共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Living Lactobacillus delbrueckii cells were entrapped in calcium alginate gel beads and employed both in recycle batch and continuous column reactors to produce l-lactic acid from glucose. The substrate contained l% (w/v) yeast extract as nutrient and 4.8% (w/v) solid calcium carbonate as buffer. The maxiumum lactic acid yield obtained was 97%, of which more than 90% was l-lactic acid. The biocatalyst activity half-life in continuous operation was about 100 d, and only about 10% of the activity was lost during intermittent storage of the bioreactor at +7°C for about 5 months. 相似文献
2.
Efficient lactic acid production from cane sugar molasses by Lactobacillus delbrueckii mutant Uc-3 in batch fermentation process is demonstrated. Lactic acid fermentation using molasses was not significantly affected by yeast extract concentrations. The final lactic acid concentration increased with increases of molasses sugar concentrations up to 190 g/liter. The maximum lactic acid concentration of 166 g/liter was obtained at a molasses sugar concentration of 190 g/liter with a productivity of 4.15 g/liter/h. Such a high concentration of lactic acid with high productivity from molasses has not been reported previously, and hence mutant Uc-3 could be a potential candidate for economical production of lactic acid from molasses at a commercial scale. 相似文献
3.
In this study, the effect of several organic nitrogen sources (namely peptone, meat extract—ME, yeast extract—YE, and corn steep liquor—CSL) on d-lactic acid production by Lactobacillus delbrueckii ssp. delbrueckii has been studied. While lactic acid bacteria (LAB) are well-known for their complex nutritional requirements, organic nitrogen source-related cost can be as high as 38% of total operational costs (OPEX), being its nature and concentration critical factors in the growth and productivity of the selected strain. Corn steep liquor (CSL) has been chosen for its adequacy, on the grounds of the d-lactic acid yield, productivity, and its cost per kilogram of product. Finally, orange peel waste hydrolysate supplemented with 37 g/l CSL has been employed for d-lactic acid production, reaching a final yield of 88% and a productivity of 2.35 g/l h. CSL cost has been estimated at 90.78$/ton of d-lactate. 相似文献
4.
AIMS: In the present study, a method based on SDS-PAGE fingerprinting of surface layer proteins was developed to identify Lactobacillus delbrueckii subsp. bulgaricus and subsp. lactis dairy isolates. METHODS AND RESULTS: The two subspecies, identified by species-specific PCR, were characterized by different SDS-PAGE cell-wall protein profiles; subspecies bulgaricus showed one band of about 31 kDa which, in some cases, was observed at a doublet, and subspecies lactis showed one band of about 21 kDa or 18 kDa. CONCLUSION: The sensitivity of this procedure for discriminating between the two subspecies was very high. The different types of SDS-PAGE profile for cell-wall proteins of the strains studied in this work did not seem to be correlated to the different dairies of origin. SIGNIFICANCE AND IMPACT OF THE STUDY: The method appears to be an efficient taxonomic tool. It has the advantage of easy gel interpretation over fingerprinting of whole-cell protein extracts, and may be used as an alternative to established PCR-based techniques which, though rapid and safe, require expensive instruments and reagents. 相似文献
5.
Lactobacillus delbrueckii mutant Uc-3 utilizes both cellobiose and cellotriose efficiently, converting it into L(+) lactic acid. The enzyme activities of cellobiose and cellotriose utilization were determined for cell extracts, whole cells, and disrupted cells. Aryl-beta-glucosidase activity was detected only for whole cells and disrupted cells, suggesting that these activities are cell bound. The mutant produced 90 g/liter of lactic acid from 100 g/liter of cellobiose with 2.25 g/liter/h productivity. 相似文献
6.
Lactobacillus delbrueckii mutant Uc-3 utilizes both cellobiose and cellotriose efficiently, converting it into L(+) lactic acid. The enzyme activities of cellobiose and cellotriose utilization were determined for cell extracts, whole cells, and disrupted cells. Aryl-β-glucosidase activity was detected only for whole cells and disrupted cells, suggesting that these activities are cell bound. The mutant produced 90 g/liter of lactic acid from 100 g/liter of cellobiose with 2.25 g/liter/h productivity. 相似文献
7.
The role of functionalized alginate gels as immobilized matrices in production of l (+) lactic acid by Lactobacillus delbrueckii was studied. L. delbrueckii cells immobilized in functionalized alginate beads showed enhanced bead stability and selectivity towards production of optically
pure l (+) lactic acid in higher yields (1.74Yp/s) compared to natural alginate. Palmitoylated alginate beads revealed 99% enantiomeric
selectivity (ee) in production of l (+) lactic acid. Metabolite analysis during fermentation indicated low by-product (acetic acid, propionic acid and ethanol)
formation on repeated batch fermentation with functionalized immobilized microbial cells. The scanning electron microscopic
studies showed dense entrapped microbial cell biomass in modified immobilized beads compared to native alginate. Thus the
methodology has great importance in large-scale production of optically pure lactic acid. 相似文献
8.
From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognizes L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α- 32P-labeled DNA probe. 相似文献
9.
DNase activity was examined in the extracellular and subcellular fractions of six non-transformable strains belonging to Lactobacillus delbrueckii subsp. lactis (L. lactis) and Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) and compared with the activity present in Lactobacillus johnsonii NCK 65, a transformable strain of Lactobacillus. In the extracellular fraction of the L. delbrueckii strains, a common protein band of 36 kDa was detected, while a band of 29 kDa was found in the same fraction of L. johnsonii. No nuclease activity was detected in the cytoplasmic fraction of this strain, indicating that the localization of the DNase activity could be a key factor in the uptake of foreign DNA. 相似文献
10.
The optimal fermentation temperature, pH, and Bacto-casitone (Difco Laboratories, Detroit, Mich.) concentration for production of exopolysaccharide by Lactobacillus delbrueckii subsp. bulgaricus RR in a semidefined medium were determined by using response surface methods. The design consisted of 20 experiments, 15 unique combinations, and five replications. All fermentations were conducted in a fermentor with a 2.5-liter working volume and were terminated when 90% of the glucose in the medium had been consumed. The population of L. delbrueckii subsp. bulgaricus RR and exopolysaccharide content were measured at the end of each fermentation. The optimum temperature, pH, and Bacto-casitone concentration for exopolysaccharide production were 38°C, 5, and 30 g/liter, respectively, with a predicted yield of 295 mg of exopolysaccharide/liter. The actual yield under these conditions was 354 mg of exopolysaccharide/liter, which was within the 95% confidence interval (217 to 374 mg of exopolysaccharide/liter). An additional experiment conducted under optimum conditions showed that exopolysaccharide production was growth associated, with a specific production at the endpoint of 101.4 mg/g of dry cells. Finally, to obtain material for further characterization, a 100-liter fermentation was conducted under optimum conditions. Twenty-nine grams of exopolysaccharide was isolated from centrifuged, ultrafiltered fermentation broth by ethanol precipitation. 相似文献
11.
The aim of this work was to investigate the medium requirements for growth and production of exopolysaccharides by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772. The strain was grown in batch cultures on a chemically defined medium, and the technique of single omission of medium components was applied to determine the nutritional requirements. The omission of aspartic acid, glutamic acid, or glycine affected growth only slightly, and the omission of glutamine, asparagine, or threonine resulted in a stronger reduction of the growth. All the other amino acids were essential. Multiple omissions of amino acids caused an almost complete loss of growth. L. delbrueckii subsp. bulgaricus required only riboflavin, calcium pantothenate, and nicotinic acid as individual vitamins. Surprisingly, when only these vitamins were present in the medium and other vitamins were not, less growth was observed than in the complete medium but the amount of exopolysaccharide produced was significantly greater. These observations were studied in more detail with a simplified defined medium in which L. delbrueckii subsp. bulgaricus was able to grow and produce exopolysaccharides. Although the final optical density in the simplified medium was lower, the production of exopolysaccharides was about twofold higher than in the complete medium. 相似文献
13.
We developed a chemically defined medium (CDM) containing lactose or glucose as the carbon source that supports growth and exopolysaccharide (EPS) production of two strains of Lactobacillus delbrueckii subsp. bulgaricus. The factors found to affect EPS production in this medium were oxygen, pH, temperature, and medium constituents, such as orotic acid and the carbon source. EPS production was greatest during the stationary phase. Composition analysis of EPS isolated at different growth phases and produced under different fermentation conditions (varying carbon source or pH) revealed that the component sugars were the same. The EPS from strain L. delbrueckii subsp. bulgaricus CNRZ 1187 contained galactose and glucose, and that of strain L. delbrueckii subsp. bulgaricus CNRZ 416 contained galactose, glucose, and rhamnose. However, the relative proportions of the individual monosaccharides differed, suggesting that repeating unit structures can vary according to specific medium alterations. Under pH-controlled fermentation conditions, L. delbrueckii subsp. bulgaricus strains produced as much EPS in the CDM as in milk. Furthermore, the relative proportions of individual monosaccharides of EPS produced in pH-controlled CDM or in milk were very similar. The CDM we developed may be a useful model and an alternative to milk in studies of EPS production. 相似文献
14.
Lactobacillus delbrueckii ssp. bulgaricus NCFB 2772 produced an extracellular polysaccharide when grown in a chemically defined medium with glucose or lactose as the substrate carbohydrate. The isolated extracellular polysaccharide had a sugar composition of glucose, galactose and rhamnose in a ratio of 1:6.8:0.7. The production of extracellular polysaccharides increased at higher temperatures, but the bacterium rapidly lost its polysaccharide producing ability at 47°C. Production of polysaccharides was growth-related: no polysaccharide production was found after growth had ceased. An excess carbohydrate did not result in increased polysaccharide production. 相似文献
15.
Twenty-one strains of Lactobacillus delbrueckii and L. helveticus were tested for bacteriocin production against each other. Lactobacillus delbrueckii subsp. lactis JCM 1106 and 1107 produced an inhibitory agent active against L. delbrueckii subsp. bulgaricus JCM 1002 and NIAI yB-62, L. delbrueckii subsp. lactis JCM 1248 and L. delbrueckii subsp. delbrueckii JCM 1012. Lactobacillus delbrueckii subsp. lactis JCM 1248 inhibited only the growth of L. delbrueckii subsp. bulgaricus NIAI yB-62. These agents were sensitive to proteolytic enzymes and heating (at 60°C for 10min). These agents were considered to be bacteriocins and designated lacticin A and B. 相似文献
16.
High-frequency plasmid transductions in Lactobacillus delbrueckii subsp. lactis and subsp. bulgaricus strains mediated by pac-type bacteriophages were observed and further investigated. The frequency of plasmid transduction by phages LL-H and LL-S attained levels of from 0.10 to about 1 with plasmid pX3, but only about 2 × 10 −2 with plasmid pJK650. Infection of L. delbrueckii subsp. lactis strain LKT(pX3) or ATCC 15808(pX3) with phage LL-H resulted in intensive concatemerization of plasmid pX3, and most progeny phage particles contained concatemers of plasmid DNA instead of phage LL-H DNA. The synthesis of phage LL-H DNA was depressed. No evident homology or recombination was observed between phage LL-H DNA and plasmid pX3. The unusually high frequency of plasmid pX3 transduction by phage LL-H could be considered to result from specific interaction(s) between a particular phage and plasmid. These interactions may include pX3-mediated blockage of phage LL-H DNA replication and effective use of a particular pac-like site located about 1 kb from BglII in the smaller NdeI- BglII fragment of plasmid pX3. Phage LL-H together with plasmid vector pX3 could be used as effective plasmid transduction tools for genetic engineering of L. delbrueckii subsp. lactis and subsp. bulgaricus strains. 相似文献
17.
The lactic acid bacterium Lactobacillus delbrueckii subsp. bulgaricus 291, when grown in skimmed milk, produced 80 mg/L exopolysaccharide with an average molecular mass of 1.4 x 10(3) kDa. Monosaccharide analysis, methylation analysis, MS, and 1D/2D NMR (1H and 13C) studies performed on the native polysaccharide, and on oligosaccharides obtained from a mild acid hydrolysate of the native polysaccharide, showed the polysaccharide to consist of branched pentasaccharide repeating units with the following structure: [structure: see text]. 相似文献
18.
Production of lactic acid from beet molasses by Lactobacillus delbrueckii NCIMB 8130 in static and shake flask fermentation was investigated. Shake flasks proved to be a better fermentation system for this purpose. Substitution of yeast extract with other low cost protein sources did not improve lactic acid production. The maximum lactic acid concentration was achieved without treatment of molasses. A Central Composite Design was employed to determine the maximum lactic acid concentration at optimum values for the process variables (sucrose, yeast extract, CaCO 3). A satisfactory fit of the model was realized. Lactic acid production was significantly affected both by sucrose–yeast extract and sucrose–CaCO 3 interactions, as well as by the negative quadratic effects of these variables. Sucrose and yeast extract had a linear effect on lactic acid production while the CaCO 3 had no significant linear effect. The maximum lactic acid concentration (88.0 g/l) was obtained at concentrations for sucrose, yeast extract and CaCO 3 of 89.93, 45.71 and 59.95 g/l, respectively. 相似文献
20.
AIMS: To examine the potential of Lactobacillus delbrueckii mutant, Uc-3 to produce lactic acid and fructose from sucrose-based media. METHODS AND RESULTS: The mutant of L. delbrueckii NCIM 2365 was cultivated in shake flask containing hydrolysed cane sugar (sucrose)-based medium. The lactic acid yield and volumetric productivity with hydrolysed cane concentration up to 200 g l(-1) were in the range of 92-97% of the theoretical value and between 2.7 and 3.8 g l(-1) h(-1), respectively. The fructose fraction of the syrup produced was more than 95% when the total initial sugar concentration in the medium was higher (150-200 g l(-1)). There are no unwanted byproducts detected in the fermentation broth. CONCLUSIONS: We demonstrated that L. delbrueckii mutant Uc-3 was able to utilize glucose preferentially to produce lactic acid and fructose from hydrolysed cane sugar in batch fermentation process. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings will be useful in the production of lactic acid and high fructose syrups using media with high concentrations of sucrose-based raw materials. This approach can lead to modification of the traditional fermentation processes to obtain value-added byproducts, attaining better process economics. 相似文献
|