首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the unstimulated, lightly anesthetized rat, both on- and off-cells exhibit alternating periods of silence and activity lasting from several seconds to a few minutes. In the preceding paper, we showed that the active periods of all cells of the same class are always in phase, whereas the firing of cells of different classes is invariably out of phase. Thus, the pattern of firing of any single on- or off-cell provides a useful indication of the excitability of all on- and off-cells in the rostral ventromedial medulla (RVM).

In this study, we measured the latency of the tail flick response (TF) at set intervals while recording from TF-related neurons in RVM, and were able to demonstrate a significant relationship between the spontaneous firing of both on- and off-cells and the latency of the TF response. If noxious heat is applied at a time when an off-cell is spontaneously active (or an on-cell is silent), the TF latency is longer than if the TF trial falls during a period in which the off-cell is silent (or the on-cell is active). This correlation between on- and off-cell firing and changes in TF latency is consistent with a nociceptive modulatory role for either or both cell classes. These findings support the hypothesis that off-cells inhibit and on-cells facilitate spinal nociceptive transmission and reflexes.  相似文献   

2.
In the unstimulated, lightly anesthetized rat, both on- and off-cells exhibit alternating periods of silence and activity lasting from several seconds to a few minutes. In the preceding paper, we showed that the active periods of all cells of the same class are always in phase, whereas the firing of cells of different classes is invariably out of phase. Thus, the pattern of firing of any single on- or off-cell provides a useful indication of the excitability of all on- and off-cells in the rostral ventromedial medulla (RVM). In this study, we measured the latency of the tail flick response (TF) at set intervals while recording from TF-related neurons in RVM, and were able to demonstrate a significant relationship between the spontaneous firing of both on- and off-cells and the latency of the TF response. If noxious heat is applied at a time when an off-cell is spontaneously active (or an on-cell is silent), the TF latency is longer than if the TF trial falls during a period in which the off-cell is silent (or the on-cell is active). This correlation between on- and off-cell firing and changes in TF latency is consistent with a nociceptive modulatory role for either or both cell classes. These findings support the hypothesis that off-cells inhibit and on-cells facilitate spinal nociceptive transmission and reflexes.  相似文献   

3.
Hyperresponsiveness to noxious stimulation (hyperalgesia) is observed with naloxone-precipitated morphine withdrawal in several experimental models, and may be due to changes in central nervous system neurons. Previous studies have demonstrated that certain neurons in the rostral ventromedial medulla (on-cells) discharge just prior to nocifensive withdrawal reflexes and are inhibited by morphine. Because the tail flick latency (TFL) is shorter when on-cells are active, it has been proposed that on-cells facilitate nocifensive reflexes. The present study examined the hypothesis that the hyperalgesia observed following naloxone-precipitated withdrawal from morphine is caused by increased on-cell discharge. Rats were maintained in a lightly anesthetized state with chloral hydrate. Administration of saline (1.25 cc, i.v.) or morphine sulfate (1.25 mg/kg, i.v.) was followed by naloxone (1.0 mg/kg, i.v.). On- and off-cell activity was continuously recorded and was correlated with TFL and paw withdrawal threshold (PWT). As previously reported, morphine increased off-cell activity, blocked on-cell activity, and suppressed the tail flick and paw withdrawal reflexes. When naloxone was given after morphine, TFL and PWT were reduced to values significantly below baseline (hyperalgesia). Both spontaneous and reflex-related on-cell activity increased to levels greater than the premorphine baseline. Spontaneous off-cell activity decreased abruptly to near zero when morphine was followed by naloxone. Linear regression analysis during the hyperresponsive state revealed a significant correlation between increased on-cell activity and reduced TFL, but not between decreased off-cell activity and TFL. These findings are consistent with the hypothesis that on-cells facilitate spinal nocifensive reflexes, and that the naloxone-precipitated hyperalgesia is at least in part accounted for by increased on-cell activity. A neural model of opiate dependence, tolerance, and withdrawal is proposed.  相似文献   

4.
Hyperresponsiveness to noxious stimulation (hyperalgesia) is observed with naloxone-precipitated morphine withdrawal in several experimental models, and may be due to changes in central nervous system neurons. Previous studies have demonstrated that certain neurons in the rostral ventromedial medulla (on-cells) discharge just prior to nocifensive withdrawal reflexes and are inhibited by morphine. Because the tail flick latency (TFL) is shorter when on-cells are active, it has been proposed that on-cells facilitate nocifensive reflexes. The present study examined the hypothesis that the hyperalgesia observed following naloxone-precipitated withdrawal from morphine is caused by increased on-cell discharge.

Rats were maintained in a lightly anesthetized state with chloral hydrate. Administration of saline (1.25 cc, i.v.) or morphine sulfate (1.25 mg/kg, i.v.) was followed by naloxone (1.0 mg/kg, i.v.). On- and off-cell activity was continuously recorded and was correlated with TFL and paw withdrawal threshold (PWT). As previously reported, morphine increased off-cell activity, blocked on-cell activity, and suppressed the tail flick and paw withdrawal reflexes. When naloxone was given after morphine, TFL and PWT were reduced to values significantly below baseline (hyperalgesia). Both spontaneous and reflex-related on-cell activity increased to levels greater than the premorphine baseline. Spontaneous off-cell activity decreased abruptly to near zero when morphine was followed by naloxone. Linear regression analysis during the hyperresponsive state revealed a significant correlation between increased on-cell activity and reduced TFL, but not between decreased off-cell activity and TFL.

These findings are consistent with the hypothesis that on-cells facilitate spinal nocifensive reflexes, and that the naloxone-precipitated hyperalgesia is at least in part accounted for by increased on-cell activity. A neural model of opiate dependence, tolerance, and withdrawal is proposed.  相似文献   

5.
This study was undertaken to test the hypothesis that gamma-aminobutyric acid (GABA) is an endogeneous neurotransmitter regulating the activity of a class of putative nociceptive modulatory neurons (termed "off-cells") in the rostral ventromedial medulla (RVM) of the barbiturate-anesthetized rat. Off-cells, which are believed to correspond to the RVM output neuron that inhibits nociceptive processing at the level of the spinal cord, exhibit an abrupt pause in firing that begins immediately prior to the occurrence of the tail flick response (TF), a nocifensive reflex evoked by application of noxious heat to the tail. Single-unit recording and iontophoretic techniques were used to examine the ability of the GABAA receptor antagonist bicuculline methiodide (BIC) to antagonize selectively the characteristic off-cell pause. Iontophoretic application of BIC (5-30 nA) blocked the TF-related pause in each of the off-cells tested. This effect of BIC was generally slow in onset, and outlasted the period of application by several minutes. BIC iontophoresis also eliminated the cyclic alternation between active and silent periods that is often displayed by off-cells in lightly anesthetized rats. BIC application did not have a consistent effect on the firing of two other classes of RVM neurons ("on-cells" and "neutral cells"). Iontophoretically applied BIC antagonized the inhibitory effect of iontophoretically applied GABA, but not that produced by glycine. The glycine receptor antagonist strychnine did not mimic the action of BIC on off-cell activity. These data demonstrate antagonism of a synaptically evoked response using iontophoretic application of BIC, and provide strong evidence that the inhibitory neurotransmitter GABA mediates the TF-related off-cell pause. Taken together with behavioral experiments demonstrating that a GABA-mediated inhibitory process within RVM is crucial in permitting execution of the TF response, the present observations point to the significant functional relevance of GABA transmission within RVM in modulation of nociception.  相似文献   

6.
Cutaneous flexion reflexes are amongst the first behavioural responses to develop and are essential for the protection and survival of the newborn organism. Despite this, there has been no detailed, quantitative study of their maturation in human neonates. Here we use surface electromyographic (EMG) recording of biceps femoris activity in preterm (<37 weeks gestation, GA) and term (≥37 weeks GA) human infants, less than 14 days old, in response to tactile, punctate and clinically required skin-breaking lance stimulation of the heel. We show that all infants display a robust and long duration flexion reflex (>4 seconds) to a single noxious skin lance which decreases significantly with gestational age. This reflex is not restricted to the stimulated limb: heel lance evokes equal ipsilateral and contralateral reflexes in preterm and term infants. We further show that infant flexion withdrawal reflexes are not always nociceptive specific: in 29% of preterm infants, tactile stimulation evokes EMG activity that is indistinguishable from noxious stimulation. In 40% of term infants, tactile responses are also present but significantly smaller than nociceptive reflexes. Infant flexion reflexes are also evoked by application of calibrated punctate von Frey hairs (vFh), 0.8–17.2 g, to the heel. Von Frey hair thresholds increase significantly with gestational age and the magnitude of vFh evoked reflexes are significantly greater in preterm than term infants. Furthermore flexion reflexes in both groups are sensitized by repeated vFh stimulation. Thus human infant flexion reflexes differ in temporal, modality and spatial characteristics from those in adults. Reflex magnitude and tactile sensitivity decreases and nociceptive specificity and spatial organisation increases with gestational age. Strong, relatively non-specific, reflex sensitivity in early life may be important for driving postnatal activity dependent maturation of targeted spinal cord sensory circuits.  相似文献   

7.
Electrical skin stimulation of the hind limb (10-100 Hz, 30 s-5 min) at the intensity which leads only to the excitation of low threshold afferents depressed (for 1-30 min) the flexor reflex evoked in spinal frogs by nociceptive stimuli. The inhibition, which lasted for longer than 5 min was blocked by naloxone. Short-term poststimulation effects were associated with an increase of extracellular K+ concentration (delta [K]e) and were not blocked by naloxone. Enkephalins or morphine applied to the spinal cord surface increased the threshold for flexor reflexes while naloxone decrease their threshold. The stimulation was followed by short-term hyperpolarization of primary afferents (PAH; 1-5 min) and by depression of dorsal root potentials (DPRs) which had a similar time course to the delta [K]e, and were not blocked by naloxone. This period was frequently followed by longlasting PAH and enhancement of DRPs (5-30 min), which were abolished by naloxone. Superfusion of the isolated spinal cord with opioids produced PAH and enhanced DRPs evoked by nociceptive stimuli, while naloxone or increase of [K] in Ringer solution depolarized primary afferents and depressed DRPs. It is suggested that the antinociceptive effects of electrical stimulation of low threshold cutaneous afferents in spinal frogs involves at least two mechanisms. The short-term effect may result from delta [K]e, especially at high stimulus strength and is equally effective against noxious and non-noxious stimuli. The longlasting effects selectively affecting nociceptive transmission appear to be produced by endogenous opioids.  相似文献   

8.
J.A. Bell  T. Matsumiya 《Life sciences》1981,29(15):1507-1514
Norepinephrine and serotonin microinjections (10 μg) into the dorsal spinal gray matter depressed C-fiber reflexes induced by electrical stimulation of the superficial peroneal nerve or radiant heat stimulation of the footpad. Microinjection of norepinephrine or serotonin into the ventral gray matter facilitated C-fiber reflexes. These studies lend support to the suggestion that dorsal horn projections of neuronal systems which utilized norepinephrine or serotonin as neurotransmitters inhibit nociceptive spinal reflexes, and ventral horn projections facilitate spinal reflexes.  相似文献   

9.
Zhang YQ  Wu GC 《生理科学进展》2000,31(3):211-216
内源性下行抑制系统在痛传递与调制中具有重要作用。近年来,与这一系统相对的下行易化系统开始引起人们的关注。中枢神经系统通过下行抑制易化系统对外周伤害性信息进行双向调制。5-羟色胺(5-HT)是痛上行调制系统的主要神经递质,电刺激或微量注射兴奋性氨基酸于中缝大核(NMR)或巨细胞网状核(NGC)内,既可兴奋也可抑制脊髓伤害性反应。这种相互矛盾遥效应可能与脊髓内的多种5-HT受体亚型有关。  相似文献   

10.
Nerve injury may cause neuropathic pain, which involves hyperexcitability of spinal dorsal horn neurons. The mechanisms of action of spinal cord stimulation (SCS), an established treatment for intractable neuropathic pain, are only partially understood. We used Autofluorescent Flavoprotein Imaging (AFI) to study changes in spinal dorsal horn metabolic activity. In the Seltzer model of nerve-injury induced pain, hypersensitivity was confirmed using the von Frey and hotplate test. 14 Days after nerve-injury, rats were anesthetized, a bipolar electrode was placed around the affected sciatic nerve and the spinal cord was exposed by a laminectomy at T13. AFI recordings were obtained in neuropathic rats and a control group of naïve rats following 10 seconds of electrical stimulation of the sciatic nerve at C-fiber strength, or following non-noxious palpation. Neuropathic rats were then treated with 30 minutes of SCS or sham stimulation and AFI recordings were obtained for up to 60 minutes after cessation of SCS/sham. Although AFI responses to noxious electrical stimulation were similar in neuropathic and naïve rats, only neuropathic rats demonstrated an AFI-response to palpation. Secondly, an immediate, short-lasting, but strong reduction in AFI intensity and area of excitation occurred following SCS, but not following sham stimulation. Our data confirm that AFI can be used to directly visualize changes in spinal metabolic activity following nerve injury and they imply that SCS acts through rapid modulation of nociceptive processing at the spinal level.  相似文献   

11.
强电针穴位对背角神经元镇痛效应广泛性的中枢机制   总被引:18,自引:0,他引:18  
何晓玲  刘乡 《生理学报》1995,47(6):605-609
实验用雄性大鼠,玻璃微电极细胞外记录T12-L1脊髓背角会聚神经元对后爪伤害性刺激的反应,观察到低强度(2V)电针作用于与痛源接近的“足三里”穴对背角神经元的伤害性反应有明显的抑制作用,而远隔穴位“下关”穴则无效。而当采用超过C类纤维阈值18V电针时,则远隔穴位“下关”也有明显的镇痛作用。表现为强电针穴位镇痛作用的广泛性。而损毁NRM后,强电针(18V)远节段“下关”穴的镇痛作用消失,而近节段“足  相似文献   

12.
MAPK activation in nociceptive neurons and pain hypersensitivity   总被引:22,自引:0,他引:22  
Obata K  Noguchi K 《Life sciences》2004,74(21):2643-2653
  相似文献   

13.
Mechanisms of pain arising from articular tissues   总被引:3,自引:0,他引:3  
This paper reviews the peripheral and central neural mechanisms underlying pain from articular tissues innervated by spinal and trigeminal afferents. The paper especially addresses trigeminal mechanisms related to pain from the temporomandibular joint and its associated craniofacial musculature. Recent studies have shown the existence of articular nociceptive primary afferents that project to the spinal cord dorsal horn and trigeminal brainstem complex. A particular feature of most neurones receiving these deep nociceptive afferent inputs is their responsivity also to cutaneous nociceptive afferent inputs. This suggests the involvement of these neurones not only in the detection of acute articular pain, but also in the hyperalgesia and poor localization, spread, and referral of pain that characterize many painful conditions of joints and other deep structures. While only limited information is available on related higher brain centre mechanisms, convergence and interaction between cutaneous and deep afferent inputs also seem to be a characteristic of somatosensory neurones in the thalamus and somatosensory cerebral cortex. Muscle and autonomic reflexes may be induced by such deep noxious stimuli, but the functional significance of some of these effects (e.g., in relation to clinical concepts of myofascial dysfunction) requires further study in more appropriate functional settings.  相似文献   

14.
L M Mao  J S Han 《Peptides》1990,11(5):1045-1047
In lightly pentobarbital-anesthetized and acutely prepared rats, electrical stimulation within the arcuate nucleus of the hypothalamus (ARH) consistently inhibited the tail-flick responses to noxious heating of the tail. The peptide ICI174864, a delta-opioid receptor antagonist applied intrathecally at the lumbar level at a dose of 1 nmol, markedly attenuated this inhibition without affecting the baseline nociceptive threshold. Normal saline injected by the same approach had no effect on the ARH inhibitory modulation. This is the first report showing an involvement of the delta-opioid receptor in the descending inhibition of spinal nociceptive reflex resulting from ARH stimulation.  相似文献   

15.
Morphine and morphine-related agents were applied by microiontophoresis in the lumbar spinal cord of spinal cats to single units classified on the basis of their responses to natural cutaneous or proprioceptive stimulation. Opiate application had a current-dependent depressant effect on the ongoing activities of about one-third of the units tested. This effect was observed in laminae I and IV--VI, but only with units responding to noxious cutaneous stimuli: the nociceptive responses were themselves depressed. Excitatory and inhibitory responses to glutamate and gamma-aminobutyric acid, respectively, were also depressed. Intravenous administration of the opiates at doses reported to produce analgesia in the cat also depressed only units responding to noxious cutaneous stimuli, including their nociceptive responses. This depression could be reversed by either the iontophoretic application (100 nA) or the intravenous administration (0.1--0.8 mg/kg) of naloxone. These results are interpreted as further evidence that the analgesic effects of opiates are at least partly due to an action at the spinal level.  相似文献   

16.
Animals with a severe reduction in the number of afferent C-fibres as a consequence of neonatal administration of capsaicin, exhibit a number of neurological and behavioral deficits including increased nociceptive thresholds, altered somato-visceral and viscero-visceral reflexes, depressed cardiovascular and respiratory reflexes and changes in the organisation of spinal cord sensory systems. The reduction in the number of C-fibres produced by neonatal capsaicin does not cause a decrease of similar magnitude in the number of dorsal horn cells driven by the surviving C-fibres. Twenty-two per cent of dorsal horn neurones in capsaicin treated animals respond to electrical stimulation of the surviving afferent C-fibres: a reduction of only 50% from control values. Inhibitory controls on afferent C-fibre evoked responses of dorsal horn neurones are weaker in capsaicin treated rate than in control animals. The cutaneous receptive fields of some dorsal horn neurones can increase in size following stimulation of afferent C-fibres. Tonic descending inhibition on C-fibre evoked responses of dorsal horn neurones is reduced in capsaicin treated rats: fewer neurones show tonic descending inhibition in these animals and those that do are subjected to less powerful inhibitions than similar neurones from control animals. However, some central inhibitory mechanism are unchanged after neonatal capsaicin treatment, specially those that do not involve afferent C-fibres. We suggest that the nervous system develops central inhibition in response to and directed towards the excitations mediated by its afferent drives. Therefore reduced central inhibition in response to a decreased number of afferent C-fibres can compensate for the lost capacity in the signalling of peripheral noxious events.  相似文献   

17.
The technique of recording spinal cord withdrawal reflexes as single motor units (SMUs) does not require intense preparatory surgery and allows the study of the nociceptive system in physiological conditions. It has been used to show that the wind-up phenomenon depends on the level of excitability of spinal cord neurones, the integrity of the spinal cord and the parameters of the stimulation used. We have now used SMU recordings to assess whether wind-up is also an heterogeneous phenomenon depending on the muscle studied, and, if so, how the presence of hyperalgesia affects its generation. The experiments were performed in normal and carrageenan-induced inflammation in male Wistar rats anesthetized with alpha-chloralose. Wind-up was recorded in units from peroneus longus, tibialis anterior and extensor digitorum longus. The results showed that in normal animals, the curves of C-fibre mediated wind-up reached saturation at different times and the shape of the curves was different depending on the muscle studied and on the intensity of stimulation used. In inflammation, however, C-fibre mediated wind-up became very uniform in the muscles studied, with a similar shape and saturation point. A-fibre mediated wind-up was only observed in animals with inflammation and no differences were observed between muscles. We conclude that in the absence of preparatory surgery and inflammation, C-fibre wind-up is heterogeneous, and supports a modular organization of nociceptive spinal reflexes. In hyperalgesia, however, wind-up curves are similar in units from different muscles, confirming a loss of modular organization that also affects the generation of wind-up.  相似文献   

18.
Transcranial direct current stimulation (tDCS) is an emerging, noninvasive technique of neurostimulation for treating pain. However, the mechanisms and pathways involved in its analgesic effects are poorly understood. Therefore, we investigated the effects of direct current stimulation (DCS) on thermal and mechanical nociceptive thresholds and on the activation of the midbrain periaqueductal gray (PAG) and the dorsal horn of the spinal cord (DHSC) in rats; these central nervous system areas are associated with pain processing. Male Wistar rats underwent cathodal DCS of the motor cortex and, while still under stimulation, were evaluated using tail-flick and paw pressure nociceptive tests. Sham stimulation and naive rats were used as controls. We used a randomized design; the assays were not blinded to the experimenter. Immunoreactivity of the early growth response gene 1 (Egr-1), which is a marker of neuronal activation, was evaluated in the PAG and DHSC, and enkephalin immunoreactivity was evaluated in the DHSC. DCS did not change the thermal nociceptive threshold; however, it increased the mechanical nociceptive threshold of both hind paws compared with that of controls, characterizing a topographical effect. DCS decreased the Egr-1 labeling in the PAG and DHSC as well as the immunoreactivity of spinal enkephalin. Altogether, the data suggest that DCS disinhibits the midbrain descending analgesic pathway, consequently inhibiting spinal nociceptive neurons and causing an increase in the nociceptive threshold. This study reinforces the idea that the motor cortex participates in the neurocircuitry that is involved in analgesia and further clarifies the mechanisms of action of tDCS in pain treatment.  相似文献   

19.
Development of the nociceptive response produced by both slight and noxious action on the foot pad and in hair-covered skin was investigated during acute experiments on cats. The action of diverse noxious stimuli upon the skin of the foot pad failed to elicit nociceptive reflexes but regularly did so in the case of the hair-covered skin adjacent to that of the foot pad. These reflexes were evoked by sensory signals transmitted along unmyelinated fibers. No C-afferent activity was recorded when quantifying afferent flows arising in response to noxious foot pad stimulation; this contrasted with flows of impulses produced by injuring hair-covered skin and that covering the foot pad. The absence of C-afferents traveling from the latter area means that no peripheral coding of nociceptive signals takes place; nor are any nociceptive reflexes set up in the foot pad by greatly intensified action.Research Institute of Applied Mathematics and Cybernetics, N. I. Lobachevskii State University, Gor'kii. Translated from Neirofiziologiya, Vol. 19, No. 4, pp. 435–443, July–August, 1987.  相似文献   

20.
Wang RP  Lin Q  Li QJ  Lu GW 《生理学报》2000,52(5):407-410
用微透析方法在麻醉麻痹大鼠的脊髓局部应用一氧化氮(NO)供体亚硝基铁氰化钠(sodium nitroprusside,SNP),以碳丝微电极在腰膨大处行细胞外记录,观察NO对机械刺激大鼠后足部皮肤引起的诱发反应和自发反应的影响。脊深层神经元透析1μmol/L SNP,10~12min后,非伤害性机械刺激诱发的反应增强,伤害性机械刺激诱发的反应减弱;透析20~30min后,伤害性和非伤害性机械刺激诱  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号