypoxic depression was due to significant decrease in tidal volume and prolongation of expiratory time. Aminophylline partly prevented these alterations in breathing pattern; significant posthypoxic ventilatory depression was not observed. We conclude that aminophylline attenuated hypoxic central depression of ventilation, although it does not affect hyperoxic steady-state hyperventilation. Adenosine may play a modulatory role in hypoxic but not in hyperoxic ventilation.  相似文献   

16.
Acutely lowering ambient O(2) tension increases ventilation in many mammalian species, including humans and mice. Inheritance patterns among kinships and between mouse strains suggest that a robust genetic influence determines individual hypoxic ventilatory responses (HVR). Here, we tested specific genetic hypotheses to describe the inheritance patterns of HVR phenotypes among two inbred mouse strains and their segregant and nonsegregant progeny. Using whole body plethysmography, we assessed the magnitude and pattern of ventilation in C3H/HeJ (C3) and C57BL/6J (B6) progenitor strains at baseline and during acute (3-5 min) hypoxic [mild hypercapnic hypoxia, inspired O(2) fraction (FI(O(2))) = 0.10] and normoxic (mild hypercapnic normoxia, FI(O(2)) = 0.21) inspirate challenges in mild hypercapnia (inspired CO(2) fraction = 0.03). First- and second-filial generations and two backcross progeny were also studied to assess response distributions of HVR phenotypes relative to the parental strains. Although the minute ventilation (VE) during hypoxia was comparable between the parental strains, breathing frequency (f) and tidal volume were significantly different; C3 mice demonstrated a slow, deep HVR relative to a rapid, shallow phenotype of B6 mice. The HVR profile in B6C3F(1)/J mice suggested that this offspring class represented a third phenotype, distinguishable from the parental strains. The distribution of HVR among backcross and intercross offspring suggested that the inheritance patterns for f and VE during mild hypercapnic hypoxia are consistent with models that incorporate two genetic determinants. These results further suggest that the quantitative genetic expression of alleles derived from C3 and B6 parental strains interact to significantly attenuate individual HVR in the first- and second-filial generations. In conclusion, the genetic control of HVR in this model was shown to exhibit a relatively simple genetic basis in terms of respiratory timing characteristics.  相似文献   

17.
Hypoxia stimulates ventilation, but when it is sustained, a decline in the ventilatory response is seen. The mechanism responsible for this decline lies within the CNS, but still remains unknown. In this study, we attempted to elucidate the possible role of hypoxia-induced depression of respiratory neurons by comparing the ventilatory response to hypoxia in intact rats and those with denervated carotid bodies. A whole-body plethysmograph was used to measure tidal volume, frequency of breathing and minute ventilation (VE) in awake and anesthetized intact rats and rats after carotid body denervation during exposure to hypoxia (FIO2 0.1). Fifteen-minute hypoxia induced an initial increase of VE in intact rats (to 248% of control ventilation in awake and to 227% in anesthetized rats) followed by a consistent decline (to 207% and 196% of control VE, respectively). Rats with denervated carotid bodies responded with a smaller increase in VE (to 134% in awake and 114% in anesthetized animals), but without a secondary decline (145% and 129% of control VE in the 15th min of hypoxia). These results suggest that afferentation from the carotid bodies and/or the substantial increase in ventilation are crucial for the biphasicity of the ventilatory response to sustained hypoxia and that a central hypoxic depression cannot fully explain the secondary decline in VE.  相似文献   

18.
To determine the role of postinspiratory inspiratory activity of the diaphragm in the biphasic ventilatory response to hypoxia in unanesthetized rats, we examined diaphragmatic activity at its peak (DI), at the end of expiration (DE), and ventilation in adult unanesthetized rats during poikilocapnic hypoxia (10 % O2) sustained for 20 min. Hypoxia induced an initial increase in ventilation followed by a consistent decline. Tidal volume (VT), frequency of breathing (fR), DI and DE at first increased, then VT and DE decreased, while fR and DI remained enhanced. Phasic activation of the diaphragm (DI-DE) increased significantly at 10, 15 and 20 min of hypoxia. These results indicate that 1) the ventilatory response of unanesthetized rats to sustained hypoxia has a typical biphasic character and 2) the increased end-expiratory activity of the diaphragm limits its phasic inspiratory activation, but this increase cannot explain the secondary decline in tidal volume and ventilation.  相似文献   

19.
E Durand  F Lofaso  S Dauger  G Vardon  C Gaultier  J Gallego 《Journal of applied physiology》2004,96(3):1216-22; discussion 1196
Previous studies suggested that defective arousal might be a major mechanism in sleep-disordered breathing such as sudden infant death syndrome and obstructive sleep apnea. In this study, we examined the effects of intermittent hypoxia (IH) on the arousal response to hypoxia in 4-day-old mice. We hypothesized that IH would increase arousal latency, as previously reported in other species, and we measured the concomitant changes in ventilation to shed light on the relationship between breathing and arousal. Arousal was scored according to behavioral criteria. Breathing variables were measured noninvasively by use of whole-body flow plethysmography. In the hypoxic group (n = 14), the pups were exposed to 5% O(2) in N(2) for 3 min and returned to air for 6 min. This test was repeated eight times. The normoxic mice (n = 14) were constantly exposed to normoxia. The hypoxic mice showed a 60% increase in arousal latency (P < 0.0001). Normoxic controls showed virtually no arousals. IH depressed normoxic ventilation below baseline prehypoxic levels, while preserving the ventilatory response to hypoxia. The breathing pattern and arousal responses recovered fully after 2 h of normoxia. We conclude that IH rapidly and reversibly depressed breathing and delayed arousal in newborn mice. Both effects may be due to hypoxia-induced release of inhibitory neurotransmitters acting concomitantly on both functions.  相似文献   

20.
In the avian embryo at term we measured the ventilatory response to hyperoxia, which lowers the chemoreceptor activity, to test the hypothesis that the peripheral chemoreceptors are tonically functional. Measurements of pulmonary ventilation (VE) were conducted in chicken embryos during the external pipping phase, at 38 degrees C, during air and hyperoxia, and during hypercapnia in air or in hyperoxia. Hyperoxia (95% O2) maintained for 30 min lowered VE by 15-20%, largely because of a reduction in breathing frequency (f). The oxygen consumption and carbon dioxide production of the embryo were not altered. The hyperoxic drop of VE was more marked in those embryos, which had higher values of normoxic VE. Hypercapnia, whether 2 or 5% CO2, increased VE, almost exclusively because of the increase in tidal volume (VT). The increase in VT was less pronounced when hypercapnia was associated with hyperoxia, and f slightly decreased. Hence, in hyperoxia, the VE response to CO2 was less than in air. The results are in support of the hypothesis that in the avian embryo, after the onset of breathing, the peripheral chemoreceptors exert a tonic facilitatory input on . This differs from neonatal mammals, where the chemoreceptors have minimal or no activity at birth, presumably because the increased arterial oxygenation with the onset of air breathing is a much more sudden phenomenon in mammals than it is in birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号