首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The islets of Langerhans, micro-organs for maintaining glucose homeostasis, range in size from small clusters of <10 cells to large islets consisting of several thousand endocrine cells. Islet size distributions among various species are similar and independent of body size, suggesting an intrinsic limit to islet size. Little is known about the mechanisms regulating islet size. We have carried out a comprehensive analysis of changes of islet size distribution in the intact mouse pancreas from birth to eight months, including mathematical modeling to quantify this dynamic biological process. Islet growth was size-dependent during development, with preferential expansion of smaller islets and fission of large interconnected islet-like structures occurring most actively at approximately three weeks of age at the time of weaning. The process of islet formation was complete by four weeks with little or no new islet formation thereafter, and all the β-cells had low proliferation potential in the adult, regardless of islet size. Similarly, in insulinoma-bearing mice, the early postnatal developmental process including fission followed the same time course with no new islet formation in adults. However, tumor progression led to uncontrolled islet growth with accelerated expansion of larger islets. Thus, islet formation and growth is a tightly regulated process involving preferential expansion of small islets and fission of large interconnected islet-like structures.  相似文献   

2.
We investigate the time required for glucose to diffuse through an isolated pancreatic islet of Langerhans and reach an equilibrium. This question is relevant in the context of in vitro electrophysiological studies of the response of an islet to step changes in the bath glucose concentration. Islet cells are electrically coupled by gap junctions, so nonuniformities in islet glucose concentration may be reflected in the activity of cells on the islet periphery, where electrical recordings are made. Using a mathematical model of hindered glucose diffusion, we investigate the effects of the islet porosity and the permeability of a surrounding layer of acinar cells. A major factor in the determination of the equilibrium time is the transport of glucose into islet beta-cells, which removes glucose from the interstitial spaces where diffusion occurs. This transport is incorporated by using a model of the GLUT-2 glucose transporter. We find that several minutes are required for the islet to equilibrate to a 10 mM change in bath glucose, a typical protocol in islet experiments. It is therefore likely that in electrophysiological islet experiments the glucose distribution is nonuniform for several minutes after a step change in bath glucose. The delay in glucose penetration to the inner portions of the islet may be a major contributing factor to the 1-2-min delay in islet electrical activity typically observed after bath application of a stimulatory concentration of glucose.  相似文献   

3.
Rat islet homogenates display both phosphoglycerate 2,3-mutase and enolase activities. When phosphoglycerate 2,3-mutase is activated by 2,3-diphosphoglycerate, the reaction velocity becomes close to that of enolase. The islet content in 2,3-diphosphoglycerate is sufficiently high to allow virtually full activation of phosphoglycerate 2,3-mutase.  相似文献   

4.
Development of techniques for cryopreservation of pancreatic islets of Langerhans could potentially allow for increased freedom from the time restrictions presently affecting viability in islet cell transplantation. While several investigators have attempted islet cell freezing and have obtained favorable in vitro results after thawing, there have been few reported in vivo successes with islets transplanted after freezing. We have developed a simple system for freezing islet cell pancreatic fragments to ?196 °C and have either stored them in liquid nitrogen for 24 hr or immediately thawed the islets prior to transplantation. In addition, antilymphoblast globulin has been used as graft pretreatment modality in order to modify islet cell immunogenicity. We found that ALG was effective in prolongation of graft survival after freezing as well as on fresh nonfrozen transplants. The use of freezing and ALG appears, therefore, to have a favorable effect on the immunogenicity of the pancreatic islet cell allograft.  相似文献   

5.
目的 建立新型成人胰岛细胞分离纯化方法,观察成人胰岛细胞移植的安全性与有效性.方法 对14例1型糖尿病(T1DM)患者进行PFC与UW液双层冷藏胰腺,Liberase酶消化,COBE 2991型专用胰岛细胞分离机分离及连续密度梯度纯化,获取高纯度与高活性的胰岛细胞.采用外科方法,将短期培养的胰岛细胞经门静脉移植到肝脏内...  相似文献   

6.
Jo J  Choi MY  Koh DS 《Biophysical journal》2007,93(8):2655-2666
Pancreatic beta-cells are clustered in islets of Langerhans, which are typically a few hundred micrometers in a variety of mammals. In this study, we propose a theoretical model for the growth of pancreatic islets and derive the islet size distribution, based on two recent observations: First, the neogenesis of new islets becomes negligible after some developmental stage. Second, islets grow via a random process, where any cell in an islet proliferates with the same rate regardless of the present size of the islet. Our model predicts either log-normal or Weibull distributions of the islet sizes, depending on whether cells in an islet proliferate coherently or independently. To confirm this, we also measure the islet size by selectively staining islets, which are exposed from exocrine tissues in mice after enzymatic treatment. Indeed revealed are skewed distributions with the peak size of approximately 100 cells, which fit well to the theoretically derived ones. Interestingly, most islets turned out to be bigger than the expected minimal size (approximately 10 or so cells) necessary for stable synchronization of beta-cells through electrical gap-junction coupling. The collaborative behavior among cells is known to facilitate synchronized insulin secretion and tends to saturate beyond the critical (saturation) size of approximately 100 cells. We further probe how the islets change as normal mice grow from young (6 weeks) to adult (5 months) stages. It is found that islets may not grow too large to maintain appropriate ratios between cells of different types. Our results implicate that growing of mouse islets may be regulated by several physical constraints such as the minimal size required for stable cell-to-cell coupling and the upper limit to keep the ratios between cell types. Within the lower and upper limits the observed size distributions of islets can be faithfully regenerated by assuming random and uncoordinated proliferation of each beta-cell at appropriate rates.  相似文献   

7.
Role of VEGF-A in vascularization of pancreatic islets   总被引:17,自引:0,他引:17  
Blood vessel endothelium has been recently shown to induce endocrine pancreatic development. Because pancreatic endocrine cells or islets express high levels of vascular endothelial growth factors, VEGFs, we investigated the role of a particular VEGF, VEGF-A, on islet vascularization and islet function. By deleting VEGF-A in the mouse pancreas, we show that endocrine cells signal back to the adjacent endothelial cells to induce the formation of a dense network of fenestrated capillaries in islets. Interestingly, VEGF-A is not required for the development of all islet capillaries. However, the few remaining capillaries found in the VEGF-A-deficient islets are not fenestrated and contain an unusual number of caveolae. In addition, glucose tolerance tests reveal that the VEGF-A-induced capillary network is not strictly required for blood glucose control but is essential for fine-tuning blood glucose regulation. In conclusion, we speculate that islet formation takes place in two sequential steps: in the first step, signals from blood vessel endothelium induce islet formation next to the vessels, and in the second step, the islets signal to the endothelium. The second step involves paracrine VEGF-A signaling to elaborate the interaction of islets with the circulatory system.  相似文献   

8.
Barriers to the use of islet transplantation as a practical treatment for diabetes include the limited number of available donor pancreata. This project was designed to determine whether the size of the islet could influence the success rate of islet transplantations in rats. Islets from adult rats were divided into two groups containing small (diameter <125 microm) or large (diameter >150 microm) islets. An average pancreas yielded three times more small islets than large. Smaller islets were approximately 20% more viable, with large islets containing a scattered pattern of necrotic and apoptotic cells or central core cell death. Small islets in culture consumed twice as much oxygen as large islets when normalized for the same islet equivalents. In static incubation, small islets released three times more insulin under basal conditions than did large islets. During exposure to high glucose conditions, the small islets released four times more insulin than the same islet equivalencies of large islets, and five times more insulin was released by the small islets in response to glucose and depolarization with K+. Most importantly, the small islets were far superior to large islets when transplanted into diabetic animals. When marginal islet equivalencies were used for renal subcapsular transplantation, large islets failed to produce euglycemia in any recipient rats, whereas small islets were successful 80% of the time. The results indicate that small islets are superior to large islets in in vitro testing and for transplantation into the kidney capsule of diabetic rats.  相似文献   

9.
Microvascular development: learning from pancreatic islets   总被引:8,自引:0,他引:8  
Microvascular development is determined by the interplay between tissue cells and microvascular endothelial cells. Because the pancreatic islet is an organ composed mainly of endothelial and endocrine cells, it represents a good model tissue for studying microvascular development in the context of a tissue. In this review, we will describe the special morphology of islet capillaries and its role in the physiologic function of islets: secretion of insulin in response to blood glucose levels. We will speculate on how islet-secreted VEGF-A generates a permeable endothelium that allows insulin to pass quickly into the blood stream. In addition, we speculate on how endothelial cells might form a capillary lumen within the islets. At the end, we look at the islet microvasculature from a medical point of view, thus describing its critical role during type I diabetes and islet transplantation.  相似文献   

10.
Quantitative histomorphometric studies of the dynamics of growth and development of pancreatic islets in normal and pathological states pose substantial methodological and conceptual problems. We address these problems with the geometry of random fractals, and apply our methods to the analysis of islet regeneration in the alloxan-treated guinea-pig. In both experimental islet-regenerated and control animals, islet centres are found to cluster in similar fractal subsets of dimension strictly less than 3, in agreement with the postulated origin of islets along a system of ductules, and suggesting that regeneration follows the same mathematical dynamics as original islet formation.  相似文献   

11.
The metabolic and secretory effects of methylamine in rat pancreatic islets were investigated. Methylamine accumulated in islet cells, was incorporated into endogenous islet proteins, and inhibited the incorporation of [2,5-3H] histamine into either N,N-dimethylcasein or endogenous islet proteins. Methylamine (2 mM ) did not affect the oxidation of glucose or endogenous nutrients or the intracellular pH in islet cells. Glucose did not affect the activity of transglutaminase in islet homogenates, the uptake of 14C-methylamine by intact islets or its incorporation into endogenous islet proteins. Methylamine inhibited insulin release evoked by glucose, other nutrient secretagogues, and non-nutrient insulinotropic agents such as L -arginine or gliclazide. The inhibitory effect of methylamine upon insulin release was diminished in the presence of cytochalasin B or at low extracellular pH. Methylamine retarded the conversion of proinsulin to insulin. Trimethylamine (0.7 mM ) was more efficiently taken up by islet cells than methylamine (2.0 mM ), and yet caused only a modest inhibition of insulin release. These findings suggest that methylamine interferes with a late step in the secretory sequence, possibly by inhibiting the access of secretory granules to their exocytotic site.  相似文献   

12.
Summary Pancreatic islet cytosol contains a calcium-calmodulin dependent protein kinase that can mediate the phosphorylation of an endogenous protein that has an Mr of 57 000, as well as exogenous muscle pyruvate kinase (subunit Mr, 57000). EGTA and trifluoperazine decreased the phosphorylation. Alkaline inactivation of pyruvate kinase made it a better substrate for the kinase. As in rat islet cytosol, rabbit islet cytosol catalyzed the phosphorylation of a 57 000 Mr protein in the presence of calcium and calmodulin. This phosphoprotein was immunoprecipitated with anti-pyruvate kinase antibody. This is consistent with the idea that the 57 000 Mr phosphoprotein in islet cytosol is the subunit of pyruvate kinase. The paper following this paper shows that the kinetic and immunologic properties of the islet pyruvae kinase indicate it is the M2 isoenzyme and that its phosphorylation does not affect its catalytic activity.  相似文献   

13.
Hexose metabolism in pancreatic islets. Inhibition of hexokinase.   总被引:4,自引:0,他引:4       下载免费PDF全文
In islet homogenates, hexokinase-like activity (Km 0.05 mM; Vmax. 1.5 pmol/min per islet) accounts for the major fraction of glucose phosphorylation. Yet the rate of glycolysis in intact islets incubated at low glucose concentrations (e.g. 1.7 mM) sufficient to saturate hexokinase only represents a minor fraction of the glycolytic rate observed at higher glucose concentrations. This apparent discrepancy between enzymic and metabolic data may be attributable, in part at least, to inhibition of hexokinase in intact islets. Hexokinase, which is present in both islet and purified B-cell homogenates, is indeed inhibited by glucose 6-phosphate (Ki 0.13 mM) and glucose 1,6-bisphosphate (Ki approx. 0.2 mM), but not by fructose 2,6-bisphosphate. In intact islets, the steady-state content of glucose 6-phosphate (0.26-0.79 pmol/islet) and glucose 1,6-bisphosphate (5-48 fmol/islet) increases, in a biphasic manner, at increasing concentrations of extracellular glucose (up to 27.8 mM). From these measurements and the intracellular space of the islets, it was estimated that the rate of glucose phosphorylation as catalysed by hexokinase represents, in intact islets, no more than 12-24% of its value in islet homogenates.  相似文献   

14.
Glucose metabolism and insulin secretion were studied in isolated rat pancreatic islets of different sizes and the amount of tissue was quantitated by the measurement of DNA. It was found that larger islets (140-210 ng DNA/islet) utilized more glucose (based on the conversion of 3H-5-glucose to [3H]20) per ng of DNA than islets containing less DNA (60-120 ng/islet). However, the insulin secreted per ng of DNA in response to a given glucose concentration was the same in islets of all sizes. Also, the islet insulin and glucagon content when expressed in terms of DNA did not depend upon islet size. Thus, although glucose utilization rates expressed as a function of islet DNA content were greater in larger islets, no such relationship was found for glucose-induced insulin release or insulin and glucagon content.  相似文献   

15.
Succinate dehydrogenase activities in homogenates of rat and ob/ob mouse pancreatic islets were only 13% of the activities in homogenates of liver and were also several times lower than in homogenates of pancreatic acinar tissue. This indicates that the content of mitochondria in pancreatic islet cells is very low. The very low activity of succinate dehydrogenase is in agreement with the low mitochondrial volume in the cytoplasmic ground substance of pancreatic islet cells as observed in morphometric studies. This may represent the poor equipment of pancreatic islet cells with electron transport chains and thus provide a regulatory role for the generation of reducing equivalents and chemical energy for the regulation of insulin secretion. The activities of succinate dehydrogenase in tissue homogenates of pancreatic islets, pancreatic acinar tissue, and liver were significantly inhibited by malonate and diazoxide but not by glucose, mannoheptulose, streptozotocin, or verapamil. Tolbutamide inhibited only pancreatic islet succinate dehydrogenase significantly, providing evidence for a different behavior of pancreatic islet cell mitochondria. Therefore diazoxide and tolbutamide may affect pancreatic islet function through their effects on succinate dehydrogenase activity. The activities of alpha-glycerophosphate dehydrogenase in homogenates of pancreatic islets and liver from rats and ob/ob mice were in the same range, while activities in homogenates of pancreatic acinar tissue were lower. None of the test agents affected alpha-glycerophosphate dehydrogenase activity. Thus the results provide no support for the recent contention that alpha-glycerophosphate dehydrogenase activity may be critical for the regulation of insulin secretion.  相似文献   

16.
Fructose, like glucose, rapidly equilibrates across the plasma membrane of pancreatic islet cells, but is poorly metabolized and is a weak insulin secretagogue in rat pancreatic islets. A possible explanation for such a situation was sought by investigating the modality of fructose phosphorylation in islet homogenates. Several findings indicated that the phosphorylation of fructose is catalyzed by hexokinase, but not fructokinase. First, at variance with the situation found in liver homogenates, the phosphorylation of fructose in the islet homogenate was unaffected by K+ and inhibited by glucose, mannose, glucose 6-phosphate or glucose 1,6-bisphosphate. Second, the Km for fructose was much higher in islets than in liver. Third, in islet homogenates the Km and Vmax for fructose were much higher than those for glucose or mannose phosphorylation, at low aldohexose concentrations, in good agreement with the properties of purified hexokinase. In intact islets fructose augmented the islet content in glucose 6-phosphate sufficiently to cause marked inhibition of its own rate of phosphorylation. These findings may account, in part at least, for the low rate of fructose utilization by rat pancreatic islets.  相似文献   

17.
Polyclonal origin of pancreatic islets in aggregation mouse chimaeras.   总被引:4,自引:0,他引:4  
In the present study, we have examined the origin and growth pattern of the beta cells in pancreatic islets, to determine whether a single progenitor cell gave rise to all the precursors of the islets, or if each of a few progenitor cells is the founder of a different islet, or if each islet is a mixture of cells originating from a pool of progenitor cells. Aggregation mouse chimaeras where the pancreatic beta cells derived from each embryo can be identified in the islets on histological sections were analyzed. In two chimaeras, all the islets contained cells from both the aggregated embryo. This clearly demonstrates that each islet resulted from several independent cells. In addition, the beta cells derived from either embryo component were in very small clusters in the islets, suggesting that in situ cell division did not account significantly for islet growth.  相似文献   

18.
Transplantation of human islets is an attractive alternative to daily insulin injections for patients with type 1 diabetes. However, the majority of islet recipients lose graft function within five years. Inflammation is a primary contributor to graft loss, and inhibiting pro-inflammatory cytokine activity can reverse inflammation mediated dysfunction of islet grafts. As mesenchymal stem cells (MSCs) possess numerous immunoregulatory properties, we hypothesized that MSCs could protect human islets from pro-inflammatory cytokines. Five hundred human islets were co-cultured with 0.5 or 1.0 × 10(6) human MSCs derived from bone marrow or pancreas for 24 hours followed by 48 hour exposure to interferon-γ, tumor necrosis factor-α and interleukin 1β. Controls include islets cultured alone (± cytokines) and with human dermal fibroblasts (± cytokines). For all conditions, glucose stimulated insulin secretion (GSIS), total islet cellular insulin content, islet β cell apoptosis, and potential cytoprotective factors secreted in the culture media were determined. Cytokine exposure disrupted human islet GSIS based on stimulation index and percentage insulin secretion. Conversely, culture with 1.0 × 10(6) bMSCs preserved GSIS from cytokine treated islets. Protective effects were not observed with fibroblasts, indicating that preservation of human islet GSIS after exposure to pro-inflammatory cytokines is MSC dependent. Islet β cell apoptosis was observed in the presence of cytokines; however, culture of bMSCs with islets prevented β cell apoptosis after cytokine treatment. Hepatocyte growth factor (HGF) as well as matrix metalloproteinases 2 and 9 were also identified as putative secreted cytoprotective factors; however, other secreted factors likely play a role in protection. This study, therefore, demonstrates that MSCs may be beneficial for islet engraftment by promoting cell survival and reduced inflammation.  相似文献   

19.
We have developed a method to circumvent the use of exogenous proteolytic enzymes in the isolation of islets of Langerhans from the perinatal rodent pancreas. Advantage is taken of the propensity of fibroblastlike cells to attach and migrate on polystyrene at low-serum concentrations (5%). In contrast, at this serum level, rat islet epithelial cells tend not to adhere to the substrate. At 3 d of culture, islets are visible at the edges of the explants. With further fibroblast outgrowth the majority of islets are freefloating by 7 d. Simple agitation of the medium and centrifugation yields approximately 50 micrograms of islet tissue per perinatal pancreas. Further purification of the islets can be obtained by subculture. Rat islets can be maintained in this manner for several months in Medium F12 supplemented with 25% horse serum in an atmosphere of 5% CO2 and air at 37 degrees C. Hormone content of the islet tissue remains constant during prolonged subculture and such islets continue to exhibit appropriate insulin and glucagon responses to glucose and theophylline. The morphological integrity of the endocrine cells within the cultured islets was confirmed by immunocytochemistry and ultrastructural study. Nonendocrine cells are not identifiable within the long-term cultured islets.  相似文献   

20.
Extracts of pancreatic islets stimulate the translocation of calcium from an aqueous into an organic immiscible phase. This ionophoretic activity, which is derived mainly from membrane-rich subcellular fractions, displays several features in common with that of A23187 in the same model. The phenomenon of calcium translocation caused by either the islet extract or the antibiotic ionophore represents a power function of the concentration of ionophoretic material; it is saturable at high calcium concentrations, affected by the concentration of Na+ and pH of the aqueous phase, increased at low temperature, and inhibited by suloctidil, the latter inhibitory effect being antagonized by calcium itself. These findings underline the potential significance of native ionophores in the regulation of calcium movements across membrane systems in the islet cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号