首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
2.
Zhao C  Wang J  Cao M  Zhao K  Shao J  Lei T  Yin J  Hill GG  Xu N  Liu S 《Proteomics》2005,5(4):961-972
Of the numerous factors affecting rice yield, how solar radiation is transformed into biomass through rice leaves is the most important. We have analyzed proteomic changes in rice leaves collected from six different developing stages (vegetative to ripening). We studied protein expression profiles of rice leaves by running two-dimensional gel electrophoresis. Differential protein expression among the six phases were analyzed by image analysis, which allowed the identification of 49 significantly different gel spots. The spots were further verified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry, in which 89.8% of them were confirmed to be rice proteins. Finally, we confirmed some of the interesting rice proteins by immunoblotting. Three major conclusions can be drawn from these experimental results. (i) Protein expression in rice leaves, at least for high or middle abundance proteins, is attenuated during growth (especially some chloroplast proteins). However, the change is slow and the expression profiles are relatively stable during rice development. (ii) Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), a major protein in rice leaves, is expressed at constant levels at different growth stages. Interestingly, a high ratio of degradation of the RuBisCO large subunit was found in all samples. This was confirmed by two approaches, mass spectrometry and immunoblotting. The degraded fragments are similar to other digested products of RuBisCO mediated by free radials. (iii) The expression of antioxidant proteins such as superoxide dismutase and peroxidase decline at the early ripening stage.  相似文献   

3.
4.
The expression of DNP- and TNP-specific B cells in spleens of neonatal BALB/c mice was analyzed by the in vitro splenic focus technique. B cells of these specificities were found to be present in slightly higher frequency in neonatal than in adult spleens. The parameters of stimulation of neonatal B cells were similar to those of adult B cells but the antibody-forming cell progeny of neonatal B cells produce predominantly gammaM rather than gammaG antibody and produce less antibody than the progeny of adult B cells. Isoelectric focusing analyses of monoclonal antibodies derived from neonatal B cells stimulated in vitro with DNP or TNP revealed that over 90 per cent of the antibodies could be identified as belonging to one of six predominant clonotypes, three specific for DNP and three for TNP. While individual neonates rarely expressed all of the predominant clonotypes, B cells of each of the six clonotypes were found in several donors. When B cells of a given predominant clonotype were present in an individual many such B cells could be found and in many cases the entire DNP- or TNP-specific B cell population of an individual could be accounted for by B cells of a single clonotype. These findings are discussed in terms of the diversity of clonotype specificities available in neonates, the kinetics of development of cells within a clonotype, and factors that may play a role in controlling the expression of B cell clones.  相似文献   

5.
During exposure to anoxia, the crucian carp brain is able to maintain normal overall protein synthesis rates. However, it is not known if there are alterations in the synthesis or expression of specific proteins. This investigation addresses this issue by comparing the normoxic and anoxic brain proteome. Nine proteins were found to be reduced by anoxia. Reductions in the glycolytic pathway proteins creatine kinase, fructose biphosphate aldolase, glyceraldehyde‐3‐phosphate dehydrogenase, triosephosphate isomerase and lactate dehydrogenase reflect the reduced production and requirement for adenosine tri‐phosphate during anoxia. In terms of neural protection, voltage‐dependent anion channel, a protein associated with neuronal apoptosis, was reduced, along with gefiltin, a protein associated with the subsequent need for neuronal repair. Additionally the expression of proteins associated with neural degeneration and impaired cognitive function also declined; dihydropyrimidinase‐like protein‐3 and vesicle amine transport protein‐1. One protein was found to be increased by anoxia; pre‐proependymin, the precursor to ependymin. Ependymin fulfils multiple roles in neural plasticity, memory formation and learning, neuron growth and regeneration, and is able to reverse the possibility of apoptosis, thus further protecting the anoxic brain.  相似文献   

6.
Changes in arabinoxylan content and composition during development of wheat seedlings were investigated. The cell walls isolated from the seedlings showed an increasing content of arabinoxylan during development, which could be correlated to increased activity of xylan synthase and arabinoxylan arabinosyltransferase. Arabinoxylan changed from initially having a high degree of arabinose substitution to a much lower degree of substitution. beta-Glucan was present in the walls at the early stages of development, but was actively degraded after day 4. Increased deposition of arabinoxylan did not take place until beta-glucan had been fully degraded. Ferulic and p-coumaric acid esters were present at all points but increased significantly from day 3 to 6, where lignification began. Ferulic acid dimers did not appear in the cell wall until day three and the different ferulic acid dimers varied in the course of accumulation. The ratio of ferulic acid dimers to free ferulic acid was maximal at the time when the wall had been depleted for beta-glucan, which had not yet been fully replaced by arabinoxylan. This pattern suggests a role for ferulic acid dimers in stabilizing the wall during the transition from a flexible to a more rigid structure. To investigate if the same changes could be observed within a single seedling, 7 day old seedlings were divided into four sections and the walls were analyzed. Some of the changes observed during the seedling development could also be observed within a single seedling, when analyzing the segments from the elongation zone at the base to the top of the leaf. However, the expanding region of older seedlings was much richer in hydroxycinnamates than the expanding region of younger seedlings. Diferulic acids are stabilizing the wall in the transition phase from an expanding to a mature wall. This transition can take place in different manners depending on the cell and tissue type.  相似文献   

7.
Fruit development is a highly complex process, which involves major changes in plant metabolism leading to cell growth and differentiation. Changes in cell wall composition and structure play a major role in modulating cell growth. We investigated the changes in cell wall composition and the activities of associated enzymes during the dry fruit development of the model plant Arabidopsis thaliana. Silique development is characterized by several specific phases leading to fruit dehiscence and seed dispersal. We showed that early phases of silique growth were characterized by specific changes in non-cellulosic sugar content (rhamnose, arabinose, xylose, galactose and galacturonic acid). Xyloglucan oligosaccharide mass profiling further showed a strong increase in O-acetylated xyloglucans over the course of silique development, which could suggest a decreased capacity of xyloglucans to be associated with each other or to cellulose. The degree of methylesterification, mediated by the activity of pectin methylesterases (PMEs), decreased over the course of silique growth and dehiscence. The major changes in cell wall composition revealed by our analysis suggest that it could be major determinants in modulating cell wall rheology leading to growth or growth arrest.  相似文献   

8.
The subapical compartment (SAC) plays an important role in the polarized transport of proteins and lipids. In hepatoma-derived HepG2 cells, fluorescent analogues of sphingomyelin and glucosylceramide are sorted in the SAC. Here, evidence is provided that shows that polarity development is regulated by a transient activation of endogenous protein kinase A and involves a transient activation of a specific membrane transport pathway, marked by the trafficking of the labeled sphingomyelin, from the SAC to the apical membrane. This protein kinase A-regulated pathway differs from the apical recycling pathway, which also traverses SAC. After reaching optimal polarity, the direction of the apically activated pathway switches to one in the basolateral direction, without affecting the apical recycling pathway.  相似文献   

9.
Expression of adhesion structures during B cell development in man   总被引:5,自引:0,他引:5  
We have used three-color flow cytometry to study the expression of adhesion structures during B cell development in man. The results indicate that the cell-surface molecule(s) recognized by 515, a mAb which defines a broadly expressed family of cell-surface glycoproteins that includes lymphocyte homing receptors, exhibit a clear bimodal distribution (515lo and 515hi); 515hi cells were found exclusively on more mature B cells which already expressed high levels of CD20. Earlier, less mature B cells, identified by their expression of CD10, were uniformly 515lo. In contrast, the CD11a/LFA-1 Ag was acquired gradually over the course of B cell development. B cells which expressed high levels of CD20 expressed three to six times as much CD11a/LFA-1 as cells which expressed CD10. Interestingly, expression of the 515hi phenotype was tightly correlated with that of Leu-8, a marker previously shown to define maturational and functions subsets of B cells. These data document the coordinated regulation of multiple cell surface structures during B cell ontogeny, and demonstrate that adhesion structures necessary for proper B cell function are precisely up-regulated during B cell differentiation in man.  相似文献   

10.
We describe a proteomic approach to investigate the differential protein expression patterns and identify the physiologically relevant angiogenic and antiangiogenic factors involved in the hyaloid vascular system regression. Differentially expressed proteins were identified using two-dimensional gel electrophoresis followed by nanoflow chromatography coupled with tandem mass spectrometry. These proteins are expected to provide insight as to their function in the early maintenance and eventual regression of the hyaloid vascular system.  相似文献   

11.
Synchronized regulation of cell division during gastrulation is essential for the regional proliferation of cells and pattern formation of the early CNS. The neural plate and neuroectoderm cells are a rapidly dividing and differentiating population of cells with a unique and rapid heat-shock response. Heat shock and the heat-shock genes were studied during neural plate development in a whole rat embryo culture system at 9.5-11.5 days. A lethal heat shock can cause cell death and severe developmental defects to the forebrain and eye during organogenesis. Heat shock can also result in acquired thermotolerance whereby cell progression is delayed at the G1/S and S/G2 boundaries of the cell cycle. This delay in cell cycle progression caused an overall lengthening of the cell cycle time of at least 2 hr. The heat shock genes may therefore function as cell cycle regulators in neuroectoderm induction and differentiation. The kinetics and expression of the hsp genes were examined in neuroectodermal cells by flow cytometry and Northern analysis. The levels of hsp mRNA 27, 71, 73, and 88 were identified following exposure at 42°C (nonlethal), 43deg;C (lethal) and 42deg;/43deg;C (thermotolerant) heat shock. Examination of hsp gene expression in the neural plate showed tight regulation in the cell cycle phases. Hsp 88 expression was enhanced at Go and hsp71 induction at G2 + M of the cell cycle. Cells exposed to a thermotolerant heat shock of 42deg;C induced hsp71 mRNA expression in all phases of the cell cycle with the mRNA levels of hsp27, 73, and 88 increased but relatively constant. Following a lethal heat shock, dramatic changes in hsp expression were seen especially enhanced hsp71 induction in late S phase. The regulated expression of hsps during the cell cycle at various phases could play a unique and important role in the fate and recovery of neuroectoderm cells during early mammalian embryo development. © 1993Wiley-Liss, Inc.  相似文献   

12.
B cells play a pivotal role in adaptive immune system, since they maintain a delicate balance between recognition and clearance of foreign pathogens and tolerance to self. During maturation, B cells progress through a series of developmental stages defined by specific phenotypic surface markers and the rearrangement and expression of immunoglobulin (Ig) genes. To get insight into B cell proteome during the maturation pathway, we studied differential protein expression in eight human cell lines, which cover four distinctive developmental stages; early pre-B, pre-B, plasma cell and immature B cell upon anti-IgM stimulation. Our two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry based proteomic study indicates the involvement of large number of proteins with various functions. Notably, proteins related to cytoskeleton were relatively highly expressed in early pre-B and pre-B cells, whereas plasma cell proteome contained endoplasmic reticulum and Golgi system proteins. Our long time series analysis in anti-IgM stimulated Ramos B cells revealed the dynamic regulation of cytoskeleton organization, gene expression and metabolic pathways, among others. The findings are related to cellular processes in B cells and are discussed in relation to experimental information for the proteins and pathways they are involved in. Representative 2D-DIGE maps of different B cell maturation stages are available online at http://structure.bmc.lu.se/BcellProteome/.  相似文献   

13.
There is now a body of evidence to indicate that Ras proteins play important roles in development. Dictyostelium expresses several ras genes and each appears to perform a distinct function. Previous data had indicated that the overexpression of an activated form of the major developmentally regulated gene, rasD, caused a major aberration in morphogenesis and cell type determination. We now show that the developmental expression of an activated rasG gene under the control of the rasD promoter causes a similar defect. Our results indicate that the expression of activated rasG in prespore cells results in their transdifferentiation into prestalk cells, whereas activated rasG expression in prestalk causes gross mislocalization of the prestalk cell populations.  相似文献   

14.
Fruit senescence has been reported to be an oxidative phenomenon, but the detailed mechanisms by which ROS regulate this process remain largely unknown. Here we show that senescence process of apple fruit was concomitant with the dynamic alterations in the mitochondrial proteome. Mitochondrial proteins involved in tricarboxylic acid cycle, electron transport chain, carbon metabolism, and stress response were found to be differentially expressed during fruit senescence. Alleviating oxidative stress by lowering the ambient oxygen concentration noticeably decreased the number of changed proteins and delayed fruit senescence, indicating the involvement of ROS in this process. To further investigate the regulatory effect of ROS on senescence process, we analyzed the mitochondrial proteome variations upon exposure to high oxygen (100%), which induces oxidative stress and accelerates fruit senescence. High oxygen treatment led to a further identification of differentially expressed proteins such as mitochondrial manganese superoxide dismutase, an antioxidant scavenging superoxide radicals produced in the mitochondria. Activity of manganese superoxide dismutase was reduced after high oxygen exposure, accompanied by an increase in oxidative protein carbonylation (damaged proteins). These data suggest that ROS may regulate fruit senescence by changing expression profiles of specific mitochondrial proteins and impairing the biological function of these proteins.  相似文献   

15.
Numerous studies have illustrated that low light is one of the major abiotic stresses limiting cotton (Gossypium hirsutum L.) fiber length, but studies addressing molecular mechanisms contributing to reduced fiber growth under low light are lacking. To investigate the molecular mechanisms of cotton fiber elongation in response to low light, an experiment of low light caused by shading was conducted with cotton cultivar NuCOTN 33B. The results showed that low light resulted in shorter fiber length. Proteomic analysis of four developmental stages (5, 10, 15 and 20 days post-anthesis) showed that 49 proteins were significantly responsive to low light. 39 differentially expressed proteins that included some known as well as some novel low-light stress-responsive proteins were identified. These differentially expressed proteins were involved in signal transduction, carbohydrate/energy metabolism, cell wall component synthesis, protein metabolism, cytoskeleton, nitrogen metabolism and stress responses. The results also showed that the decrease in fiber length might be because the levels of signal-related protein (phospholipase D), cytoskeletal proteins (two annexins isoforms), cell wall component-related proteins (sucrose synthase, UDP-d-glucuronic acid 4-epimerase and rhamnose synthase), carbohydrate metabolism-proteins (phosphofructokinase, dihydrolipoamide dehydrogenase, vacuolar H+-ATPase catalytic subunit, malate dehydrogenase and isocitrate dehydrogenase), and stress-related proteins (peroxisomal catalase, short chain alcohol dehydrogenase) were decreased under low light.  相似文献   

16.
New markers/targets for renal cell carcinoma (RCC) are needed to enable earlier detection and monitoring of disease and therapeutic targeting. To identify such molecules, normal and RCC-derived primary cell lines have been used as a simplified model system for studying changes that accompany tumorigenesis. Short-term cultures allow enrichment of relevant cell types from tissue samples, which is balanced against the potential for in vitro changes. Examination of 3 proteins with altered expression in RCC tissue showed the maintenance of normal-tumour differences in culture, although some changes were apparent, including alteration in the isoform of aldolase. Comparative analysis of primary cell lines by 2-DE found 43 proteins up-regulated and 29 down-regulated in at least three out of five tumour cell lines. Many of the observed changes have been previously reported in RCC, including up-regulation of several glycolytic enzymes, vimentin and heat shock protein 27, validating the approach. Additionally, several novel changes in protein expression were found, including up-regulation of several proteins involved in actin cytoskeleton organisation such as radixin and moesin, two members of the septin family, and the actin bundling protein, fascin. Validation studies using Western blotting and immunohistochemistry indicate that several of these molecules may be useful as markers for RCC.  相似文献   

17.
18.
19.
CD5+ B cells have attracted considerable interest because of their association with self-reactivity, autoimmunity, and leukemia. In mice, CD5+ B cells are readily generated from fetal/neonatal precursors, but inefficiently from precursors in adult. One model proposed to explain this difference is that their production occurs through a distinctive developmental process, termed B-1, that enriches pre-B cells with novel germline VDJs and that requires positive selection of newly formed B cells by self-Ag. In contrast, follicular B cells are generated throughout adult life in a developmental process termed B-2, selecting VDJs that pair well with surrogate L chain, and whose maturation appears relatively independent of antigenic selection. In the present study, I focus on processes that shape the repertoire of mouse CD5+ B cells, describing the differences between B-1 and B-2 development, and propose a model encompassing both in the generation of functional B cell subpopulations.  相似文献   

20.
The endothelin receptor B gene (Ednrb) encodes a G-protein-coupled receptor that is expressed in a variety of cell types and is specifically required for the development of neural crest-derived melanocytes and enteric ganglia. In humans, mutations in this gene are associated with Waardenburg-Shah syndrome, a disorder characterized by pigmentation defects, deafness and megacolon. To address the question of whether melanocyte development depends entirely on a cell-autonomous action of Ednrb, we performed a series of tissue recombination experiments in vitro, using neural crest cell cultures from mouse embryos carrying a novel Ednrb-null allele characterized by the insertion of a lacZ marker gene. The results show that Ednrb is not required for the generation of early neural crest-derived melanoblasts but is required for the expression of the differentiation marker tyrosinase. Tyrosinase expression can be rescued, however, by the addition of Ednrb wild-type neural tubes. These Ednrb wild-type neural tubes need not be capable of generating melanocytes themselves, but must be capable of providing KIT ligand, the cognate ligand for the tyrosine kinase receptor KIT. In fact, soluble KIT ligand is sufficient to induce tyrosinase expression in Ednrb-deficient cultures. Nevertheless, these tyrosinase-expressing, Ednrb-deficient cells do not develop to terminally differentiated, pigmented melanocytes. Pigmentation can be induced, however, by treatment with tetradecanoyl phorbol acetate, which mimics EDNRB signaling, but not by treatment with endothelin 1, which stimulates the paralogous receptor EDNRA. The results suggest that Ednrb plays a significant role during melanocyte differentiation and effects melanocyte development by both cell non-autonomous and cell-autonomous signaling mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号