首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptotic cells of Drosophila not only activate caspases, but also are able to secrete developmental signals like Hedgehog (Hh), Decapentaplegic (Dpp) and Wingless (Wg) before dying. Since Dpp and Wg are secreted in growing tissues and behave as growth factors, it was proposed that they play a role in compensatory proliferation, the process by which a growing blastema can restore normal size after massive apoptosis. We discuss recent results showing that there is normal compensatory proliferation in the absence of Dpp/Wg signaling, thus indicating it has no significant role in the process. Furthermore, we argue that Dpp/Wg signaling is not a resident feature of apoptotic cells, but a side effect of the necessary activation of the JNK pathway. Nevertheless, the ectopic JNK/Dpp/Wg signaling may have an important role in tissue regeneration. Recent work in other organisms suggests that paracrine signaling from apoptotic cells may be of general significance in wound healing and tissue regeneration in metazoans.  相似文献   

2.
During Drosophila wing development, Hedgehog (Hh) signalling is required to pattern the imaginal disc epithelium along the anterior-posterior (AP) axis. The Notch (N) and Wingless (Wg) signalling pathways organise the dorsal-ventral (DV) axis, including patterning along the presumptive wing margin. Here, we describe a functional hierarchy of these signalling pathways that highlights the importance of competing influences of Hh, N, and Wg in establishing gene expression domains. Investigation of the modulation of Hh target gene expression along the DV axis of the wing disc revealed that collier/knot (col/kn), patched (ptc), and decapentaplegic (dpp) are repressed at the DV boundary by N signalling. Attenuation of Hh signalling activity caused by loss of fused function results in a striking down-regulation of col, ptc, and engrailed (en) symmetrically about the DV boundary. We show that this down-regulation depends on activity of the canonical Wg signalling pathway. We propose that modulation of the response of cells to Hh along the future proximodistal (PD) axis is necessary for generation of the correctly patterned three-dimensional adult wing. Our findings suggest a paradigm of repression of the Hh response by N and/or Wnt signalling that may be applicable to signal integration in vertebrate appendages.  相似文献   

3.
4.
During development, global patterning events initiate signal transduction cascades which gradually establish an array of individual cell fates. Many of the genes which pattern Drosophila are expressed throughout development and specify diverse cell types by creating unique local environments which establish the expression of locally acting genes. This process is exemplified by the patterning of leg microchaete rows. hairy (h) is expressed in a spatially restricted manner in the leg imaginal disc and functions to position adult leg bristle rows by negatively regulating the proneural gene achaete, which specifies sensory cell fates. While much is known about the events that partition the leg imaginal disc and about sensory cell differentiation, the mechanisms that refine early patterning events to the level of individual cell fate specification are not well understood. We have investigated the regulation of h expression along the dorsal/ventral (D/V) axis of the leg adjacent to the anterior/posterior (A/P) compartment boundary and have found that it requires input from both D/V and A/P patterning mechanisms. Expression of the D/V axis h stripe (D/V-h) is controlled by dorsal- and ventral-specific enhancer elements which are targets of Decapentaplegic (Dpp) and Wingless (Wg) signaling, respectively, but which are also dependent on Hedgehog (Hh) signaling for activation. D/V-h expression is lost in smoothened mutant clones and is specifically activated by exogenously supplied Cubitus interruptus (Ci). D/V-h expression is also lost in clones deficient for Dpp and Wg signaling, but ectopic activation of D/V-h by Dpp and Wg is limited to the A/P compartment boundary where endogenous levels of full-length Ci are high. We propose that D/V-h expression is regulated in a non-linear pathway in which Ci plays a dual role. In addition to serving as an upstream activator of Dpp and Wg, Ci acts combinatorially with them to activate D/V-h expression.  相似文献   

5.
Secreted signaling molecules such as Wingless (Wg) and Decapentaplegic (Dpp) organize positional information along the proximodistal (PD) axis of the Drosophila wing imaginal disc. Responding cells activate different downstream targets depending on the combination and level of these signals and other factors present at the time of signal transduction. Two such factors, teashirt (tsh) and homothorax (hth), are initially co-expressed throughout the entire wing disc, but are later repressed in distal cells, permitting the subsequent elaboration of distal fates. Control of tsh and hth repression is, therefore, crucial for wing development, and plays a role in shaping and sizing the adult appendage. Although both Wg and Dpp participate in this control, their specific contributions remain unclear. In this report, we analyze tsh and hthregulation in the wing disc, and show that Wg and Dpp act independently as the primary signals for the repression of tsh and hth, respectively. In cells that receive low levels of Dpp, hth repression also requires Vestigial (Vg). Furthermore, although Dpp is required continuously for hth repression throughout development, Wg is only required for the initiation of tsh repression. Instead, the maintenance of tsh repression requires Polycomb group (PcG) mediated gene silencing, which is dispensable for hth repression. Thus, despite their overall similar expression patterns, tsh and hth repression in the wing disc is controlled by two very different mechanisms.  相似文献   

6.
7.
In multicellular organisms, apoptotic cells induce compensatory proliferation of neighboring cells to maintain tissue homeostasis. In the Drosophila wing imaginal disc, dying cells trigger compensatory proliferation through secretion of the mitogens Decapentaplegic (Dpp) and Wingless (Wg). This process is under control of the initiator caspase Dronc, but not effector caspases. Here we show that a second mechanism of apoptosis-induced compensatory proliferation exists. This mechanism is dependent on effector caspases which trigger the activation of Hedgehog (Hh) signaling for compensatory proliferation. Furthermore, whereas Dpp and Wg signaling is preferentially employed in apoptotic proliferating tissues, Hh signaling is activated in differentiating eye tissues. Interestingly, effector caspases in photoreceptor neurons stimulate Hh signaling which triggers cell-cycle reentry of cells that had previously exited the cell cycle. In summary, dependent on the developmental potential of the affected tissue, different caspases trigger distinct forms of compensatory proliferation in an apparent nonapoptotic function.  相似文献   

8.
During Drosophila eye development, cell differentiation is preceded by the formation of a morphogenetic furrow, which progresses across the epithelium from posterior to anterior. Cells within the morphogenetic furrow are apically constricted and shortened along their apical-basal axis. However, how these cell shape changes and, thus, the progression of the morphogenetic furrow are controlled is not well understood. Here we show that cells simultaneously lacking Hedgehog and Dpp signal transduction fail to shorten and do not enter the morphogenetic furrow. Moreover, we have identified a gene, cadherin Cad86C, which is highly expressed in cells of the leading flank of the morphogenetic furrow. Ectopic activation of either the Hedgehog or Dpp signal transduction pathway results in elevated Cad86C expression. Conversely, simultaneous loss of both Hedgehog and Dpp signal transduction leads to decreased Cad86C expression. Finally, ectopic expression of Cad86C in either eye-antennal imaginal discs or wing imaginal discs results in apical constriction and shortening of cells. We conclude that Hedgehog and Dpp signaling promote the shortening of cells within the morphogenetic furrow. Induction of Cad86C expression might be one mechanism through which Hedgehog and Dpp promote these cell shape changes.  相似文献   

9.
10.
The signaling molecules Hedgehog (Hh), Decapentaplegic (Dpp) and Wingless (Wg) function as morphogens and organize wing patterning in Drosophila. In the screen for mutations that alter the morphogen activity, we identified novel mutants of two Drosophila genes, sister of tout-velu (sotv) and brother of tout-velu (botv), and new alleles of tout-velu (ttv). The encoded proteins of these genes belong to an EXT family of proteins that have or are closely related to glycosyltransferase activities required for biosynthesis of heparan sulfate proteoglycans (HSPGs). Mutation in any of these genes impaired biosynthesis of HSPGs in vivo, indicating that, despite their structural similarity, they are not redundant in the HSPG biosynthesis. Protein levels and signaling activities of Hh, Dpp and Wg were reduced in the cells mutant for any of these EXT genes to a various degree, Wg signaling being the least sensitive. Moreover, all three morphogens were accumulated in the front of EXT mutant cells, suggesting that these morphogens require HSPGs to move efficiently. In contrast to previous reports that ttv is involved exclusively in Hh signaling, we found that ttv mutations also affected Dpp and Wg. These data led us to conclude that each of three EXT genes studied contribute to Hh, Dpp and Wg morphogen signaling. We propose that HSPGs facilitate the spreading of morphogens and therefore, function to generate morphogen concentration gradients.  相似文献   

11.
Heparan sulfate proteoglycans (HSPG) have been implicated in regulating the signalling activities of secreted morphogen molecules including Wingless (Wg), Hedgehog (Hh) and Decapentaplegic (Dpp). HSPG consists of a protein core to which heparan sulfate (HS) glycosaminoglycan (GAG) chains are attached. The formation of HS GAG chains is catalyzed by glycosyltransferases encoded by members of the EXT family of putative tumor suppressors linked to hereditary multiple exostoses. Previous studies in Drosophila demonstrated that tout-velu (ttv), the Drosophila EXT1, is required for Hh movement. However, the functions of other EXT family members are unknown. We have identified and isolated the other two members of the Drosophila EXT family genes, which are named sister of tout-velu (sotv) and brother of tout-velu (botv), and encode Drosophila homologues of vertebrate EXT2 and EXT-like 3 (EXTL3), respectively. We show that both Hh and Dpp signalling activities, as well as their morphogen distributions, are defective in cells mutant for ttv, sotv or botv in the wing disc. Surprisingly, although Wg morphogen distribution is abnormal in ttv, sotv and botv, Wg signalling is only defective in botv mutants or ttv-sotv double mutants, and not in ttv nor sotv alone, suggesting that Ttv and Sotv are redundant in Wg signalling. We demonstrate further that Ttv and Sotv form a complex and are co-localized in vivo. Our results, along with previous studies on Ttv, provide evidence that all three Drosophila EXT proteins are required for the biosynthesis of HSPGs, and for the gradient formation of the Wg, Hh and Dpp morphogens. Our results also suggest that HSPGs have two distinct roles in Wg morphogen distribution and signalling.  相似文献   

12.
The gene homothorax (hth) is originally expressed uniformly in the wing imaginal disc but, during development, its activity is restricted to the cells that form the thorax and the hinge, where the wing blade attaches to the thorax, and eliminated in the wing pouch, which forms the wing blade. We show that hth repression in the wing pouch is a prerequisite for wing development; forcing hth expression prevents growth of the wing blade. Both the Dpp and the Wg pathways are involved in hth repression. Cells unable to process the Dpp (lacking thick veins or Mothers against Dpp activity) or the Wg (lacking dishevelled function) signal express hth in the wing pouch. We have identified vestigial (vg) as a Wg and Dpp response factor that is involved in hth control. In contrast to its repressing role in the wing pouch, wg upregulates hth expression in the hinge. We have also identified the gene teashirt (tsh) as a positive regulator of hth in the hinge. tsh plays a role specifying hinge structures, possibly in co-operation with hth.  相似文献   

13.
The onset of pattern formation in the developing Drosophila retina begins with the initiation of the morphogenetic furrow, the leading edge of a wave of retinal development that transforms a uniform epithelium, the eye imaginal disc into a near crystalline array of ommatidial elements. The initiation of this wave of morphogenesis is under the control of the secreted morphogens Hedgehog (Hh), Decapentaplegic (Dpp) and Wingless (Wg). We show that the Epidermal Growth Factor Receptor and Notch signaling cascades are crucial components that are also required to initiate retinal development. We also show that the initiation of the morphogenetic furrow is the sum of two genetically separable processes: (1) the 'birth' of pattern formation at the posterior margin of the eye imaginal disc; and (2) the subsequent 'reincarnation' of retinal development across the epithelium.  相似文献   

14.
Retinal determination genes are sufficient to specify eyes in ectopic locations, raising the question of how these master regulatory genes define an eye developmental field. Genetic mosaic studies establish that expression of the retinal determination genes eyeless, teashirt, homothorax, eyes absent, sine oculis, and dachshund are each regulated by combinations of Dpp, Hh, N, Wg, and Ras signals in Drosophila. Dpp and Hh control eyeless, teashirt, sine oculis, and dachshund expression, Dpp and Ras control homothorax, and all the signaling pathways affect eyes absent expression. These results suggest that eye-specific development uses retinal determination gene expression to relay positional information to eye target genes, because the distinct, overlapping patterns of retinal determination gene expression reflect the activities of the extracellular signaling pathways.  相似文献   

15.
The Suppressor of fused (Su(fu)) protein is known to be a negative regulator of Hedgehog (Hh) signal transduction in Drosophila imaginal discs and embryonic development. It is antagonized by the kinase Fused (Fu) since Su(fu) null mutations fully suppress the lack of Fu kinase activity. In this study, we overexpressed the Su(fu) gene in imaginal discs and observed opposing effects depending on the position of the cells, namely a repression of Hh target genes in cells receiving Hh and their ectopic expression in cells not receiving Hh. These effects were all enhanced in a fu mutant context and were suppressed by cubitus interruptus (Ci) overexpression. We also show that the Su(fu) protein is poly-phosphorylated during embryonic development and these phosphorylation events are altered in fu mutants. This study thus reveals an unexpected role for Su(fu) as an activator of Hh target gene expression in absence of Hh signal. Both negative and positive roles of Su(fu) are antagonized by Fused. Based on these results, we propose a model in which Su(fu) protein levels and isoforms are crucial for the modulation of the different Ci states that control Hh target gene expression.  相似文献   

16.
BACKGROUND: Secreted signaling proteins of the Wingless (Wg)/Wnt, Hedgehog and bone morphogenetic protein (BMP)/Decapentaplegic (Dpp) families function as morphogens to control growth and pattern formation during development. Although these proteins have been shown to act directly on distant cells in the developing limbs of the fruit fly Drosophila, little is known about how ligand gradients form in vivo. Wg protein is found in vesicles in Wg-responsive cells in the embryo and imaginal discs. It has been proposed that Wg may be transported by a vesicle-mediated mechanism. RESULTS: A novel method to visualize extracellular Wg protein was used to show that Wg forms an unstable gradient on the basolateral surface of the wing imaginal disc epithelium. Wg movement did not require internalization by dynamin-mediated endocytosis. Dynamin activity was, however, required for Wg secretion. By reversibly blocking Wg secretion, we found that Wg moves rapidly to form a long-range extracellular gradient. CONCLUSIONS: The Wg morphogen gradient forms by rapid movement of ligand through the extracellular space, and depends on continuous secretion and rapid turnover. Endocytosis is not required for Wg movement, but contributes to shaping the gradient by removing extracellular Wg. We propose that the extracellular Wg gradient forms by diffusion.  相似文献   

17.
Hedgehog (Hh) and Wingless (Wg) morphogens specify cell fate in a concentration-dependent manner in the Drosophila wing imaginal disc. Proteoglycans, components of the extracellular matrix, are involved in Hh and Wg stability, spreading, and reception. In this study, we demonstrate that the glycosyl-phosphatidyl-inositol (GPI) anchor of the glypican Dally-like (Dlp) is required for its apical internalization and its subsequent targeting to the basolateral compartment of the epithelium. Dlp endocytosis from the apical surface of Hh-receiving cells catalyzes the internalization of Hh bound to its receptor Patched (Ptc). The cointernalization of Dlp with the Hh/Ptc complex is dynamin dependent and necessary for full-strength Hh signaling. We also demonstrate that Wg is secreted apically in the disc epithelium and that apicobasal trafficking of Dlp allows Wg transcytosis to favor Wg spreading along the basolateral compartment. Thus, Dlp endocytosis is a common regulatory mechanism of both Hh and Wg morphogen action.  相似文献   

18.
19.
20.
Cardiac induction in Drosophila relies on combinatorial Dpp and Wg signaling activities that are derived from the ectoderm. Although some of the actions of Dpp during this process have been clarified, the exact roles of Wg, particularly with respect to myocardial cell specification, have not been well defined. Our present study identifies the Dorsocross T-box genes as key mediators of combined Dpp and Wg signals during this process. The Dorsocross genes are induced within the segmental areas of the dorsal mesoderm that receive intersecting Dpp and Wg inputs. Dorsocross activity is required for the formation of all myocardial and pericardial cell types, with the exception of the Eve-positive pericardial cells. In an early step, the Dorsocross genes act in parallel with tinman to activate the expression of pannier, a cardiogenic gene encoding a Gata factor. Our loss- and gain-of-function studies, as well as the observed genetic interactions among Dorsocross, tinman and pannier, suggest that co-expression of these three genes in the cardiac mesoderm, which also involves cross-regulation, plays a major role in the specification of cardiac progenitors. After cardioblast specification, the Dorsocross genes are re-expressed in a segmental subset of cardioblasts, which in the heart region develop into inflow valves (ostia). The integration of this new information with previous findings has allowed us to draw a more complete pathway of regulatory events during cardiac induction and differentiation in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号