首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ins (endocytosis) and outs (exocytosis) of GLUT4 trafficking   总被引:3,自引:0,他引:3  
Glucose transporter 4 (GLUT4) is the major insulin-regulated glucose transporter expressed mainly in muscle and adipose tissue. GLUT4 is stored in a poorly characterized intracellular vesicular compartment and translocates to the cell surface in response to insulin stimulation resulting in an increased glucose uptake. This process is essential for the maintenance of normal glucose homeostasis and involves a complex interplay of trafficking events and intracellular signaling cascades. Recent studies have identified sortilin as an essential element for the formation of GLUT4 storage vesicles during adipogenesis and Golgi-localized gamma-ear-containing Arf-binding protein (GGA) as a key coat adaptor for the entry of newly synthesized GLUT4 into the specialized compartment. Insulin-stimulated GLUT4 translocation from this compartment to the plasma membrane appears to require the Akt/protein kinase B substrate termed AS160 (Akt substrate of 160kDa). In addition, the VPS9 domain-containing protein Gapex-5 in complex with CIP4 appears to function as a Rab31 guanylnucleotide exchange factor that is necessary for insulin-stimulated GLUT4 translocation. Here, we attempt to summarize recent advances in GLUT4 vesicle biogenesis, intracellular trafficking and membrane fusion.  相似文献   

2.
The insulin-sensitive glucose transporter GLUT4 mediates the uptake of glucose into adipocytes and muscle cells. In this study we have used a novel 96-well plate fluorescence assay to study the kinetics of GLUT4 trafficking in 3T3-L1 adipocytes. We have found evidence for a graded release mechanism whereby GLUT4 is released into the plasma membrane recycling system in a nonkinetic manner as follows: the kinetics of appearance of GLUT4 at the plasma membrane is independent of the insulin concentration; a large proportion of GLUT4 molecules do not participate in plasma membrane recycling in the absence of insulin; and with increasing insulin there is an incremental increase in the total number of GLUT4 molecules participating in the recycling pathway rather than simply an increased rate of recycling. We propose a model whereby GLUT4 is stored in a compartment that is disengaged from the plasma membrane recycling system in the basal state. In response to insulin, GLUT4 is quantally released from this compartment in a pulsatile manner, leaving some sequestered from the recycling pathway even in conditions of excess insulin. Once disengaged from this location we suggest that in the continuous presence of insulin this quanta of GLUT4 continuously recycles to the plasma membrane, possibly via non-endosomal carriers that are formed at the perinuclear region.  相似文献   

3.
Insulin stimulation of glucose uptake is achieved by redistribution of insulin-responsive glucose transporters, GLUT4, from intracellular storage compartment(s) to the plasma membrane in adipocytes and muscle cells. Although GLUT4 translocation has been investigated using various approaches, GLUT4 trafficking properties within the cell are largely unknown. Our novel method allows direct analysis of intracellular GLUT4 dynamics at the single molecule level by using Quantum dot technology, quantitatively establishing the behavioral nature of GLUT4. Our data demonstrate the predominant mechanism for intracellular GLUT4 sequestration in the basal state to be “static retention” in fully differentiated 3T3L1 adipocytes. We also directly defined three distinct insulin-stimulated GLUT4 trafficking processes: 1) release from the putative GLUT4 anchoring system in storage compartment(s), 2) the speed at which transport GLUT4-containing vesicles move, and 3) the tethering/docking steps at the plasma membrane. Intriguingly, insulin-induced GLUT4 liberation from its static state appeared to be abolished by either pretreatment with an inhibitor of phosphatidylinositol 3-kinase or overexpression of a dominant-interfering AS160 mutant (AS160/T642A). In addition, our novel approach revealed the possibility that, in certain insulin-resistant states, derangements in GLUT4 behavior can impair insulin-responsive GLUT4 translocation.  相似文献   

4.
《The Journal of cell biology》1995,130(5):1071-1079
In adipose and muscle cells, insulin stimulates a rapid and dramatic increase in glucose uptake, primarily by promoting the redistribution of the GLUT4 glucose transporter from its intracellular storage site to the plasma membrane. In contrast, the more ubiquitously expressed isoform GLUT1 is localized at the cell surface in the basal state, and shows a less dramatic translocation in response to insulin. To identify sequences involved in the differential subcellular localization and hormone-responsiveness of these isoforms, chimeric GLUT1/GLUT4 transporters were stably expressed in mouse 3T3-L1 adipocytes. The NH2 terminus of GLUT4 contains sequences capable of sequestering the transporter inside the cell, although not in an insulin-sensitive pool. In contrast, the COOH-terminal 30 amino acids of GLUT4 are sufficient for its correct localization to an intracellular storage pool which translocates to the cell surface in response to insulin. The dileucine motif within this domain, which is required for intracellular sequestration of chimeric transporters in fibroblasts, is not critical for targeting to the hormone-responsive compartment in adipocytes. Analysis of rates of internalization of chimeric transporter after the removal of insulin from cells, as well as the subcellular distribution of transporters in cells unexposed to or treated with insulin, leads to a three-pool model which can account for the data.  相似文献   

5.
Foley K  Boguslavsky S  Klip A 《Biochemistry》2011,50(15):3048-3061
Glucose transporter 4 (GLUT4) is responsible for the uptake of glucose into muscle and adipose tissues. Under resting conditions, GLUT4 is dynamically retained through idle cycling among selective intracellular compartments, from whence it undergoes slow recycling to the plasma membrane (PM). This dynamic retention can be released by command from intracellular signals elicited by insulin and other stimuli, which result in 2-10-fold increases in the surface level of GLUT4. Insulin-derived signals promote translocation of GLUT4 to the PM from a specialized compartment termed GLUT4 storage vesicles (GSV). Much effort has been devoted to the characterization of the intracellular compartments and dynamics of GLUT4 cycling and to the signals by which GLUT4 is sorted into, and recruited from, GSV. This review summarizes our understanding of intracellular GLUT4 traffic during its internalization from the membrane, its slow, constitutive recycling, and its regulated exocytosis in response to insulin. In spite of specific differences in GLUT4 dynamic behavior in adipose and muscle cells, the generalities of its endocytic and exocytic itineraries are consistent and an array of regulatory proteins that regulate each vesicular traffic event emerges from these cell systems.  相似文献   

6.
GLUT4 translocation: the last 200 nanometers   总被引:2,自引:0,他引:2  
Insulin regulates circulating glucose levels by suppressing hepatic glucose production and increasing glucose transport into muscle and adipose tissues. Defects in these processes are associated with elevated vascular glucose levels and can lead to increased risk for the development of Type 2 diabetes mellitus and its associated disease complications. At the cellular level, insulin stimulates glucose uptake by inducing the translocation of the glucose transporter 4 (GLUT4) from intracellular storage sites to the plasma membrane, where the transporter facilitates the diffusion of glucose into striated muscle and adipocytes. Although the immediate downstream molecules that function proximal to the activated insulin receptor have been relatively well-characterized, it remains unknown how the distal insulin-signaling cascade interfaces with and recruits GLUT4 to the cell surface. New biochemical assays and imaging techniques, however, have focused attention on the plasma membrane as a potential target of insulin action leading to GLUT4 translocation. Indeed, it now appears that insulin specifically regulates the docking and/or fusion of GLUT4-vesicles with the plasma membrane. Future work will focus on identifying the key insulin targets that regulate the GLUT4 docking/fusion processes.  相似文献   

7.
In fat and muscle, insulin stimulates glucose uptake by rapidly mobilizing the GLUT4 glucose transporter from a specialized intracellular compartment to the plasma membrane. We describe a method to quantify the relative proportion of GLUT4 at the plasma membrane, using flow cytometry to measure a ratio of fluorescence intensities corresponding to the cell surface and total amounts of a tagged GLUT4 reporter in individual living cells. Using this assay, we demonstrate that both 3T3-L1 and CHO cells contain intracellular compartments from which GLUT4 is rapidly mobilized by insulin and that the initial magnitude and kinetics of redistribution to the plasma membrane are similar in these two cell types when they are cultured identically. Targeting of GLUT4 to a highly insulin-responsive compartment in CHO cells is modulated by culture conditions. In particular, we find that amino acids regulate distribution of GLUT4 to this kinetically defined compartment through a rapamycin-sensitive pathway. Amino acids also modulate the magnitude of insulin-stimulated translocation in 3T3-L1 adipocytes. Our results indicate a novel link between glucose and amino acid metabolism.  相似文献   

8.
The insulin-responsive glucose transporter GLUT4 plays an essential role in glucose homeostasis. A novel assay was used to study GLUT4 trafficking in 3T3-L1 fibroblasts/preadipocytes and adipocytes. Whereas insulin stimulated GLUT4 translocation to the plasma membrane in both cell types, in nonstimulated fibroblasts GLUT4 readily cycled between endosomes and the plasma membrane, while this was not the case in adipocytes. This efficient retention in basal adipocytes was mediated in part by a C-terminal targeting motif in GLUT4. Insulin caused a sevenfold increase in the amount of GLUT4 molecules present in a trafficking cycle that included the plasma membrane. Strikingly, the magnitude of this increase correlated with the insulin dose, indicating that the insulin-induced appearance of GLUT4 at the plasma membrane cannot be explained solely by a kinetic change in the recycling of a fixed intracellular GLUT4 pool. These data are consistent with a model in which GLUT4 is present in a storage compartment, from where it is released in a graded or quantal manner upon insulin stimulation and in which released GLUT4 continuously cycles between intracellular compartments and the cell surface independently of the nonreleased pool.  相似文献   

9.
Glucose transport across the plasma membrane of mammalian cells is mediated by a family of homologous proteins. Each glucose transporter isoform has a specific tissue distribution which relates to that tissue's demand for glucose. The β-cells of pancreatic islets are known to express a distinct glucose transporter isoform, termed GLUT 2, which has a high Km for glucose. In this study, we examined the glucose transporter content of normal rat islets and three beta cell lines, β-TC, HIT and RIN cells. We show that at the protein level, GLUT 2 is the only detectable transporter isoform in normal islets, and that all three cell lines also express detectable GLUT 2. In contrast, all three cell lines expressed high levels of GLUT 1, but this isoform was not detected in normal islets. Neither the native islets nor any of the cell lines expressed GLUT 3. The insulin-responsive glucose transporter GLUT 4 was detected at very low levels in β-TC cells; to our knowledge, this is the only non-muscle or adipose cell line which expresses this isoform. We propose that the elevated level of GLUT 1 expression, together with a reduced expression of the high Km transporter GLUT 2, may account for the characteristics aberrant patterns of glucose-stimulated insulin release in cell lines derived from β-cells.  相似文献   

10.
Chen Y  Wang Y  Ji W  Xu P  Xu T 《The FEBS journal》2008,275(4):705-712
Insulin stimulates glucose uptake by inducing translocation of glucose transporter 4 (GLUT4) from intracellular resides to the plasma membrane. How GLUT4 storage vesicles are translocated from the cellular interior to the plasma membrane remains to be elucidated. In the present study, intracellular transport of GLUT4 storage vesicles and the kinetics of their docking at the plasma membrane were comprehensively investigated at single vesicle level in control and microtubule-disrupted 3T3-L1 adipocytes by time-lapse total internal reflection fluorescence microscopy. It is demonstrated that microtubule disruption substantially inhibited insulin-stimulated GLUT4 translocation. Detailed analysis reveals that microtubule disruption blocked the recruitment of GLUT4 storage vesicles to underneath the plasma membrane and abolished the docking of them at the plasma membrane. These data suggest that transport of GLUT4 storage vesicles to the plasma membrane takes place along microtubules and that this transport is obligatory for insulin-stimulated GLUT4 translocation.  相似文献   

11.
Insulin and acute exercise stimulate glucose transport in skeletal muscle by translocating GLUT4 glucose transporters to the cell surface. GLUT4 is distributed in skeletal muscle in two intracellular membrane populations, an endosomal pool that remains unaltered after insulin treatment and an storage population that is markedly GLUT4 depleted in response to insulin. Here we have further characterized the storage GLUT4 compartment in regard to protein composition and sensitivity to acute exercise. This GLUT4 compartment contained IRAP (insulin-regulated aminopeptidase), transferrin receptors or mannose-6-phosphate/IGF-II receptors, indicating a postendocytic origin. Insulin administration caused a depletion of GLUT4 and IRAP but no changes in transferrin receptors, which suggests that this pool is heterogeneous. In addition, acute exercise caused a marked GLUT4 depletion in the storage compartment, whereas no changes were detected in the endosomal population. In all, our data indicate that the GLUT4 storage population represents a postendocytic and heterogeneous compartment; the storage compartment represents the recruitment site that triggers GLUT4 translocation to the cell surface in response to both insulin and acute exercise.  相似文献   

12.
In several cell types, specific membrane proteins are retained intracellularly and rapidly redistributed to the surface in response to stimulation. In fat and muscle, the GLUT4 glucose transporter is dynamically retained because it is rapidly internalized and slowly recycled to the plasma membrane. Insulin increases the recycling of GLUT4, resulting in a net translocation to the surface. We have shown that fibroblasts also have an insulin-regulated recycling mechanism. Here we show that GLUT4 is retained within the transferrin receptor-containing general endosomal recycling compartment in Chinese hamster ovary (CHO) cells rather than being segregated to a specialized, GLUT4-recycling compartment. With the use of total internal reflection microscopy, we demonstrate that the TR and GLUT4 are transported from the pericentriolar recycling compartment in separate vesicles. These data provide the first functional evidence for the formation of distinct classes of vesicles from the recycling compartment. We propose that GLUT4 is dynamically retained within the endosomal recycling compartment in CHO cells because it is concentrated in vesicles that form more slowly than those that transport TR. In 3T3-L1 adipocytes, cells that naturally express GLUT4, we find that GLUT4 is partially segregated to a separate compartment that is inaccessible to the TR. We present a model for the formation of this specialized compartment in fat cells, based on the general mechanism described in CHO cells, which may explain the increased retention of GLUT4 and its insulin-induced translocation in fat cells.  相似文献   

13.
Insulin controls glucose uptake into muscle and fat cells by inducing a net redistribution of glucose transporter 4 (GLUT4) from intracellular storage to the plasma membrane (PM). The TBC1D4-RAB10 signaling module is required for insulin-stimulated GLUT4 translocation to the PM, although where it intersects GLUT4 traffic was unknown. Here we demonstrate that TBC1D4-RAB10 functions to control GLUT4 mobilization from a trans-Golgi network (TGN) storage compartment, establishing that insulin, in addition to regulating the PM proximal effects of GLUT4-containing vesicles docking to and fusion with the PM, also directly regulates the behavior of GLUT4 deeper within the cell. We also show that GLUT4 is retained in an element/domain of the TGN from which newly synthesized lysosomal proteins are targeted to the late endosomes and the ATP7A copper transporter is translocated to the PM by elevated copper. Insulin does not mobilize ATP7A nor does copper mobilize GLUT4, and RAB10 is not required for copper-elicited ATP7A mobilization. Consequently, GLUT4 intracellular sequestration and mobilization by insulin is achieved, in part, through utilizing a region of the TGN devoted to specialized cargo transport in general rather than being specific for GLUT4. Our results define the GLUT4-containing region of the TGN as a sorting and storage site from which different cargo are mobilized by distinct signals through unique molecular machinery.  相似文献   

14.
Membrane water channel aquaporin-2 (AQP2) and glucose transporter 4 (GLUT4) exhibit a common feature in that they are stored in intracellular storage compartments and undergo translocation to the plasma membrane upon hormonal stimulation. We compared the intracellular localization and trafficking of AQP2 and GLUT4 in polarized Madin-Darby canine kidney cells stably transfected with human AQP2 (MDCK-hAQP2) by immunofluorescence microscopy. When expressed in MDCK-hAQP2 cells, GLUT4 and GLUT4—EGFP were predominantly localized in the perinuclear region close to and within the Golgi apparatus, similar to endogenous GLUT4 in adipocytes and myocytes. In addition, GLUT4 was occasionally seen in EEA1-positive early endosomes. AQP2, on the other hand, was sequestered in subapical Rab11-positive vesicles. In the basal state, the intracellular storage site of GLUT4 was distinct from that of AQP2. Forskolin induced translocation of AQP2 from the subapical storage vesicles to the apical plasma membrane, which did not affect GLUT4 localization. When forskolin was washed out, AQP2 was first retrieved to early endosomes from the apical plasma membrane, where it was partly colocalized with GLUT4. AQP2 was then transferred to Rab11-positive storage vesicles. These results show that AQP2 and GLUT4 share a common compartment after retrieval from the plasma membrane, but their storage compartments are distinct from each other in polarized MDCK-hAQP2 cells.  相似文献   

15.
Glucose transport into muscle cells occurs through facilitated diffusion mediated primarily by the GLUT1 and GLUT4 glucose transporters. These transporter proteins are controlled by acute and chronic exposure to insulin, glucose, muscle contraction, and hypoxia. We propose that acute responses occur through recruitment of pre-formed glucose transporters from an intracellular storage site to the plasma membrane. In contrast, chronic control is achieved by changes in transporter biosynthesis and protein stability. Using subcellular fractionation of rat skeletal muscle, recruitment of GLUT4 glucose transporters to the plasma membrane is demonstrated by acute exposure to insulin in vivo. The intracellular pool appears to arise from a unique organelle depleted of transverse tubule, plasma membrane, or sarcoplasmic reticulum markers. In diabetic rats, GLUT4 content in the plasma membranes and in the intracellular pool is reduced, and incomplete insulin-dependent GLUT4 recruitment is observed, possibly through a defective incorporation of transporters to the plasma membrane. The lower content of GLUT4 transporters in the muscle plasma membranes is reversed by restoration of normoglycemia with phlorizin treatment. In some muscle cells in culture, GLUT1 is the only transporter expressed yet they respond to insulin, suggesting that this transporter can also be regulated by acute mechanisms. In the L6 muscle cell line, GLUT1 transporter content diminishes during myogenesis and GLUT4 appears after cell fusion, reaching a molar ratio of about 1:1 in the plasma membrane. Prolonged exposure to high glucose diminishes the amount of GLUT1 protein in the plasma membrane by both endocytosis and reduced biosynthesis, and lowers GLUT4 protein content in the absence of changes in GLUT4 mRNA possibly through increased protein degradation. These studies suggest that the relative contribution of each transporter to transport activity, and the mechanisms by which glucose exerts control of the glucose transporters, will be key subjects of future investigations.  相似文献   

16.
Insulin stimulates glucose transport in fat and muscle cells by regulating delivery of the facilitative glucose transporter, glucose transporter isoform 4 (GLUT4), to the plasma membrane. In the absence of insulin, GLUT4 is sequestered away from the general recycling endosomal pathway into specialized vesicles, referred to as GLUT4-storage vesicles. Understanding the sorting of GLUT4 into this store is a major challenge. Here we examine the role of the Sec1/Munc18 protein mVps45 in GLUT4 trafficking. We show that mVps45 is up-regulated upon differentiation of 3T3-L1 fibroblasts into adipocytes and is expressed at stoichiometric levels with its cognate target–soluble N-ethylmaleimide–sensitive factor attachment protein receptor, syntaxin 16. Depletion of mVps45 in 3T3-L1 adipocytes results in decreased GLUT4 levels and impaired insulin-stimulated glucose transport. Using sub­cellular fractionation and an in vitro assay for GLUT4-storage vesicle formation, we show that mVps45 is required to correctly traffic GLUT4 into this compartment. Collectively our data reveal a crucial role for mVps45 in the delivery of GLUT4 into its specialized, insulin-regulated compartment.  相似文献   

17.
The insulin-sensitive glucose transporter GLUT4 is translocated to the plasma membrane in response to insulin and recycled back to the intracellular store(s) after removal of the hormone. We have used clonal 3T3-L1 fibroblasts and adipocyte-like cells stably expressing wild-type GLUT4 to characterize (a) the intracellular compartment where the bulk of GLUT4 is intracellularly stored and (b) the mechanisms involved in the recycling of endocytosed GLUT4 to the store compartment. Surface internalized GLUT4 is targeted to a large, flat, fenestrated saccular structure resistant to brefeldin A that localized to the vicinity of the Golgi complex is sealed to endocytosed transferrin (GLUT4 storage compartment). Recycling of endocytosed GLUT4 was studied by comparing the cellular distributions of antibody/biotin tagged GLUT4 and GLUT4(Ser(5)), a mutant with the Phe(5)-Gln(6)-Gln(7)-Ile(8) inactivated by the substitution of Ser for Phe(5). Ablation of the Phe(5)-Gln(6)-Gln(7)-Ile(8) inhibits the recycling of endocytosed GLUT4 to the GLUT4 store compartment and results in its transport to late endosomes/lysosomes where it is rapidly degraded.  相似文献   

18.
Insulin regulates glucose transport in muscle and adipose tissue by triggering the translocation of a facilitative glucose transporter, GLUT4, from an intracellular compartment to the cell surface. It has previously been suggested that GLUT4 is segregated between endosomes, the trans-Golgi network (TGN), and a postendosomal storage compartment. The aim of the present study was to isolate the GLUT4 storage compartment in order to determine the relationship of this compartment to other organelles, its components, and its presence in different cell types. A crude intracellular membrane fraction was prepared from 3T3-L1 adipocytes and subjected to iodixanol equilibrium sedimentation analysis. Two distinct GLUT4-containing vesicle peaks were resolved by this procedure. The lighter of the two peaks (peak 2) was comprised of two overlapping peaks: peak 2b contained recycling endosomal markers such as the transferrin receptor (TfR), cellubrevin, and Rab4, and peak 2a was enriched in TGN markers (syntaxin 6, the cation-dependent mannose 6-phosphate receptor, sortilin, and sialyltransferase). Peak 1 contained a significant proportion of GLUT4 with a smaller but significant amount of cellubrevin and relatively little TfR. In agreement with these data, internalized transferrin (Tf) accumulated in peak 2 but not peak 1. There was a quantitatively greater loss of GLUT4 from peak 1 than from peak 2 in response to insulin stimulation. These data, combined with the observation that GLUT4 became more sensitive to ablation with Tf-horseradish peroxidase following insulin treatment, suggest that the vesicles enriched in peak 1 are highly insulin responsive. Iodixanol gradient analysis of membranes isolated from other cell types indicated that a substantial proportion of GLUT4 was targeted to peak 1 in skeletal muscle, whereas in CHO cells most of the GLUT4 was targeted to peak 2. These results indicate that in insulin-sensitive cells GLUT4 is targeted to a subpopulation of vesicles that appear, based on their protein composition, to be a derivative of the endosome. We suggest that the biogenesis of this compartment may mediate withdrawal of GLUT4 from the recycling system and provide the basis for the marked insulin responsiveness of GLUT4 that is unique to muscle and adipocytes.  相似文献   

19.
Malignant cells are known to have accelerated metabolism, high glucose requirements, and increased glucose uptake. Transport of glucose across the plasma membrane of mammalian cells is the first rate-limiting step for glucose metabolism and is mediated by facilitative glucose transporter (GLUT) proteins. Increased glucose transport in malignant cells has been associated with increased and deregulated expression of glucose transporter proteins, with overexpression of GLUT1 and/or GLUT3 a characteristic feature. Oncogenic transformation of cultured mammalian cells causes a rapid increase of glucose transport and GLUT1 expression via interaction with GLUT1 promoter enhancer elements. In human studies, high levels of GLUT1 expression in tumors have been associated with poor survival. Studies indicate that glucose transport in breast cancer is not fully explained by GLUT1 or GLUT3 expression, suggesting involvement of another glucose transporter. Recently, a novel glucose transporter protein, GLUT12, has been found in breast and prostate cancers. In human breast and prostate tumors and cultured cells, GLUT12 is located intracellularly and at the cell surface. Trafficking of GLUT12 to the plasma membrane could therefore contribute to glucose uptake. Several factors have been implicated in the regulation of glucose transporter expression in breast cancer. Hypoxia can increase GLUT1 levels and glucose uptake. Estradiol and epidermal growth factor, both of which can play a role in breast cancer cell growth, increase glucose consumption. Estradiol and epidermal growth factor also increase GLUT12 protein levels in cultured breast cancer cells. Targeting GLUT12 could provide novel methods for detection and treatment of breast and prostate cancer.  相似文献   

20.
BACKGROUND: Adipose and muscle tissues express an insulin-sensitive glucose transporter (GLUT4). This transporter has been shown to translocate from intracellular stores to the plasma membrane following insulin stimulation. The molecular mechanisms signalling this event and the details of the translocation pathway remain unknown. In type II diabetes, the cellular transport of glucose in response to insulin is impaired, partly explaining why blood-glucose levels in patients are not lowered by insulin as in normal individuals. MATERIALS AND METHODS: Isolated rat epididymal adipocytes were stimulated with insulin and subjected to subcellular fractionation and to measurement of glucose uptake. A caveolae-rich fraction was isolated from the plasma membranes after detergent solubilization and ultracentrifugal floatation in a sucrose gradient. Presence of GLUT4 and caveolin was determined by immunoblotting after SDS-PAGE. RESULTS: In freshly isolated adipocytes, insulin induced a rapid translocation of GLUT4 to the plasma membrane fraction, which was followed by a slower transition of the transporter into a detergent resistant caveolae-rich region of the plasma membrane. The insulin-stimulated appearance of transporters in the caveolae-rich fraction occurred in parallel with enhanced glucose uptake by cells. Treatment with isoproterenol plus adenosine deaminase rapidly inhibited insulin-stimulated glucose transport by 40%, and at the same time GLUT4 disappeared from the caveolae-rich fraction and from plasma membranes as a whole. CONCLUSIONS: Insulin stimulates glucose uptake in adipocytes by rapidly translocating GLUT4 from intracellular stores to the plasma membrane. This is followed by a slower transition of GLUT4 to the caveolae-rich regions of the plasma membrane, where glucose transport appears to take place. These results have implications for an understanding of the defect in glucose transport involved in type II diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号