首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The adhesive glycoprotein vitronectin (VN) forms a function-stabilizing complex with plasminogen activator inhibitor-1 (PAI-1), the major fibrinolysis inhibitor in both plasma and vessel wall connective tissue. VN also interacts with two-chain high molecular weight kininogen (HKa), particularly its His-Gly-Lys-rich domain 5, and both HKa and PAI-1 are antiadhesive factors that have been shown to compete for binding to VN. In this study the influence of HKa and domain 5 on the antifibrinolytic function of PAI-1 was investigated. In a purified system, HKa and particularly domain 5 inhibited the binding of PAI-1 to VN and promoted PAI-1 displacement from both isolated VN as well as subendothelial extracellular matrix-associated VN. The sequence Gly(486)-Lys(502) of HKa domain 5 was identified as responsible for this inhibition. Although having no direct effect on PAI-1 activity itself, HKa domain 5 or the peptide Gly(486)-Lys(502) markedly destabilized the VN.PAI-1 complex interaction, resulting in a significant reduction of PAI-1 inhibitory function on plasminogen activators, resembling the effect of VN antibodies that prevent stabilization of PAI-1. Furthermore, high affinity fibrin binding of PAI-1 in the presence of VN as well as the VN-dependent fibrin clot stabilization by the inhibitor were abrogated in the presence of the kininogen forms mentioned. Taken together, our data indicate that the peptide Gly(486)-Lys(502) derived from domain 5 of HKa serves to interfere with PAI-1 function. Based on these observations potential low molecular weight PAI-1 inhibitors could be designed for the use in therapeutic interventions against thromboembolic complications.  相似文献   

2.
3.
We investigated the effects of high concentrations of glucose on plasminogen activator inhibitor-1 (PAI-1) gene expression in cultured rat vascular smooth muscle cells (VSMC). In response to a high glucose concentration (27.5 mM), PAI-1 mRNA increased within 2 h, peaked at 4 h, remained elevated for another 4 h, then decreased to basal levels at 24 h. On the other hand, mannose at the same concentration (22.5 mM mannose plus 5.5 mM glucose) as an osmotic control had little effect on PAI-1 mRNA expression. The expression of PAI-1 mRNA that was also increased by H(2)O(2), angiotensin II, or phorbol myristate acetate, was reversed by the MAPK kinase (MEK) inhibitor PD98059 or the specific protein kinase C (PKC) inhibitor GF109203X. High glucose appeared to activate MAPK and PKC in VSMC judging from Elk-1 and AP-1 activation, respectively. PD98059 inhibited and GF109203X prevented subsequent PAI-1 induction by glucose. These results suggest that glucose at high concentrations induces PAI-1 gene expression in VSMC at least partially via MAPK and PKC activation. This direct effect of glucose might have important implications for the increased plasma concentrations of PAI-1 and possibly atherosclerosis that are associated with diabetes.  相似文献   

4.
5.
The reaction between plasminogen activators and plasminogen activator inhibitor-1 is characterized by an initial rapid formation of an inactive reversible complex. The second-order association rate constant (k1) of complex formation of recombinant two-chain tissue-type plasminogen activator (rt-PA) or recombinant two-chain urokinase-type plasminogen activator (rtcu-PA) by recombinant plasminogen activator inhibitor-1 (rPAI-1) is 2.9 +/- 0.4 x 10(7) M-1 s-1 (mean +/- S.D., n = 30) and 2.0 +/- 0.6 x 10(7) M-1 s-1 (n = 12), respectively. Different molecular forms of tissue- or urokinase-type plasminogen activator which do not form covalent complexes with rPAI-1, including rt-PA-Ala478 (rt-PA with the active-site Ser478 mutagenized to Ala) and anhydro-urokinase (rtcu-PA with the active-site Ser356 converted to dehydroalanine) reduced k1 in a concentration-dependent manner, compatible with 1:1 stoichiometric complex formation between rPAI-1 and these ligands. The apparent dissociation constant (KD) of the complex between rPAI-1 and rt-PA-Ala478, determined as the concentration of rt-PA-Ala478 which reduced k1 to 50% of its control value, was 3-5 nM. Corresponding concentrations of active-site-blocked two-chain rt-PA were 150-250-fold higher. The concentration of anhydro-urokinase which reduced k1 to 50% was 4-6 nM, whereas that of active-site-blocked rtcu-PA was 100-250-fold higher. Recombinant single-chain urokinase-type plasminogen activator had an apparent KD of about 2 microM. These results suggest that inhibition of rt-PA or rtcu-PA by rPAI-1 proceeds via a reversible high affinity interaction which does not require a functional active site but which is markedly reduced following inactivation of the enzymes with active-site titrants.  相似文献   

6.
Spence MJ  Streiff R  Day D  Ma Y 《Cytokine》2002,18(1):26-34
Oncostatin M (OSM) is a glycoprotein cytokine that is produced by activated T-lymphocytes, monocytes, and macrophages. In a DNA synthesis assay, OSM reduced tritiated thymidine incorporation by 53% in Calu-1 lung carcinoma cells. Radiolabeled cDNAs from untreated Calu-1 cells and 30-h OSM-treated cells were used to probe duplicate nylon membrane cDNA expression arrays. This study revealed OSM-mediated expression of mRNAs encoding tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1). Northern blot analysis showed that the steady-state level of tPA mRNA is nearly undetectable in Calu-1 cells. Exposure of these cells to OSM for 30 h increased tPA mRNA expression by 20-fold and PAI-1 mRNA expression by 5-fold. Exposure of these cells to other gp130 receptor family cytokines, including leukemia inhibitory factor (LIF), interleukin-6 (IL-6), and IL-11, do not significantly affect DNA synthesis or induction of tPA/PAI-1. Western blot studies demonstrated that OSM mediates a marked increase in secretion of the tPA protein. Secreted tPA was present in the conditioned medium almost exclusively as tPA/PAI-1 complexes. Inhibitor studies demonstrated that OSM-mediated induction of tPA and PAI-1 mRNAs is largely dependent upon activation of the MEK1/2 pathway. The JAK3/STAT3 pathway potentially serves a secondary role in these regulatory events.  相似文献   

7.
Plasminogen activator inhibitor-1 (PAI-1), together with its physiological target urokinase-type plasminogen activator (uPA), plays a pivotal role in fibrinolysis, cell migration, and tissue remodeling and is currently recognized as being among the most extensively validated biological prognostic factors in several cancer types. PAI-1 specifically and rapidly inhibits uPA and tissue-type PA (tPA). Despite extensive structural/functional studies on these two reactions, the underlying structural mechanism has remained unknown due to the technical difficulties of obtaining the relevant structures. Here, we report a strategy to generate a PAI-1·uPA(S195A) Michaelis complex and present its crystal structure at 2.3-Å resolution. In this structure, the PAI-1 reactive center loop serves as a bait to attract uPA onto the top of the PAI-1 molecule. The P4–P3′ residues of the reactive center loop interact extensively with the uPA catalytic site, accounting for about two-thirds of the total contact area. Besides the active site, almost all uPA exosite loops, including the 37-, 60-, 97-, 147-, and 217-loops, are involved in the interaction with PAI-1. The uPA 37-loop makes an extensive interaction with PAI-1 β-sheet B, and the 147-loop directly contacts PAI-1 β-sheet C. Both loops are important for initial Michaelis complex formation. This study lays down a foundation for understanding the specificity of PAI-1 for uPA and tPA and provides a structural basis for further functional studies.  相似文献   

8.
Cell proliferation, an event associated with angiogenesis, involves coordinated activities of a number of proteins. The role of plasminogen activator inhibitor-1 (PAI-1) in angiogenesis remains controversial. Utilizing proliferating PAI-1-/- endothelial cells (EC), the impact of a host PAI-1 deficiency on Akt activation was evaluated. Hyperactivation of Akt(Ser(P)473) was observed in PAI-1-/- EC, and this was probably due to enhanced inactivation of tumor suppressor PTEN, thus rendering the cells resistant to apoptotic signals. Higher levels of inactivated caspase-9 in PAI-1-/- EC led to lower levels of procaspase-3 and cleaved caspase-3, thereby promoting survival. These effects were reversed when recombinant PAI-1 was added to PAI-1-/- EC. Additional studies demonstrated that regulation of proliferation is dependent on its interaction with low density lipoprotein receptor-related protein. Thus, PAI-1 is a negative regulator of cell growth, exerting its effect on the phosphatidylinositol 3-kinase/Akt pathway and allowing controlled cell proliferation.  相似文献   

9.
In vivo studies have demonstrated that aldosterone is an independent contributor to glomerulosclerosis. In the present study, we have investigated whether aldosterone itself mediated glomerulosclerosis, as angiotensin II (Ang II) did, by inducing cultured renal mesangial cells to produce plasminogen activator inhibitor-1 (PAI-1), and whether these effects were mediated by aldosterone-induced increase in transforming growth factor beta(1) (TGF-beta(1)) expression and cellular reactive oxygen species (ROS) activity. Quiescent rat mesangial cells were treated by aldosterone alone or by combination of aldosterone and spironolactone, Ang II, neutralizing antibody to TGF-beta(1) or antioxidant Nacetylcysteme (NAC). This study indicate that aldosterone can increase PAI-1 mRNA and protein expression by cultured mesangial cells alone, which is independent of aldosterone-induced increases in TGF-beta(1) expression and cellular ROS. The effects on PAI-1, TGF-beta(1) and ROS generation were markedly attenuated by spironolactone, a mineralocorticoid receptor antagonist, which demonstrate that mineralocorticoid receptor (MR) may play a role in mediating these effects of aldosterone.  相似文献   

10.
The urokinase plasminogen activator receptor (uPAR) is a multifunctional, GPI-linked receptor that modulates cell adhesion/migration and fibrinolysis. We mapped the interaction sites between soluble uPAR (suPAR) and high molecular mass kininogen (HK). Binding of biotin-HK to suPAR was inhibited by HK, 56HKa, and 46HKa with an IC50 of 60, 110, and 8 nm, respectively. We identified two suPAR-binding sites, a higher affinity site in the light chain of HK and 46HKa (His477-Gly496) and a lower affinity site within the heavy chain (Cys333-Lys345). HK predominantly bound to suPAR fragments containing domains 2 and 3 (S-D2D3). Binding of HK to domain 1 (S-D1) was also detected, and the addition of S-D1 to S-D2D3 completely inhibited biotin-HK or -46HKa binding to suPAR. Using sequential and overlapping 20-amino acid peptides prepared from suPAR, two regions for HK binding were identified. One on the carboxyl-terminal end of D2 (Leu166-Thr195) blocked HK binding to suPAR and to human umbilical vein endothelial cells (HUVEC). This site overlapped with the urokinase-binding region, and urokinase inhibited the binding of HK to suPAR. A second region on the amino-terminal portion of D3 (Gln215-Asn255) also blocked HK binding to HUVEC. Peptides that blocked HK binding to uPAR also inhibited prekallikrein activation on HUVEC. Therefore, HK interacts with suPAR at several sites. HK binds to uPAR as part of its interaction with its multiprotein receptor complex on HUVEC, and the biological functions that depend upon this binding are modulated by urokinase.  相似文献   

11.
12.
Urokinase plasminogen activator (uPA) system, comprising of uPA, its receptor uPAR and inhibitor, type 1 plasminogen activator inhibitor (PAI-1), plays a vital role in various biological processes involving extracellular proteolysis, fibrinolysis, cell migration and proliferation. The timely occurence of these processes are essential for normal wound healing. This study examines the regulation of uPA and PAI-1 by a natural polyphenol-rich compound, grape seed extract (GSE). GSE is reported to have beneficial effects in promoting wound healing. Fibroblast cells exposed to different doses of GSE for 18 hours were processed for further studies such as ELISA, RT-PCR, western blotting, fibrinolytic assay, cell surface plasmin activity assay and in vitro wound healing assay. GSE treatment caused a significant downregulation of uPA and PAI-1 expression, both at the RNA and protein levels. ELISA also revealed a dose-dependent decrease in uPA and PAI-1 activities. Functional significance of the downregulation was evident in decreased fibrinolytic activity, concomittant with decreased cell-surface plasmin activity. In vitro wound healing studies showed that GSE also retarded the migration of cells towards the wounded region.  相似文献   

13.
Inhibition of angiogenesis in vivo by plasminogen activator inhibitor-1   总被引:4,自引:0,他引:4  
The process of angiogenesis is important in both normal and pathologic physiology. However, the mechanisms whereby factors such as basic fibroblast growth factor promote the formation of new blood vessels are not known. In the present study, we demonstrate that exogenously added plasminogen activator inhibitor-1 (PAI-1) at therapeutic concentrations is a potent inhibitor of basic fibroblast growth factor-induced angiogenesis in the chicken chorioallantoic membrane. By using specific PAI-1 mutants with either their vitronectin binding or proteinase inhibitor activities ablated, we show that the inhibition of angiogenesis appears to occur via two distinct but apparently overlapping pathways. The first is dependent on PAI-1 inhibition of proteinase activity, most likely chicken plasmin, while the second is independent of PAI-1's anti-proteinase activity and instead appears to act through PAI-1 binding to vitronectin. Together, these data suggest that PAI-1 may be an important factor regulating angiogenesis in vivo.  相似文献   

14.
15.
In order to elucidate the relationship between homocysteine and the fibrinolytic system, we examined the effect of homocysteine on plasminogen activator inhibitor-1 (PAI-1) and tissue-type plasminogen activator (tPA) gene expression and protein secretion in cultured human vascular endothelial and smooth muscle cells in vitro. PAI-1 mRNA and secreted protein levels were both enhanced by homocysteine in a dose dependent manner, with significant stimulation of PAI-1 secretion observed at concentrations greater than 0.5 mM homocysteine. In contrast, secretion and mRNA expression of tPA were not significantly altered by homocysteine stimulation. Secretion of TGFbeta (transforming growth factor beta) and TNFalpha (tumor necrosis factor alpha), possible regulators of PAI-1 expression and secretion, were not stimulated by treatment with 1.0 mM homocysteine. These results suggests that hyperhomocysteinemia-induced atherosclerosis and/or thrombosis may be caused by homocysteine-induced stimulation of PAI-1 gene expression and secretion in the vasculatures by a mechanism independent from paracrine-autocrine activity of TGFbeta and TNFalpha.  相似文献   

16.
The aim of this study was to determine the effects of hypoxia on mRNA levels, cell-associated and -secreted protein concentration, activity, and protein complex formation of urokinase-type plasminogen activator, its receptor, and plasminogen activator inhibitor type-1 in corneal epithelium. Non-transformed human corneal epithelial cells were cultured in 20% oxygen (normoxic conditions) or 2% oxygen (hypoxic conditions) for 1, 3, 5, or 7 days. Relative changes in mRNA levels of plasminogen activator, receptor, and plasminogen activator inhibitor-1 were determined using a cDNA expression array, chemiluminescence, and densitometry. Protein concentrations were determined using enzyme linked immunosorbent assays. Activity assays were also used. Protein complex formation was assayed using cell surface biotinylation, immunoprecipitation, and Western blot analysis. Hypoxic corneal epithelial cells demonstrated no significant differences in plasminogen activator or receptor mRNA. Cell-associated plasminogen activator and membrane-associated receptor protein levels were unchanged. In contrast decreases in mRNA and secreted plasminogen activator inhibitor-1 protein were observed in hypoxic cells. Concurrently, increased cell-associated plasminogen activator activity was observed in hypoxic cells. The formation of plasminogen activator/receptor/plasminogen activator inhibitor-1 complex at the cell surface was not inhibited by hypoxia. However, in hypoxic cells less plasminogen activator inhibitor-1 was associated with receptor. It is concluded that in corneal epithelium cultured in 2% oxygen plasminogen activator inhibitor-1 may be an important regulatory factor of the plasminogen activator system resulting in increased urokinase plasminogen activator activity.  相似文献   

17.
Atherosclerotic cardiovascular disease is the number one cause of death for adults in Western society. Plasminogen activator inhibitor-1 (PAI-1), the major physiological inhibitor of plasminogen activators, has been implicated in both thrombogenesis and atherogenesis. Previous studies demonstrated that copper-oxidized low-density lipoprotein (C-oLDL) stimulated production of PAI-1 in vascular endothelial cells (EC). The present study examined the involvement of lectin-like oxidized LDL receptor-1 (LOX-1) and Ras/Raf-1/ERK1/2 pathway in the upregulation of PAI-1 in cultured EC induced by oxidized LDLs. The results demonstrated that C-oLDL or FeSO(4)-oxidized LDL (F-oLDL) increased the expression of PAI-1 or LOX-1 in human umbilical vein EC (HUVEC) or coronary artery EC (HCAEC). Treatment with C-oLDL significantly increased the levels of H-Ras mRNA, protein, and the translocation of H-Ras to membrane fraction in EC. LOX-1 blocking antibody, Ras farnesylation inhibitor (FTI-277), or small interference RNA against H-Ras significantly reduced C-oLDL or LDL-induced expression of H-Ras and PAI-1 in EC. Incubation with C-oLDL or F-oLDL increased the phosphorylation of Raf-1 and ERK1/2 in EC compared with LDL or vehicle. Treatment with Raf-1 inhibitor blocked Raf-1 phosphorylation and the elevation of PAI-1 mRNA level in EC induced by C-oLDL or LDL. Treatment with PD-98059, an ERK1/2 inhibitor, blocked C-oLDL or LDL-induced ERK1/2 phosphorylation or PAI-1 expression in EC. The results suggest that LOX-1, H-Ras, and Raf-1/ERK1/2 are implicated in PAI-1 expression induced by oxidized LDLs or LDL in cultured EC.  相似文献   

18.
19.
Increased expression of plasminogen activator inhibitor type 1 (PAI-1) is associated with decreased apoptosis of neoplastic cells. We sought to determine whether PAI-1 alters apoptosis in vascular smooth muscle cells (VSMC) and, if so, by what mechanisms. A twofold increase in the expression of PAI-1 was induced in VSMC from transgenic mice with the use of the SM-22alpha gene promoter (SM22-PAI+). Cultured VSMC from SM22-PAI+ mice were more resistant to apoptosis induced by tumor necrosis factor plus phorbol myristate acetate or palmitic acid compared with VSMC from negative control littermates. Both wild type (WT) and a stable active mutant form of PAI-1 (Active) inhibited caspase-3 amidolytic activity in cell lysates while a serpin-defective mutant (Mut) PAI-1 did not. Similarly, both WT and Active PAI-1 decreased amidolytic activity of purified caspase-3, whereas Mut PAI-1 did not. WT but not Mut PAI-1 decreased the cleavage of poly-[ADP-ribose]-polymerase (PARP), the physiological substrate of caspase-3. Noncovalent physical interaction between caspase-3 and PAI-1 was demonstrable with the use of both qualitative and quantitative in vitro binding assays. High affinity binding was eliminated by mutations that block PAI-1 serpin activity. Accordingly, attenuated apoptosis resulting from elevated expression of PAI-1 by VSMC may be attributable, at least in part, to reversible inhibition of caspase-3 by active PAI-1.  相似文献   

20.
Yuan X  Liu N 《遗传学报》2011,38(5):193-200
Advanced glycation end products (AGEs) play an important role in vascular complications of diabetes, including fibrinolytic abnormalities.Pioglitazone, a peroxisome proliferator-activated receptor gamma (PPARΥ) agonist, has recently been shown to reduce circulating plasminogen activator inhibitor-1 (PAI-1) levels in diabetes mellitus. In the present study, we investigated the effects of pioglitazone on the expression of local PAI-1 in rat vascular smooth muscle cells (VSMCs) induced by AGEs and the underlying mechanism. The result showed that AGEs could enhance the PAI-1 expression by 5.1-fold in mRNA and 2.7-fold in protein level, as evaluated by real-time RT-PCR and Western blotting,respectively. Pioglitazone was found to down-regulate the AGE-stimulated PAI-1 expression in VSMCs. However, these inhibitory effects were partially attenuated by the PPARΥ antagonist, GW9662. Furthermore, we found that AGEs induced a rapid increase in phosphorylation and activation of extracellular signal-regulated protein kinase 1/2 (ERK 1/2). The ERK kinase inhibitor, UO126, partially prevented the induction of PAI-1 by AGEs. Moreover, pioglitazone was also found to inhibit the phosphorylation of ERKi/2. Taken together, it was concluded that pioglitazone could inhibit AGE-induced PAI-1 expression, which was mediated by the ERK1/2 and PPARΥ pathways. Our findings suggestedpioglitazone had a therapeutic potential in improving fibrinolytic activity, and consequently preventing thromboembolic complications of diabetes and cardiovascular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号