首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The objective of this study was to examine the effects of follicular cells on the in vitro development of porcine preantral follicles. In Experiment 1, one preantral follicle alone (Trt 1) was cocultured with a follicle of the same size with oocytes (Trt 2) or without oocytes (Trt 3). Preantral follicles cultured alone in vitro for 12 days had greater follicle diameters (1017 +/- 96 microm versus 706 +/- 69 or 793 +/- 72 microm, P < 0.05), growth rates (201 +/- 0.3 versus 103 +/- 0.2 or 128 +/- 0.2, P < 0.05) and oocyte survival rates (73% versus 48, or 25%, P < 0.05) than other groups. The inhibitory effects of follicle cells on the growth of preantral follicles and oocyte survival rates were not enhanced by the addition of oocytectomized preantral follicles (Experiment 2). Follicles were cocultured with different sources of follicular cells in other experiments. Coculture with cumulus cells enhanced oocyte survival compared to the control (without coculture) and mural follicular cell groups (Experiment 3). The growth and survival rates of oocytes collected from the group of follicles cocultured with cumulus cells from large antral follicles (>3 mm) were greater (P < 0.05) than those from small antral follicles (<3 mm), or than the control group (without cumulus cells, experiment 4). No significant differences in the follicular diameters (674 +/- 30 microm versus 638 +/- 33 and 655 +/- 28 microm) and growth rate (105% versus 94 and 105%) were observed among the preantral follicles of the different treatments (P > 0.05). Taken together, coculture with the cells from large antral follicles (>3 mm) exerted a significant positive effect on oocyte survival. The growth and oocyte survival of preantral follicle cocultured with the same size of follicles (with or without oocyte) were inhibited. Growth and survival rates of preantral follicles and oocytes are improved by coculturing them with the cumulus cells derived from larger antral follicles.  相似文献   

2.
Culture of preantral follicles has important biotechnological implications through its potential to produce large quantities of oocytes for embryo production and transfer. A long-term culture system for bovine preantral follicles is described. Bovine preantral follicles (166 +/- 2.15 micrometer), surrounded by theca cells, were isolated from ovarian cortical slices. Follicles were cultured under conditions known to maintain granulosa cell viability in vitro. The effects of epidermal growth factor (EGF), insulin-like growth factor (IGF)-I, FSH, and coculture with bovine granulosa cells on preantral follicle growth were analyzed. Follicle and oocyte diameter increased significantly (P < 0.05) with time in culture. FSH, IGF-I, and EGF stimulated (P < 0.05) follicle growth rate but had no effect on oocyte growth. Coculture with granulosa cells inhibited FSH/IGF-I-stimulated growth. Most follicles maintained their morphology throughout culture, with the presence of a thecal layer and basement membrane surrounding the granulosa cells. Antrum formation, confirmed by confocal microscopy, occurred between Days 10 and 28 of culture. The probability of follicles reaching antrum development was 0.19 for control follicles. The addition of growth factors or FSH increased (P < 0.05) the probability of antrum development to 0.55. Follicular growth appeared to be halted by slower growth of the basement membrane, as growing follicles occasionally burst the basement membrane, extruding their granulosa cells. In conclusion, a preantral follicle culture system in which follicle morphology can be maintained for up to 28 days has been developed. In this system, FSH, EGF, and IGF-I stimulated follicle growth and enhanced antrum formation. This culture system may provide a valuable approach for studying the regulation of early follicular development and for production of oocytes for nuclear/embryo transfer, but further work is required.  相似文献   

3.
4.
In the ovary, initiation of follicle growth is marked by cuboidalization of flattened granulosa cells (GCs). The regulation and cell biology of this shape change remains poorly understood. We propose that characterization of intercellular junctions and associated proteins is key to identifying as yet unknown regulators of this important transition. As GCs are conventionally described as epithelial cells, this study used mouse ovaries and isolated follicles to investigate epithelial junctional complexes (tight junctions [TJ], adherens junctions [AJ], and desmosomes) and associated molecules, as well as classic epithelial markers, by quantitative PCR and immunofluorescence. These junctions were further characterized using ultrastructural, calcium depletion and biotin tracer studies. Junctions observed by transmission electron microscopy between GCs and between GCs and oocyte were identified as AJs by expression of N-cadherin and nectin 2 and by the lack of TJ and desmosome-associated proteins. Follicles were also permeable to biotin, confirming a lack of functional TJs. Surprisingly, GCs lacked all epithelial markers analyzed, including E-cadherin, cytokeratin 8, and zonula occludens (ZO)-1alpha+. Furthermore, vimentin was expressed by GCs, suggesting a more mesenchymal phenotype. Under calcium-free conditions, small follicles maintained oocyte-GC contact, confirming the importance of calcium-independent nectin at this stage. However, in primary and multilayered follicles, lack of calcium resulted in loss of contact between GCs and oocyte, showing that nectin alone cannot maintain attachment between these two cell types. Lack of classic markers suggests that GCs are not epithelial. Identification of AJs during GC cuboidalization highlights the importance of AJs in regulating initiation of follicle growth.  相似文献   

5.
In the ovarian follicle, anti-Müllerian hormone (Amh) mRNA is expressed in granulosa cells from primary to preovulatory stages but becomes restricted to cumulus cells following antrum formation. Anti-Müllerian hormone regulates follicle development by attenuating the effects of follicle stimulating hormone on follicle growth and inhibiting primordial follicle recruitment. To examine the role of the oocyte in regulating granulosa cell Amh expression in the mouse, isolated oocytes and granulosa cells were co-cultured and Amh mRNA levels were analysed by real-time RT-PCR. Expression in freshly isolated granulosa cells increased with preantral follicle development but was low in the cumulus and virtually absent in the mural granulosa cells of preovulatory follicles. When preantral granulosa cells were co-cultured with oocytes from early preantral, late preantral or preovulatory follicles, and when oocytes from preovulatory follicles were co-cultured with cumulus granulosa cells, Amh expression was increased at least 2-fold compared with granulosa cells cultured alone. With oocytes from preantral but not preovulatory follicles, this was a short-range effect only observed with granulosa cells in close apposition to oocytes. We conclude that stage-specific oocyte regulation of Amh expression may play a role in intra- and inter-follicular coordination of follicle development.  相似文献   

6.
7.
Evidence is now emerging that the oocyte plays a role in the development and function of granulosa cells. This study focuses on the role of the oocyte in the proliferation of (1) undifferentiated granulosa cells from preantral follicles and (2) more differentiated mural granulosa cells and cumulus granulosa cells from antral follicles. Preantral follicles were isolated from 12-day-old mice, and mural granulosa cells and oocyte-cumulus complexes were obtained from gonadotropin-primed 22-day-old mice. Cell proliferation was quantified by autoradiographic determination of the 3H-thymidine labeling index. To determine the role of the oocyte in granulosa cell proliferation, oocyte-cumulus cell complexes and preantral follicles were oocytectomized (OOX), oocytectomy being a microsurgical procedure that removes the oocyte while retaining the three-dimensional structure of the complex or follicle. Mural granulosa cells as well as intact and OOX complexes and follicles were cultured with or without FSH in unconditioned medium or oocyte-conditioned medium (1 oocyte/microliter of medium). Preantral follicles were cultured for 4 days, after which 3H-thymidine was added to each group for a further 24 h. Mural granulosa cells were cultured as monolayers for an equilibration period of 24 h and then treated for a 48-h period, with 3H-thymidine added for the last 24 h. Oocyte-cumulus cell complexes were incubated for 4 h and then 3H-thymidine was added to each group for an additional 3-h period. FSH and/or oocyte-conditioned medium caused an increase in the labeling index of mural granulosa cells in monolayer culture; however, no differences were found among treatment groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
10.
Healthy follicles with 2-24 oocytes were observed in adult rabbit ovaries during all phases of folliculogenesis from primary to preovulatory follicles. Most follicles contained 2-3 oocytes which developed according to their topographical situation in the follicle. The central oocyte in a normal topographical situation has an almost normal growth and development up to metaphase II and cumulus expansion. The peripheral oocytes grow more slowly: most do not attain the normal size or resume meiosis and remain surrounded by ordinary granulosa cells. When the number of oocytes is higher than 3, the peripheral oocytes develop even more slowly, as do the central ones. It demonstrates the necessity for the oocyte to occupy a certain position inside the follicle and to reach a size which allows resumption of meiosis; the cumulus responds only to oocytes of normal size and position. We suggest that, despite the relative frequency of binovular follicles, fertilization of two oocytes originating from one follicle is unlikely.  相似文献   

11.
12.
Oocytes secrete factors that regulate the development of the surrounding granulosa cells in ovarian follicles. KIT ligand (KL) mRNA expression in granulosa cells is thought to be regulated by oocytes; however, the factor(s) that mediate this effect are not known. One candidate is the oocyte-specific gene product growth differentiation factor-9 (GDF-9). This study examined the effect of recombinant GDF-9 (rGDF-9) on steady-state KL mRNA expression levels in preantral and mural granulosa cells in vitro. Furthermore, the study compared the effect of rGDF-9 with that of coculture with oocytes at different developmental stages. As determined by RNase protection assay, both KL-1 and KL-2 mRNA levels in preantral and mural granulosa cells were suppressed by 25-250 ng/ml rGDF-9. Fully grown oocytes also suppressed both KL-1 and KL-2 mRNA expression levels. Partly grown oocytes isolated from 7-, 10-, or 12-day-old mice either had no effect on KL mRNA levels or promoted KL-1 mRNA steady-state expression. It is concluded that GDF-9 is likely to mediate the action of fully grown, but not partly grown, oocytes on granulosa cell KL mRNA expression.  相似文献   

13.
In addition to pituitary gonadotropins and paracrine factors, ovarian follicle development is also modulated by oocyte factors capable of stimulating granulosa cell proliferation but suppressing their differentiation. The nature of these oocyte factors is unclear. Because growth differentiation factor-9 (GDF-9) enhanced preantral follicle growth and was detected in the oocytes of early antral and preovulatory follicles, we hypothesized that this oocyte hormone could regulate the proliferation and differentiation of granulosa cells from these advanced follicles. Treatment with recombinant GDF-9, but not FSH, stimulated thymidine incorporation into cultured granulosa cells from both early antral and preovulatory follicles, accompanied by increases in granulosa cell number. Although GDF-9 treatment alone stimulated basal steroidogenesis in granulosa cells, cotreatment with GDF-9 suppressed FSH-stimulated progesterone and estradiol production. In addition, GDF-9 cotreatment attentuated FSH-induced LH receptor formation. The inhibitory effects of GDF-9 on FSH-induced granulosa cell differentiation were accompanied by decreases in the FSH-induced cAMP production. These data suggested that GDF-9 is a proliferation factor for granulosa cells from early antral and preovulatory follicles but suppresses FSH-induced differentiation of the same cells. Thus, oocyte-derived GDF-9 could account, at least partially, for the oocyte factor(s) previously reported to control cumulus and granulosa cell differentiation.  相似文献   

14.
Fertility preservation of prepubertal girls subjected to invasive cancer therapy necessitates defining protocols for activation of isolated primordial follicles. Granulosa (GCs) and cumulus cells (CCs) play pivotal role in oocyte development. Although GCs and CCs share some similarities, they differ in growth factors production. The current study was conducted to evaluate the effects of GCs, CCs and their conditioned media on mice primordial follicles activation. One-day-old mice ovaries were subjected to 6-day culture with base medium (BM), GC conditioned medium (GCCM), GC coculture (GCCC), CC conditioned medium (CCCM) or CC coculture (CCCC). Follicular growth and primordial to primary follicle transition was observed during 6-day culture, and follicular activation rate tended to be greater in GCCM than other groups (0.05 <P < 0.10). On Day 6, the expression of phosphatase and tensin homolog (PTEN) in GCCM group was lower than that in BM group (P = 0.020), the expression of phosphoinositide-3-kinase was higher in CCCC group than BM, GCCM and CCCM groups (P < 0.05), and the expression of connexin 37 was greater in the CCCM group as compared with BM, GCCC, and CCCC groups (P < 0.01). In conclusion, the current study showed that condition medium of GCs could enhance in vitro activation of primordial follicles, probably through downregulation of PTEN.  相似文献   

15.
Achieving full in vitro growth of oocytes of both domestic animals and humans remains a major challenge. The objective of this study was to examine the in vitro development of primary follicles isolated enzymatically from cryopreserved sheep ovarian tissue. In Experiment 1, isolated primary follicles (mean diameter 60.1+/-0.78microm) were cultured in serum-free medium on fibronectin-coated wells for 42 days. Initially follicular structure was lost as granulosa cells plated down, but by Day 7 two distinct morphologies began to emerge. Nineteen out of 36 oocytes were gradually re-surrounded by granulosa cells, forming follicle-like units (reorganized follicles), and the remaining 17 were not (non-reorganized follicles). On Day 2, there was no difference in diameter of oocytes between reorganized and non-reorganized follicles. The diameter (mean+/-S.E.M.) of oocytes of reorganized follicles increased (P<0.05) from 47.1+/-2.2microm to 65.3+/-2.6microm between Day 2 and Day 42, respectively, but that of oocytes of non-reorganized follicles showed no change. In Experiment 2, oocyte growth and granulosa cell differentiation during long-term culture of primary follicles (>42 days) were examined. Oocytes of reorganized follicles reached a maximum diameter of 75.4+/-2.0microm, a size equivalent to that of oocytes of ovine secondary follicles. Using RT-PCR, mRNA for follicle stimulating hormone receptor was detected in granulosa cells of freshly isolated secondary follicles and of long-term cultured reorganized follicles, but not of non-reorganized follicles. In Experiment 3, we tested if the culture conditions could support further oocyte growth in secondary follicles. The oocytes from enzymatically isolated secondary follicles increased in diameter from 77.7+/-1.6microm to 98.8+/-2.1microm (P<0.05) during 28 days in culture. The changes in oocyte size and in gene expression by granulosa cells support the conclusion that isolated ovine primary follicles developed in vitro to reach the secondary follicle stage.  相似文献   

16.
The objective of this study was to find out whether porcine cumulus and mural granulosa cells can secrete cumulus expansion-enabling factor (CEEF). Culture drops of M-199 medium were conditioned with denuded porcine oocytes (1 oocyte/μl), cumulus cells from oocytectomized complexes (1 OOX/μl), pieces of mural granulosa isolated from preantral to preovulatory follicles (1000 cells/μl), or oviductal cells (1000 cells/μl) for 24 hr. The production of CEEF was assessed by the addition of mouse OOX and follicle-stimulating hormone (FSH) (1 μg/ml) to microdrops of the conditioned medium. After 16–18 hr, expansion of the mouse OOX was scored on a scale of 0 to 4 by morphologic criteria. Mouse OOX did not expand in nonconditioned FSH-supplemented medium. Immature porcine oocytes produced +3 to +4 expansion of the mouse OOX. Granulosa cells isolated from preantral and early antral follicles and cumulus cells isolated from all stages of follicle development constitutively secreted CEEF under in vitro conditions. Mural granulosa cells of small, medium, and preovulatory (PMSG) follicles also secreted CEEF in vitro; however, FSH or leutenizing hormone (LH) stimulation was essential for this secretion. Hormonally induced secretion of CEEF was accompanied by expansion of the mural granulosa itself. Granulosa cells isolated from follicles of gilts 20 hr after PMSG and human chorionic gonadotropin (hCG) administration did not produce CEEF and did not expand in response to FSH and LH in vitro. CEEF activity also was found in the follicular fluid of small antral follicles, was reduced in medium follicles, and was not detectable in PMSG-stimulated follicles. However, CEEF activity was reestablished in the follicular fluid of preovulatory follicles by hCG injection, conceivably due to increased production of CEEF by cumulus cells. We conclude that (1) porcine cumulus and mural granulosa cells are capable of CEEF production in vitro and (2) autocrine secretion of CEEF by cumulus cells is involved in regulation of porcine cumulus expansion both in vitro and in vivo. Mol. Reprod. Dev. 49:141–149, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Paracrine factors secreted by oocytes play a pivotal role in promoting early ovarian follicle growth and in defining a morphogenic gradient in antral follicles, yet the exact identities of these oocyte factors remain unknown. This study was conducted to determine the extent to which the mitogenic activity of mouse oocytes can be attributed to growth differentiation factor 9 (GDF9). To do this, specific anti-human GDF9 monoclonal antibodies were generated. Based on epitope mapping and bioassays, a GDF9 neutralizing antibody, mAb-GDF9-53, was characterized with very low cross-reactivity with related transforming growth factor (TGF)beta superfamily members, including BMP15 (also called GDF9B). Pep-SPOT epitope mapping showed that mAb-GDF9-53 recognizes a short 4-aa sequence, and three-dimensional peptide modeling suggested that this binding motif lies at the C-terminal fingertip of mGDF9. As predicted by sequence alignments and modeling, the antibody detected recombinant GDF9, but not BMP15 in a Western blot and GDF9 protein in oocyte extract and oocyte-conditioned medium. In a mouse mural granulosa cell (MGC) bioassay, mAb-GDF9-53 completely abolished the mitogenic effects of GDF9, but had no effect on TGFbeta1 or activin A-stimulated MGC proliferation. An unrelated IgG at the same dose had no effect on GDF9 activity. This GDF9 neutralizing antibody was then tested in an established oocyte-secreted mitogen bioassay, where denuded oocytes cocultured with granulosa cells promote cell proliferation in a dose-dependent manner. The mAb-GDF9-53 dose dependently (0-160 microg/ml) decreased the mitogenic activity of oocytes but only by approximately 45% at the maximum dose of mAb. Just 5 microg/ml of mAb-GDF9-53 neutralized 90% of recombinant mGDF9 mitogenic activity, but only 15% of oocyte activity. Unlike mAb-GDF9-53, a TGFbeta pan-specific neutralizing antibody did not affect the mitogenic capacity of the oocyte, but completely neutralized TGF beta 1-induced DNA synthesis. This study has characterized a specific GDF9 neutralizing antibody. Our data provide the first direct evidence that the endogenous GDF9 protein is an important oocyte-secreted mitogen, but also show that GDF9 accounts for only part of total oocyte bioactivity.  相似文献   

18.
Notch pathway genes are expressed in mammalian ovarian follicles.   总被引:1,自引:0,他引:1  
Folliculogenesis is the process of development of ovarian follicles that ultimately results in the release of fertilizable oocytes at ovulation. This is a complex program that involves the proliferation and differentiation of granulosa cells. Granulosa cells are necessary for follicle growth and support the oocyte during folliculogenesis. Genes that regulate the proliferation and differentiation of granulosa cells are beginning to be elucidated. In this study, the expression patterns of Notch receptor genes and their ligands, which have been shown to regulate cell-fate decisions in many systems during development, were examined in the mammalian ovary. In situ hybridization data showed that Notch2, Notch3, and Jagged2 were expressed in an overlapping pattern in the granulosa cells of developing follicles. Jagged1 was expressed in oocytes exclusively. Downstream target genes of Notch also were expressed in granulosa cells. These data implicate the Notch signaling pathway in the regulation of mammalian folliculogenesis.  相似文献   

19.
20.
This study was designed to develop preantral follicle isolation and classification protocols for the domestic dog as a model for endangered canids. Ovary donors were grouped by age, size, breed purity, ovary weight and ovary status. Ovaries were randomly assigned to 1 of 3 digestion protocols: A) digestion and follicle isolation on the day of spaying; B) storage at 4 degrees C for 18 to 24 h prior to digestion and follicle isolation; C) digestion on the day of spaying, then incubation at 4 degrees C for 18 h prior to follicle isolation. Minced tissue was placed in a collagenase/DNase solution at 37 degrees C for 1 h. Follicles were classified by oocyte size and opaqueness and by size and appearance of the granulosa cell layers. Preantral follicles contained small, pale oocytes. Preantral follicles containing grown oocytes with dense cytoplasmic lipid were designated as advanced preantral. Only advanced preantral and early antral follicles were examined and classified further. Group 1 follicles had incomplete or absent granulosa layers, Group 2 follicles had several intact granulosa layers, while Group 3 were vesicular (early antral) follicles. Misshapen or pale grown oocytes were classified as degenerated. The percentage of intact germinal vesicles (GV) was recorded for each Group. Digestion Protocol B produced the lowest percentage of degenerated follicles (P < 0.01). Prepubertal donors had fewer (P < 0.01) follicles in each Group and more (P < 0.001) degenerated follicles than older bitches. Larger ovaries yielded the highest total number of follicles (P < 0.05). Ovary status did not affect follicle yield. Oocytes from Group 1 follicles had fewer intact GVs than those from Group 2 or Group 3 (P < 0.0001). These findings provide an opportunity for quantitative studies of the factors regulating folliculogenesis in the domestic dog as a model for endangered canids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号