首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Tang  K.  Sun  X.  An  D.  Power  J.B.  Cocking  E.C.  Davey  M.R. 《Plant Cell, Tissue and Organ Culture》2000,60(1):79-82
A reproducible plant regeneration system has been developed for protoplasts from embryogenic cell suspension cultures of the commercial Asian long-grain javanica rice, Oryza sativa cv. Azucena. Protoplasts were isolated routinely from cell suspensions with yields of 5.5–12.0 × 106 g-1 fresh weight. A membrane filter nurse-culture method was adopted and was essential to support sustained mitotic division of protoplast-derived cells, leading to cell colony formation. The protoplast plating efficiency was higher when suspension cells of Lolium multiflorum, rather than those of the japonica rice O. sativa L. cv. Taipei 309, were employed as nurse cells. A two-step shoot regeneration procedure, in which protoplast-derived calli were cultured initially on medium semi-solidified with 1% (w/v) agarose followed by culture on medium containing 0.4% (w/v) agarose, induced plant regeneration from protoplast-derived calli. Fifteen percent of protoplast-derived tissues regenerated shoots; tissues not subjected to this treatment failed to develop shoots.  相似文献   

2.
The effects were studied of various carbohydrates and osmoticstress, created by high agarose or carbohydrate concentrations,on the regeneration of fertile plants from protoplast-denvedcolonies of several indica (IR43, Jaya, Pusa Basmati 1) andjaponica (Taipei 309) rice varieties. Observations of the culturesdeveloped on media containing one of these carbohydrates (cellobiose,fructose, glucose, lactose, maltose, mannitol, sorbitol or sucrose),each at 88 mM, indicated that maltose was the preferential carbonsource for the proliferation of embryogenic callus and shootregeneration. Maltose-containing medium induced shoot formationin 24–66% of the protoplast-derived tissues, dependingupon the rice variety, compared to shoot regeneration from 4–32%of the tissues in sucrose-supplemented medium. Media containing288 mM maltose or an equimolar combination of 88 mM maltoseand 200 mM mannitol, caused water loss from calli and promotedthe growth of embryogenic calli. These calli formed shoots withgreater frequencies when subsequently transferred to shoot regenerationmedium with 88 mM maltose. A medium containing 88 mM maltoseand semi-solidified with 1.0% (w/v) instead of 0.5% (w/v) agarosehad a similar beneficial effect on the growth of embryogeniccalli and simultaneously supported high-frequency (48–55%)shoot formation. The optimum shoot regeneration frequencies(60–78%) were obtained when protoplast-derived colonieswere serially cultured on to shoot regeneration medium containing1.0% (w/v) agarose for 4 weeks, followed by a 2-week cultureperiod on the same medium with 0.5% (w/v) agarose. Plants regeneratedon medium containing maltose and/or 1.0% (w/v) agarose werephenotypically normal and fertile. Key words: Carbohydrates, Oryza sativa L, indica and japonica rice, osmotic stress, plant regeneration, protoplast-derived colonies  相似文献   

3.
Plant regeneration from protoplasts of two commercially cultivated Indian indica rice varieties, Pusa Basmati 1 and Java, has been accomplished by plating embryogenic cell suspension-derived protoplasts on the surface of filter membranes overlying agarose-embedded feeder cells of Lolium multltiflorum and Oryza ridleyi, combined with the use of a maltose-containing shoot regeneration medium. Embryogenic cell suspension cultures of Pusa Basmati 1 and Jaya were initiated from mature seed scutellum-derived calli in liquid R2 medium modified by the addition of 560 mg l–1 of proline and 1.0 % (w/v) maltose. In both varieties, protoplast plating efficiencies up to 0.4 % were obtained, depending on the nature of the feeder cells. L. multiflorum feeder cells induced a 6-fold higher plating efficiency than feeder cells of O. ridleyi. In combination, O. ridleyi and L. multiflorum feedercells further enhanced protoplast plating efficiency. Protoplast-derived cell colonies were not obtained from protoplasts of either indica varieties in the absence of feeder cells. MS-based medium containing kinetin (2.0 mg l–1) and -naphthaleneacetic acid (0.5 mg 1–1), together with sucrose and maltose both at 1.5 % (w/v), induced green shoot regeneration in 44 % of protoplast-derived tissues, depending on the feeder cells used for protoplast culture. In both varieties, tissues obtained using O. ridleyi feeder cells were more morphogenic than tissues obtained using L. multiflorum feeder cells, either alone or in combination with cells of O. ridleyi. In the japonica rice variety Taipei 309, this new procedure resulted in a 30-fold increase in plant regeneration from protoplasts compared to previous published procedures.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - FDA fluorescein diacetate - GPFs growth promoting factors - NAA -naphthaleneacetic acid On leave from Department of Genetics, Haryana Agricultural University, Hisar, IndiaOn leave from Biotechnology Centre, Punjab Agricultural University, Ludhiana, India  相似文献   

4.
Wheat (Triticum aestivum L. cv. Norstar) suspension cultures and regenerable calli initiated from immature embryos can be cryopreserved in liquid nitrogen temperature (–196°C) by slow freezing (0.5°C/min) in the presence of a mixture of DMSO and sucrose or sorbitol. Cold hardening or ABA treatment before cryopreservation increased the freezing resistance and improved the survival of wheat suspension culture in liquid nitrogen. Callus culture, established from immature embryos, prefrozen in 5% DMSO and 0.5M sorbitol survived liquid nitrogen storage and resumed plant regeneration after thawing. The results confirm the feasibility of long term preservation of wheat embryo callus by cryopreservation and retention of plant regeneration ability.Abbreviations ABA Abscisic acid - 2,4-D 2,4-Dichlorophenoxyacetic acid - DMSO Dimethylsulfoxide - LN Liquid nitrogen - TTC 2,3,5-triphenyltetrazolium chloride NRCC No. 23850.  相似文献   

5.
Optimization of the conditions for an efficient induction of somatic embryogenic calli and regeneration of plants from mature seeds of japonica rice cultivars was attempted. The number, color, size, shape, and appearance time of the induced embryogenic calli varied among the rice cultivars depending on the type of basal medium (LS, MS, N6). Presence of adequate amount of sucrose in the medium was an absolute requirement for embryogenic callus formation and shoot induction. Induction of the embryogenic calli, whose overall rates ranged from 30 to 56%, was most efficient in N6 medium supplemented with 3.0 mg l–1 of 2,4-D and 30 g l–1 of sucrose. Agar concentration in the regeneration medium was also critical for the shoot induction. Kinetin was found to be more effective for shoot regeneration compared with BA, while the highest shoot regeneration frequencies were observed when either cytokinin was combined with high concentration (2.0 mg l–1) of NAA. The optimal concentration of kinetin for the highest shoot regeneration frequency (6777%) was different among the cultivars tested. The embryogenic calli-derived shoots rooted on a plant growth regulator-free MS medium were successfully established in soil, producing fertile seeds.  相似文献   

6.
Summary Embryogenic callus induction and plant regeneration systems have long been established for creeping bentgrass (Agrostis palustris Huds.), but little research has been reported on optimal medium for embryogenic callus induction and plant regeneration in velvet bentgrass (Agrostis canina L.), colonial bentgrass (Agrostis capillaries L.), and annual bluegrass (Poa annua L.). The present study compared 14 callus induction media and eight regeneration media for their efficacies on embryogenic callus induction and plant regeneration in these four species. The embryogenic callus initiation media contained the Murashige and Skoog inorganic salts and vitamins supplemented with 2,4-dichlorophenoxyacetic acid or 3,6-dichloro-anisic acid and 6-benzyladenine. l-Proline or casein hydrolyzate was included in some media to stimulate embryogenic callus formation and plant regeneration. The frequencies of embryogenic callus formation ranged from 0% to 38% and exhibited medium differences within each of the four species. Callus induction media, plant regeneration media, and genotypes affected plant regeneration rates, which varied between 0% and 100%. The embryogenic callus induced on Murashige and Skoog medium supplemented with 500 mgl−1 casein hydrolyzate, 6.63 mg l−1 (30 μM) 3,6-dichloro-anisic acid and 0.5–2.0 mg l−1 (2–9 μM) 6-benzyladenine had much higher regeneration rates than those formed on other callus induction media. Embryogenic callus of annual bluegrass had higher regeneration rates than those of bentgrass species. MSA2D, a media containing 2 mgl−1 (8 μM) 2,4-dichlorophenoxyacetic acid, 100 mgl−1 myo-inositol, and 150 mgl−1 asparagine, was effective in promoting embryogenic callus formation in creeping bentgrass but not in colonial and velvet bentgrasses and annual bluegrass.  相似文献   

7.
Callus Induction and in vitro Regeneration from Barley Mature Embryos   总被引:2,自引:2,他引:0  
We have assayed different combinations of nutrient media and growth regulators to induce callus and plant regeneration from explants of root, shoot and leaf, complete seed, and isolated mature embryo of barley (Hordeum vulgare L. cv. Hassan). The best results were obtained with mature embryo in J25-8 medium supplemented with 2.0 mg dm–3 2,4-dichlorophenoxyacetic acid where about 75 % developed friable calli. Some 80 – 85 % of these calli regenerated barley plants in the same J25-8 medium supplemented with 1.0 mg dm–3 indole-3-butyric acid and 0.1 mg dm–3 kinetin.  相似文献   

8.
The present study describes a simple and efficient protocol for plant regeneration from scutellar-derived embryogenic calli of an elite basmati indica rice (Oryza sativa L., cv Pusa Basmati 1) transformed with Agrobacterium. A supervirulent plasmid pTOK233 as well as a non-supervirulent plasmid pJB90GI containing -glucuronidase (gus) and hygromycin phosphotransferase (hpt) chimeric genes were used to assess transformation and regeneration efficiency. The effects of some factors like the bacterial density and inclusion of sorbitol in the medium on the co-culture and transformation have been evaluated; the procedure for selection and regeneration from transformed calli was found to be critical. Furthermore, co-culture and selection on regeneration medium was found to be better than callus medium and led to minimal media manipulations. Regeneration medium supplemented with 3% maltose was found to be better for regeneration as compared to 3% sucrose. The transformed calli were subjected to three cycles of regeneration, thus converting a higher number of transformation events into regenerants. The selected calli as well as leaf sections and roots of the transformants were GUS positive. The stable integration of the transgene was confirmed by polymerase chain reaction and Southern blot analysis of the transformants. Interestingly, the presence of three additional vir genes in supervirulent plasmid pTOK233 was not required for transformation as transformation was successful with non-supervirulent plasmid pJB90GI, although the transformation and regeneration frequency was higher with the former. This effective protocol for regeneration from transformed calli resulted in a relatively high transformation frequency.  相似文献   

9.
The effect of media manipulatioss, temperature pretreatment, carbohydrate source, and seasonal variation on tetraploid potato anther cultures was investigated. The anther culture responses of three commercial Nordic potato varieties from Scandinavia and two from Germany were compared on different media manipulations. With most of the varieties, solid MS media gave better yields than other published media manipulations. Pretreatments at +6°C and at +30°C were studied on Pito and Danva varieties. The +6°C pretreatment and no pretreatment had the same effect on the anther culture response of cv. Pito, while with cv. Danva pretreatment at +6°C promoted embryogenesis. The +30°C pretreatment had no positive effect on anther culture response on either cultivar. The effect of maltose, melibiose and mannitol individually and in combination with sucrose were compared to normal sucrose medium in cv. Pito anther cultures. Anthers incubated on normal sucrose medium gave the highest embryoid and plant yields; the second highest plant yields were obtained on pure maltose medium. Strong seasonal variation was observed throughout the year in cv. Pito anther cultures. The percentage of anthers producing embryoids ranged from 15–20% during September and October to just 1–3% from February through May. The annual average embryoid production rate was 6.18%.  相似文献   

10.
The influence of maltose and growth regulators on microspore culture response was investigated in japonica rice. High frequency of callus induction of isolated microspores was obtained with liquid medium containing MS salts, 100 mg l–1 myo-inositol, 1 mg l–1 thiamine-HCl, 500 mg l–1 glutamine, 60 g l–1 maltose, and several growth regulators. The effect of maltose on promoting callus formation was associated with keeping a high proportion of swollen microspores after 5 day preculture and increasing the microspore division rate on the 3rd day after culture initiation. No significant effect of maltose in place of sucrose on plantlet regeneration was seen in regeneration medium. Among the growth regulators tested, the combination of auxin 2,4-dichlorophenoxyacetic acid (1 mg l–1), naphthaleneacetic acid (1 mg l–1), and cytokinin (6-benzyl-aminopurine 1 mg l–1) in the medium proved to be much better for callus formation than in the other media, and the percentage of callusing microspores of that medium reached 0.86%. Indole-3-acetic acid (0.5 mg l–1) and kinetin (2 mg l–1) in regeneration medium were beneficial for green plantlet differentiation. The results also showed that the frequencies of microspores initial division, callus formation and green plant regeneration varied among genotypes no matter what kind of growth regulator and sugar were used. Xiushui 117 was the best variety for callusing followed by 02428 & Taipei 309. Taipei 309 showed a good ability for green plantlet regeneration.Abbreviations 2,4-d 2,4-dichlorophenoxyacetic acid - NAA naphthaleneacetic acid - 6-BA 6-benzylaminopurine - KT kinetin - IAA indole-3 acetic acid  相似文献   

11.
Summary Fourteen varieties of indica rice (Oryza saliva L.) were examined for their capacity for plant regeneration from protoplasts using the nurse culture methods developed for japonica rice. Calli induced from germinating seeds were grouped into two types: type I, white and compact; type II, yellow and friable. In four varieties producing type II callus, colony formation (2%–4.5%) and plant regeneration (2%–35%) were observed. The inability to develop suspension cultures was a major obstacle in regenerating plants from protoplasts of the remaining rice varieties studied.  相似文献   

12.
 An isolated microspore culture and green plant regeneration method for rye (Secale cereale L.) was established. Rye isolated microspore androgenesis was genotype-dependent. PG-96M medium supplemented with 6% maltose gave the highest microspore survival rate after 48 h of culture and the highest embryo/callus yield (930 embryos/calli per 100 anthers from cv. Florida 401). Osmotic pressure in the induction medium played an important role. Pretreatment of the anthers with mannitol was beneficial for the microspore culture. Embryos/calli of a relatively younger age and smaller size had a higher regeneration ability, with the best green plant regeneration rate being 6%. Over 150 microspore-derived green plants have been obtained so far. About 90% of the regenerated plants were spontaneous doubled haploids. This is the first report of isolated microspore culture in true rye resulting in androgenic embryogenesis and plant regeneration. Received: 26 April 1999 / Accepted: 23 November 1999  相似文献   

13.
The effect of individual rye chromosomes on the induction of callus and the character of its regenerating capacity was studied with cultured immature embryos of wheat–rye (Triticum aestivum L. cv. Saratovskaya 29–Secale cereale L. cv. Onokhoiskaya) substitution lines. The genotypic diversity of the substitution lines proved to significantly affect variation of parameters characterizing the major types of callus cultures, that is, frequencies of embryogenic calli, which are capable of shoot regeneration, and of morphogenic calli, which produce root structures. Functioning in the genotypic background of common wheat cultivar Saratovskaya 29, chromosomes 2R and 3R of rye cultivar Onokhoiskaya stimulated significantly the induction of embryogenic callus highly capable of shoot regeneration. Rye chromosome 2R present in place of chromosome 2D in the common wheat genome suppressed the induction of callus producing root structures. Rye chromosomes 1R and 6R suppressed the induction of embryogenic callus capable of shoot regeneration.  相似文献   

14.
Transgenic creeping bentgrass (Agrostis palustris Huds., cv. Pencross; Poaceae) plants have been obtained by microprojectile bombardment of and regeneration from embryogenic calli with a vector designed to deliver the -glucuronidase (GUS) gene under the control of rice actin 1 5' regulatory sequences. Southern analysis of polymerase chain reaction (PCR)-amplified and restriction-digested genomic DNA of four transgenic plants regenerated from these cultures showed the unscrambled integration of the gus fragment. Northern blot analysis confirmed the expression of gus mRNA in one of the transgenic plants. Western blot analysis revealed a high level of accumulation of gus protein. Histochemical assays showed enzymatic activity of -glucuronidase in all parts of the transgenic turfgrass plant. The order of gus expression level in different tissues of the transgenic plant is as follows: stem node > first young leaf > root tip > second / third / fourth young leaf > stem internode > root hair-zone.Abbreviation GUS -glucuronidase - MS Murashige and Skoog(1962) medium - BA 6-benzyladenine - dicamba 3, 6 -dichloro-o-anisic acid - PCR polymerase chain reaction  相似文献   

15.
16.
A simple in vitro protocol was established for high frequency plant regeneration via organogenesis and somatic embryogenesis from the callus cultures derived from immature inflorescence segments of indica rice (Oryza sativa L cvs Safari-17 and Kasturi). Embryogenic and nodular calli were initiated on MSB medium supplemented with 2, 4-D and sucrose (3.0%, w/v). Somatic embryogenesis occurred after transfer of embryogenic calli to MSB medium containing 2.25 μM 2,4-D, 2.2 μM BAP, 2.9 μM thiamine HCl and 244.86 μM L-tryptophan. Plantlet/shoot regeneration occurred after transfer of embryogenic calli to MSB medium containing 17.6 μM BAP and 1.12 μM 2,4-D. Partial desiccation (up to 12, 24, 48, 72 and 96 h) of embryogenic calli prior to transfer to regeneration medium stimulated regeneration frequency. Highly significant (P<0.001) difference was observed for regeneration frequency and average number of plantlets/shoots regenerated per callus in partially desiccated calli in comparison to non-dehydrated calli. Regeneration frequency increased from 33.3% to 80% after 24 h of desiccation treatment to callus cultures of cv. Safari-17, and from 46.7% to 93.3% after 48 h of desiccation treatment to callus tissues of cv. Kasturi. Regenerated shoots were rooted on MSB medium supplemented with 4.9 μM IBA. Plants with well-developed roots were transferred to pots where they grew well and attained maturity.  相似文献   

17.
Genetic transformation of creeping bentgrass mediated by Agrobacterium tumefaciens has been achieved. Embryogenic callus initiated from seeds (cv. Penn-A-4) was infected with an A. tumefaciens strain (LBA4404) harboring a super-binary vector that contained an herbicide-resistant bar gene driven either by the CaMV 35S promoter or a rice ubiquitin promoter. Plants were regenerated from 219 independent transformation events. The overall stable transformation efficiency ranged from 18% to 45%. Southern blot and genetic analysis confirmed transgene integration in the creeping bentgrass genome and normal transmission and stable expression of the transgene in the T1 generation. All independent transformation events carried one to three copies of the transgene, and a majority (60–65%) contained only a single copy of the foreign gene with no apparent rearrangements. We report here the successful use of Agrobacterium for the large-scale production of transgenic creeping bentgrass plants with a high frequency of a single-copy transgene insertion that exhibit stable inheritance patterns.Abbreviations 2,4-D: 2,4-Dichlorophenoxyacetic acid - bar: Bialaphos resistance gene - GUS: -Glucuronidase - PPT: Phosphinothricin - ubi: Ubiquitin Communicated by J.M. Widholm  相似文献   

18.
Bajaj S  Rajam MV 《Plant physiology》1996,112(3):1343-1348
We have shown (S. Bajaj and M.V. Rajam [1995] Plant Cell Rep 14: 717-720) that a significant reduction in morphogenetic potential occurs in callus cultures of rice (Oryza sativa L. cv TN-1) (up to 1 year old), and that plant regeneration could be improved in such cultures with spermidine treatment. We now show a near loss in plant regeneration capacity, concomitant with massive polyamine accumulation (primarily the diamine putrescine), due to the increase in arginine decarboxylase activity and an altered putrescine-to-spermidine ratio in 20- and 36-month-old rice callus cultures. The blockage of polyamine accumulation due to the reduction in arginine decarboxylase activity by a putrescine synthesis inhibitor, [alpha]-difluoromethylarginine, completely restored plant regeneration capacity in these long-term cultures. Additionally, spermidine treatment of long-term cultures caused an increase in cellular spermidine content and a reduction in putrescine content and arginine decarboxylase activity, leading to an adjustment in putrescine-to-spermidine ratio and the restoration of plant regeneration ability.  相似文献   

19.
This experiment assessed the effect of partial physical desiccation on plant regeneration efficiency in scutellum-derived embryogenic calluses of rice (Oryza sativa L.) variety Super basmati. A number of callusing cultures were developed, and efficient callus induction was observed on MS (Murashige and Skoog) basal medium supplemented with 2.0 mg/L 2,4-dichlorophenoxy acetic acid. The calluses were proliferated on the same medium for 3 weeks and then shifted to dehydration desiccation treatment for 72 h. The desiccated calluses were cultured on different media for somatic embryogenesis and plant regeneration. A medium with 2.0 mg/L α-napthaleneacetic acid, 10.0 mg/L abscisic acid , 2.0 mg/L kinetin was best for somatic embryogenesis only, but not for further plant development. After 10 d, differentiated calluses were sub-cultured on medium with various concentrations and types of carbohydrates (carbon source) in 1MS2j medium. A large number of plantlets (14.51±2.81 and 8.56±2.90 plants/callus) were regenerated via chemical desiccation, on MS with 3% maltose+3% sorbitol and 6% sucrose, respectively. Under dehydration on only simple MS (3% sucrose), 11.23±3.22 plants/callus were developed. Under conditions of dehydration and chemical desiccation, plant regeneration rates were higher than the calluses cultured on simple MS medium in the presence of plant growth regulator. After somatic embryogenesis, >25% plants were sterile. The protocol used here may allow maximum regeneration of normal and fertile plantlets of super basmati rice within 3 months.  相似文献   

20.
Techniques have been developed for the regeneration of Aegle marmelos from nucellar explants. Slow-growing calli were induced from nucellar explants excised from 90–120 d-old developing fruits. The medium consisted of Murashige and Skoog formulation containing 40 g/l sucrose, 400 mg/l casein hydrolysate, 5 mg/l 1-naphthaleneacetic acid and 1 mg/l kinetin. The basal medium with high concentration (1–5 mg/l) of N6-benzyladenine (BA) and low concentration (0.1 mg/l) of NAA was suitable for regeneration of shoots from 3-month-old calli. Addition of 1 mg/l gibberellic acid (GA3) favoured shoot growth. Callus-derived shoots produced roots and developed into plantlets when transferred to half-strength MS medium supplemented with 0.5 mg/l indole-3-butyric acid (IBA) and 0.5 mg/l NAA. Approximately 5 months were required for the full regenerative process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号