首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several bovine brain proteins have been found to interact with a hydrophobic chromatography resin (phenyl-Sepharose CL-4B) in a Ca2+-dependent manner. These include calmodulin, the Ca2+/phospholipid-dependent protein kinase (protein kinase C) and a novel Ca2+-binding protein that has now been purified to electrophoretic homogeneity. This latter protein is acidic (pI 5.1) and, like calmodulin and some other high-affinity Ca2+-binding proteins, exhibits a Ca2+-dependent mobility shift on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, with an apparent Mr of 22 000 in the absence of Ca2+ and Mr 21 000 in the presence of Ca2+. This novel calciprotein is distinct from known Ca2+-binding proteins on the basis of Mr under denaturing conditions, Cleveland peptide mapping and amino acid composition analysis. It may be a member of the calmodulin superfamily of Ca2+-binding proteins. This calciprotein does not activate two calmodulin-dependent enzymes, namely cyclic nucleotide phosphodiesterase and myosin light-chain kinase, nor does it have any effect on protein kinase C. It may be a Ca2+-dependent regulatory protein of an as-yet-undefined enzymic activity. The Ca2+/phospholipid-dependent protein kinase is also readily purified by Ca2+-dependent hydrophobic-interaction chromatography followed by ion-exchange chromatography, during which it is easily separated from calmodulin. A preparation of protein kinase C that lacks contaminating kinase or phosphatase activities is thereby obtained rapidly and simply. Such a preparation is ideal for the study of phosphorylation reactions catalysed in vitro by protein kinase C.  相似文献   

2.
The establishment of ciliate protozoa in the rumen was studied in conventional lambs reared under different conditions of management. The role of the microflora in the kinetics of this establishment was also investigated in conventionalized lambs. In lambs reared under farm conditions ciliate protozoa appeared in the following order: Entodinium (15-20 days), Polyplastron, Eudiplodinium, and Epidinium (20-25 days), and Isotricha (50 days). Entodinium was the most abundant (10(5)-10(6) ciliates mL-1). During the 3rd month, ciliates disappeared spontaneously in about 60% of the lambs during a period that varied from 1 to 4 weeks. In lambs fed only cow's milk Entodinium spp. and Polyplastron multivesiculatum became established at low levels. The results obtained with the conventionalized lambs demonstrate that the establishment of the ciliates in the rumen requires that the bacterial flora be well established beforehand.  相似文献   

3.
The cytoplasm of the ciliated protozoan Isotricha prostoma is compartmented by a continuous fibrillar system made up of a double layer of 4 nm-diameter filaments: the microfibrillar ecto-endoplasmic boundary (EEB). Isolation of this structure after treatment of the cells in a buffer of low ionic strength in the presence of the detergent Triton X-100 evidenced connections linking the two filamentous layers. One dimensional electrophoresis on SDS-polyacrylamide gel of EEB fractions revealed several major proteins with apparent molecular weights between 11 and 23 K. Of these, two neighboring bands of MW22 and 23 K were removed from gels and used as antigens to obtain rabbit antibodies. The antiserum obtained reacted specifically with injected proteins as shown by the technique of immunological detection on nitrocellulose sheets using the peroxidase reaction product. Electron microscopy localization of the antigens with anti-IgG coupled with colloidal gold showed significant labeling of the EEB within the cortex of Isotricha permeabilized with Triton X-100. We hope that the 22-23 K antiserum will prove to be a useful tool for the comparative study of other non-actin filament systems in Protozoa.  相似文献   

4.
Treatment of cardiac or skeletal muscle sarcoplasmic reticulum vesicles with 0.1 M sodium carbonate selectively extracts both the Ca2+-binding protein calsequestrin and the two "intrinsic glycoproteins," while leaving the Ca2+-dependent ATPase membrane bound. Phenyl-Sepharose chromatography in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and high salt (0.5 M NaCl) readily fractionates these solubilized proteins into a Ca2+-elutable fraction, which contains purified calsequestrin, and a low ionic strength elutable fraction, which contains one of the two intrinsic glycoproteins. Elution of calsequestrin from phenyl-Sepharose occurs near 1 mM Ca2+. Copurifying with calsequestrin are an homologous set of high molecular weight proteins, which like calsequestrin stain blue with Stains-All. These proteins are present in trace amounts and do not correspond to any sarcoplasmic reticulum proteins previously identified. Elution of calsequestrin from phenyl-Sepharose is consistent with the Ca2+-binding protein losing its hydrophobic character in the presence of millimolar Ca2+. This behavior is converse to that observed for several calmodulin-like proteins, which are eluted from hydrophobic gels in the presence of EGTA. The high yield and purity of calsequestrin prepared by this method makes possible a unique system for studying what may be a distinct class of Ca2+-binding proteins.  相似文献   

5.
A novel flagellar Ca2+-binding protein in trypanosomes   总被引:6,自引:0,他引:6  
A 24-kDa protein of Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease, is recognized by antisera from both humans and experimental animals infected with this organism. Near its C terminus are two regions that have sequence similarity with several Ca2+-binding proteins and that conform to the "E-F hand" Ca2+-binding structure. We expressed a cDNA encoding this protein in Escherichia coli and showed that both the recombinant protein and the 24-kDa native trypanosome protein do indeed bind Ca2+. The protein's low Ca2+-binding capacity (less than 2 mol of Ca2+/mol of protein) and high Ca2+-binding affinity (apparent Kd less than 50 microM Ca2+) are consistent with binding of Ca2+ via the E-F hand structures. Immunofluorescence assays using a mouse antiserum directed against the fusion protein localized the native protein to the trypanosome's flagellum. The protein's abundance, Ca2+-binding property, and flagellar localization suggest that it participates in molecular processes associated with the high motility of the parasite.  相似文献   

6.
The 100,000 g supernatant from the unfertilized egg of the sea urchin Strongylocentrotus purpuratus has been fractionated on DEAE-cellulose and analysed for Ca2+-binding activity by the Chelex-100 competitive Ca2+-binding activity assay. The major peak of Ca2+-binding activity was subjected to further purification and the Ca2+-binding protein responsible for this Ca2+-binding-activity peak has been isolated and characterized. Non-denaturing polyacrylamide-gel electrophoresis (PAGE) followed by 45Ca2+ autoradiography suggested a molecular mass of 80 kDa for the Ca2+-binding protein. SDS/PAGE revealed that the 80 kDa protein consisted of a 1:1 molar complex of proteins of 50 and 42 kDa. The 42 kDa protein was identified as actin. The complex was not dissociated by extensive dialysis against an EGTA-containing buffer. The EGTA-stable complex was named '50K-A'.  相似文献   

7.
A Ca2+-dependent regulator protein of cyclic 3':5'-nucleotide phosphodiesterase (EC 3.1.4.17) has previously been isolated from rat testis and shown to be a heat-stable, Ca2+-binding protein with a molecular weight of approximately 17,000. The Ca2+-dependent regulator protein is also structurally similar to troponin-C, the Ca2+-binding component of muscle troponin and Ca2+ mediator of muscle contraction. The present report describes a partial amino acid sequence of the Ca2+-dependent regulator. The protein (148 amino acids) is 50% homologous with skeletal muscle troponin-C, but is 11 residues shorter than the muscle protein. The Ca2+-dependent regulator protein has an NH2-terminal sequence of acetyl-Ala-Asp-Glu, a COOH-terminal sequence of Thr-Ala-Lys and 1 residue of epsilon-trimethyllysine located at position 115. All of these properties are distinct from those of other homologous Ca2+-binding proteins. These properties may account for the biological specificities demonstrated by these proteins as compared to the Ca2+-dependent regulator protein. Based on the sequence and a comparison of the Ca2+-dependent regulator protein to other calcium-binding proteins, our data support the view that all of these moecules contain common sequences, especially at their proposed metal-binding sites.  相似文献   

8.
Atoda H  Kaneko H  Mizuno H  Morita T 《FEBS letters》2002,531(2):229-234
Many biologically active heterodimeric proteins of snake venom consist of two C-type lectin-like subunits. One of these proteins, habu IX/X-bp, is a Gla domain-binding protein whose subunits both bind to a Ca2+ ion, with a total of two Ca2+-binding sites. The molecular modeling and Ca2+-binding analysis of echis IX/X-bp revealed that it lacks one of two Ca2+-binding sites, though the folding of this subunit is conserved. It is concluded that heterodimeric C-type lectin-like proteins function independent of Ca2+ and have essentially a similar folding to habu IX/X-bp.  相似文献   

9.
The present study aimed at the long-term storage of rumen protozoa as living cells in liquid nitrogen. The two-step or interrupted slow freezing procedure was used to cryopreserve six of the dominant species of rumen ciliates isolated from monofaunated animals, Dasytricha ruminantium, Entodinium caudatum, Epidinium ecaudatum caudatum, Eudiplodinium maggii, Isotricha prostoma, and Polyplastron multivesiculatum. We optimized the first step in the interrupted slow freezing procedure, from the extracellular ice nucleation temperature to the holding temperature, and studied the effects of the cooling rates on survival. In addition to the nature of the cryoprotectant (dimethyl sulfoxide), the equilibration temperature and equilibration time (25 degrees C and 5 min, respectively), and the holding time at subzero temperature (45 min) recommended previously (S. Kisidayová, J. Microbiol. Methods 22:185-192, 1995), we found that a holding temperature of -30 degrees C, a cooling rate from extracellular ice nucleation temperature to holding temperature of between 1.2 degrees C/min and 2.5 degrees C/min, depending on the ciliate, and rumen juice as the freezing and thawing medium markedly improved the survival rate. Survival rates determined after 2 weeks in liquid nitrogen were 100% for Isotricha, 98% for Dasytricha, 85% for Epidinium, 79% for Polyplastron, 63% for Eudiplodinium, and 60% for Entodinium. They were not significantly modified after a period of 1 year in liquid nitrogen. Four of the five ciliate species cryopreserved for 8 months in liquid nitrogen successfully colonized the rumen when inoculated into defaunated animals. These results have made it possible to set up a bank of cryopreserved rumen protozoa.  相似文献   

10.
A new family of proteins (annexins) that bind to membranes at micromolar free Ca2+ has been recognized. Its members include an EGF-receptor kinase substrate (p35), a retroviral tyrosine kinase substrate (p36), the liver protein endonexin (p32) and an electric ray protein, calelectrin. Each protein contains four sequence repeats with a further 2-fold internal homology. Using the predicted secondary structure and pattern of conserved hydrophobic residues in each repeat, we have built a three-dimensional model that is largely isostructural with the known molecular conformation of bovine intestinal calcium-binding protein. The final (energy-refined) model had a core formed from the conserved hydrophobic residues. It differed from ICaBP principally in the length of the two Ca2+-binding loops with only one loop being able to bind. The model suggests a mechanism for interaction of these new Ca2+-binding proteins with phospholipid bilayers.  相似文献   

11.
Recent reports have shown that there exists in mammalian brain a number of heat-stable Ca2(+)-binding proteins that are distinct from calmodulin [McDonald & Walsh (1985) Biochem. J. 232, 559-567]. We have attempted to characterize equivalent Ca2(+)-binding proteins from Drosophila. Affigel-phenothiazine chromatography, which can be used to purify calmodulin and other Ca2(+)-binding proteins, allowed the identification of a possible heat-stable 23 kDa Ca2(+)-binding protein. A purification procedure for this protein has been devised. Purified 23 kDa protein shows characteristics typical of a Ca2(+)-binding protein; there is a mobility shift on SDS/polyacrylamide gels in the presence of EGTA, and Western blotting, followed by the use of the 45Ca2+ overlay technique, confirms that the 23 kDa protein does bind Ca2+. 45Ca2+ binding studies indicate that this protein binds 1 mol of Ca2+/mol of protein, with Kd 1.9 microM. A single band with pI 5.2 is obtained on isoelectric focusing. Analysis of Western blots of Drosophila tissues probed with antibodies to the Ca2(+)-binding protein indicates that it has a widespread distribution, but is absent from muscle tissue. The antibodies also cross-react with a protein of identical molecular mass in extracts of sheep brain. The possible similarity between this Drosophila Ca2(+)-binding protein and mammalian proteins is discussed, and comparison is made between this Drosophila protein and other Ca2(+)-binding proteins purified from vertebrates.  相似文献   

12.
Maniccia AW  Yang W  Li SY  Johnson JA  Yang JJ 《Biochemistry》2006,45(18):5848-5856
Ca2+ controls biological processes by interacting with proteins with different affinities, which are largely influenced by the electrostatic interaction from the local negatively charged ligand residues in the coordination sphere. We have developed a general strategy for rationally designing stable Ca2+- and Ln3+-binding proteins that retain the native folding of the host protein. Domain 1 of cluster differentiation 2 (CD2) is the host for the two designed proteins in this study. We investigate the effect of local charge on Ca2+-binding affinity based on the folding properties and metal-binding affinities of the two proteins that have similarly located Ca2+-binding sites with two shared ligand positions. While mutation and Ca2+ binding do not alter the native structure of the protein, Ca2+ binding specifically induced changes around the designed Ca2+-binding site. The designed protein with a -5 charge at the binding sphere displays a 14-, 20-, and 12-fold increase in the binding affinity for Ca2+, Tb3+, and La3+, respectively, compared to the designed protein with a -3 charge, which suggests that higher local charges are preferred for both Ca2+ and Ln3+ binding. The localized charged residues significantly decrease the thermal stability of the designed protein with a -5 charge, which has a T(m) of 41 degrees C. Wild-type CD2 has a T(m) of 61 degrees C, which is similar to the designed protein with a -3 charge. This decrease is partially restored by Ca2+ binding. The effect on the protein stability is modulated by the environment and the secondary structure locations of the charged mutations. Our study demonstrates the capability and power of protein design in unveiling key determinants to Ca2+-binding affinity without the complexities of the global conformational changes, cooperativity, and multibinding process found in most natural Ca2+-binding proteins.  相似文献   

13.
A Ca2+-binding protein which is capable of activating mammalian Ca2+-activatable cyclic nucleotide phosphodiesterase has been purified from Lumbricus terrestris and characterized. This protein and the Ca2+-dependent protein modulator from bovine tissues have many similar properties. Both proteins have molecular weights of approximately 18,000, isoelectric points of about pH 4, similar and characteristic ultraviolet spectra, and similar amino acid compositions. Both proteins bind calcium ions with high affinity. However, the protein from Lumbricus terrestris binds 2 mol of calcium ions with equal affinity, Kdiss = 6 X 10(-6) M, whereas the Ca2+-dependent protein modulator from bovine tissues binds 4 mol of calcium ions with differing affinities. Although the Ca2+-binding protein of Lumbricus terrestris activates the Ca2+-activatable cyclic nucleotide phosphodiesterase from mammalian tissues, we have failed to detect the existence of a Ca2+-activatable phosphodiesterase activity in Lumbricus terrestris. The activation of phosphodiesterase by the Ca2+-binding protein from Lumbricus terrestris is inhibited by the recently discovered bovine brain modulator binding protein (Wang, J. H., and Desai, R. (1977) J. Biol. Chem. 252, 4175-4184). Since the modulator binding protein has been shown to associate with the mammalian protein modulator to result in phosphodiesterase inhibition, it can be concluded that the Lumbricus terrestris Ca2+-binding protein also associates with the bovine brain modulator binding protein. Attempts to demonstrate the existence of a similar modulator binding protein in Lumbricus terrestris have been unsuccessful.  相似文献   

14.
A set of proteins in the 33-37 kDa range have been isolated from the cytoplasm of the Ehrlich ascites tumor cell. The proteins are characterized by their Ca2+-dependent binding to cell membranes. This property has been used for isolation of the proteins by Ca2+-dependent affinity binding to inside-out vesicles of the human red cell membrane. The proteins display Ca2+-binding properties as shown by gel-filtration studies. The Ca2+-dependent binding of the 33 and 34 kDa proteins to red cell membranes was studied after labelling of the proteins with tritium by reductive methylation. The average number of Ca2+ bound per protein molecule was 4.8 with a Kd of 3.4.10(-4) M Ca2+. The proteins are distinct from most other Ca2+-binding proteins of comparable molecular weights by not incorporating phosphate.  相似文献   

15.
Two ATPase inhibitor proteins were isolated together from bovine heart mitochondria by a new procedure; each was purified further. The one inhibitor is a Ca2+-binding protein. It was found to contain 2 cysteine residues/mol as well as threonine and proline residues, all of which the other inhibitor (first isolated by Pullman and Monroy (Pullman, M.E., and Monroy, G. C. (1963) J. Biol. Chem. 238, 3762-3769] lacks. Its minimal molecular weight was 6390 with 62 amino acid residues/mol, and its isoelectric point was 4.6. Besides differences in size, composition, and response to Ca2+, the two inhibitor proteins also differed in response to sulfhydryl compounds, pH, KCl, and cardiolipin. Inhibition by the two inhibitor proteins was additive. Both cross-reacted with mitochondrial ATPase from rat skeletal muscle. Calmodulin, with or without Ca2+, had no effect on the activity of either inhibitor protein. Antibody to the Ca2+-binding inhibitor protein did not interact with the Pullman-Monroy inhibitor or have any effect on its activity. The antibody interacted with intact submitochondrial particles that contained both inhibitor proteins but not with particles from which only the Ca2+-binding inhibitor had been removed. Clearly, the two inhibitors are distinct immunologically as well as in other properties. The two types of inhibitor protein were also isolated from rat skeletal muscle mitochondria by the new procedure.  相似文献   

16.
We have previously described the use of Ca2+-dependent hydrophobic-interaction chromatography to isolate the Ca2+ + phospholipid-dependent protein kinase (protein kinase C) and a novel heat-stable 21 000-Mr Ca2+-binding protein from bovine brain [Walsh, Valentine, Ngai, Carruthers & Hollenberg (1984) Biochem. J. 224, 117-127]. The procedure described for purification of the 21 000-Mr calciprotein to electrophoretic homogeneity has been modified to permit the large-scale isolation of this Ca2+-binding protein, enabling further structural and functional characterization. The 21 000-Mr calciprotein was shown by equilibrium dialysis to bind approx. 1 mol of Ca2+/mol, with apparent Kd approx. 1 microM. The modified large-scale purification procedure revealed three additional, previously unidentified, Ca2+-binding proteins of Mr 17 000, 18 400 and 26 000. The 17 000-Mr and 18 400-Mr Ca2+-binding proteins are heat-stable, whereas the 26 000-Mr Ca2+-binding protein is heat-labile. Use of the transblot/45CaCl2 overlay technique [Maruyama, Mikawa & Ebashi (1984) J. Biochem. (Tokyo) 95, 511-519] suggests that the 18 400-Mr and 21 000-Mr Ca2+-binding proteins are high-affinity Ca2+-binding proteins, whereas the 17 000-Mr Ca2+-binding protein has a relatively low affinity for Ca2+. Consistent with this observation, the 18 400-Mr and 21 000-Mr Ca2+-binding proteins exhibit a Ca2+-dependent mobility shift on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, whereas the 17 000-Mr Ca2+-binding protein does not. The amino acid compositions of the 17 000-Mr, 18 400-Mr and 21 000-Mr Ca2+-binding proteins show some similarities to each other and to calmodulin and other members of the calmodulin superfamily; however, they are clearly distinct and novel calciproteins. In functional terms, none of the 17 000-Mr, 18 400-Mr or 21 000-Mr Ca2+-binding proteins activates either cyclic nucleotide phosphodiesterase or myosin light-chain kinase, both calmodulin-activated enzymes. However, the 17 000-Mr Ca2+-binding protein is a potent inhibitor of protein kinase C. It may therefore serve to regulate the activity of this important enzyme at elevated cytosolic Ca2+ concentrations.  相似文献   

17.
Ca2+-binding proteins play pivotal roles in both eukaryotic and prokaryotic cells. CcbP from cyanobacterium Anabaena sp. strain PCC 7120 is a major Ca2+-binding protein involved in heterocyst differentiation, a process that forms specialized nitrogen-fixing cells. The three-dimensional structures of both Ca2+-free and Ca2+-bound forms of CcbP are essential for elucidating the Ca2+-signaling mechanism. However, CcbP shares low sequence identity with proteins of known structures, and its Ca2+-binding sites remain unknown. Here, we report the solution structures of CcbP in both Ca2+-free and Ca2+-bound forms determined by nuclear magnetic resonance spectroscopy. CcbP adopts an overall new fold and contains two Ca2+-binding sites with distinct Ca2+-binding abilities. Mutation of Asp38 at the stronger Ca2+-binding site of CcbP abolished its ability to regulate heterocyst formation in vivo. Surprisingly, the β-barrel subdomain of CcbP, which does not participate in Ca2+-binding, topologically resembles the Src homology 3 (SH3) domain and might act as a protein-protein interaction module. Our results provide the structural basis of the unique Ca2+ signaling mechanism during heterocyst differentiation.  相似文献   

18.
In order to identify calcium (Ca2+)-binding proteins in the parathyroid gland, we used electrophoretic blots of proteins separated by a two-dimensional nondenaturing/denaturing gel system and incubated them with 45Ca2+. Parathyroid secretory protein (PSP) and proteins with approximate molecular weights of 98,000, 88,000, 58,000, and 30,000 were noted to bind Ca2+ in cytosolic fractions from bovine parathyroid, adrenal, and pituitary glands. However, differences in the binding affinity and capacity of the various proteins were observed. PSP displayed a low affinity and high binding capacity for Ca2+. In the presence of 5 mM MgCl2 and 60 mM KCl, native PSP (immobilized on nitrocellulose filters) bound 7.5 mol of Ca2+/mol of protein monomer with an apparent Kd of 1.1 mM. Immunoblotting identified the association of PSP with parathyroid cell membranes in a Ca2+-dependent manner. This property, together with its heat stability, distinguished PSP from other cytosolic Ca2+-binding proteins which were identified. There was also evidence for a Ca2+-dependent protein-protein interaction (aggregation) of PSP present in a Nonidet P-40 extract of cell membranes. The high Ca2+ binding capacity of PSP and its Ca2+-dependent membrane association may be features that make PSP a potentially important protein in secretory cells.  相似文献   

19.
Four Ca2+-sensitive proteins of respective subunit molecular weights 67 kDa, 37 kDa, 36 kDa and 32 kDa were purified from pig brain and spinal cord. Associated to the particulate fraction at millimolar concentrations of free Ca2+, they were solubilized using an EGTA-containing buffer and purified by a selective Ca2+-dependent precipitation. The 36 kDa protein is present in the tissues in a tetrameric form of (2 X 36 kDa + 2 X 13 kDa) and in a monomeric form. These proteins with the 37 kDa protein share the functional properties of the two well-known Ca2+-binding proteins, named calpactin I and calpactin II; they were able to interact with F-actin, brain spectrin (fodrin) and phosphatidylserine-liposomes in a Ca2+-dependent manner. The 67 kDa protein depolymerizes the actin filament in presence of Ca2+, it also binds to tubulin and to the neurofilament subunit NF-70, but not to brain spectrin. The 32 kDa protein does not share any association with F-actin and brain spectrin.  相似文献   

20.
A new Ca2+-binding protein, different from calmodulin, has been detected in the cilium and cell body of Tetrahymena. This protein, designated as TCBP-10, has been purified from the cells to homogeneity. TCBP-10 is an acidic protein (pI = 4.5) which shows a Ca2+-dependent mobility shift in alkali-glycerol-polyacrylamide gel electrophoresis. The protein is resistant to heat and trichloroacetic acid. The molecular weight of the protein is 10,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 22,000 by Sephadex G-50 gel filtration, suggesting that the native form of the protein is a dimer. The protein has a molar extinction coefficient of 6,500 at 282 nm. Equilibrium dialysis experiments revealed that the protein binds 1 mol of Ca2+/mol of protein with a dissociation constant of 27 microM. The protein contains a relatively large quantity of acidic amino acids, single residues of cysteine, histidine, and tryptophan, and no methionine. These properties are similar to those of some low molecular weight Ca2+-binding proteins belonging to the calmodulin family. Thus, the cilium of Tetrahymena contains a second Ca2+-binding protein in addition to calmodulin. We consider that TCBP-10 and calmodulin may play important cooperative roles in the Ca2+-regulation of ciliary movement in Tetrahymena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号