首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高山被孢霉是一种富含多不饱和脂肪酸的丝状真菌,但其脂质过程中NADPH的来源还没有研究透彻。以高山被孢霉(尿嘧啶营养缺陷型)作为出发菌株,研究亚甲基四氢叶酸脱氢酶(MTHFD1)对高山被孢霉脂质合成的影响。首先构建了过表达载体pBIG2-ura5s-MTHFD1,采用根癌土壤杆菌介导转化真菌的方法,将二元表达载体转化进高山被孢霉CCFM501中,在筛选培养基SC-CS平板上进行筛选,进而得到稳定遗传MTHFD1基因的过表达菌株(MA-MTHFD1);其次提取MA-MTHFD1菌株基因组进行PCR鉴定,并结合qPCR分析结果,表明MTHFD1基因成功在高山被孢霉中实现了过量表达;最后通过对MA-MTHFD1中的脂肪酸含量、NADPH含量及NADPH合成途径中相关基因转录水平进行分析,研究MTHFD1基因过表达对脂质合成的影响。实验结果表明,过表达MTHFD1基因可以提高高山被孢霉脂质合成能力。与原养型高山被孢霉相比,MA-MTHFD1菌株中脂肪酸含量提高了40.13%,NADPH的含量提高了26.45%,而且NADPH合成途径中其他相关基因苹果酸酶(ME)和异柠檬酸脱氢酶(IDH)的转录水平也发生了上调。这一系列研究结果表明,在高山被孢霉脂质合成还原力形成中,MTHFD1基因起到了关键作用。这为解析高山被孢霉中NADPH来源及深入研究脂质合成机制,从而对其胞内脂肪酸代谢通路进行分子水平上的改建提供了一定的理论依据。  相似文献   

2.
《Cell reports》2023,42(5):112481
  1. Download : Download high-res image (116KB)
  2. Download : Download full-size image
  相似文献   

3.
Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is a bifunctional enzyme located in the mitochondria. It has been reported to be overexpressed in several malignancies. However, the relationship between the expression of MTHFD2 and non‐small cell lung cancer (NSCLC) remains largely unknown. In this study, we found that MTHFD2 was significantly overexpressed in NSCLC tissues and cell lines. Knockdown of MTHFD2 resulted in reduced cell growth and tumorigenicity in vitro and in vivo. Besides, the mRNA and protein expression level of cell cycle genes, such as CCNA2, MCM7 and SKP2, was decreased in MTHFD2 knockdown H1299 cells. Our results indicate that the inhibitory effect of MTHFD2 knockdown on NSCLC may be mediated via suppressing cell cycle‐related genes. These findings delineate the role of MTHFD2 in the development of NSCLC and may have potential applications in the treatment of NSCLC.  相似文献   

4.
An elevated concentration of total homocysteine (tHcy) in plasma and cerebrospinal fluid is considered to be a risk factor for Alzheimer''s disease (AD) and Parkinson''s disease (PD). Homocysteine (Hcy) levels are influenced by folate concentrations and numerous genetic factors through the folate cycle, however, their role in the pathogenesis of PD remains controversial. Hcy exerts a neurotoxic action and may participate in the mechanisms of neurodegeneration, such as excitotoxicity, oxidative stress, calcium accumulation, and apoptosis. Elevated Hcy levels can lead to prooxidative activity, most probably through direct interaction with N-methyl-D-aspartate (NMDA) receptors and sensitization of dopaminergic neurons to age-related dysfunction and death. Several studies have shown that higher concentration of Hcy in PD is related to long-term administration of levodopa (L-dopa). An elevation of plasma tHcy levels can also reflect deficiencies of cofactors in remethylation of Hcy to methionine (Met) (folates and vitamin B12) and in its transsulfuration to cysteine (Cys) (vitamin B6). It is believed that the increase in the concentration of Hcy in PD can affect genetic polymorphisms of the folate metabolic pathway genes, such as MTHFR (C677T, A1298C and G1793A), MTR (A2756G), and MTHFD1 (G1958A), whose frequencies tend to increase in PD patients, as well as the reduced concentration of B vitamins. In PD, increased levels of Hcy may lead to dementia, depression and progression of the disease.  相似文献   

5.
Folate-mediated one-carbon metabolism is a metabolic network of interconnected pathways that is required for the de novo synthesis of three of the four DNA bases and the remethylation of homocysteine to methionine. Previous studies have indicated that the thymidylate synthesis and homocysteine remethylation pathways compete for a limiting pool of methylenetetrahydrofolate cofactors and that thymidylate biosynthesis is preserved in folate deficiency at the expense of homocysteine remethylation, but the mechanisms are unknown. Recently, it was shown that thymidylate synthesis occurs in the nucleus, whereas homocysteine remethylation occurs in the cytosol. In this study we demonstrate that methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), an enzyme that generates methylenetetrahydrofolate from formate, ATP, and NADPH, functions in the nucleus to support de novo thymidylate biosynthesis. MTHFD1 translocates to the nucleus in S-phase MCF-7 and HeLa cells. During folate deficiency mouse liver MTHFD1 levels are enriched in the nucleus >2-fold at the expense of levels in the cytosol. Furthermore, nuclear folate levels are resistant to folate depletion when total cellular folate levels are reduced by >50% in mouse liver. The enrichment of folate cofactors and MTHFD1 protein in the nucleus during folate deficiency in mouse liver and human cell lines accounts for previous metabolic studies that indicated 5,10-methylenetetrahydrofolate is preferentially directed toward de novo thymidylate biosynthesis at the expense of homocysteine remethylation during folate deficiency.  相似文献   

6.
7.
8.
目的:利用成簇的、规律间隔的短回文重复序列/Cas9核酸酶(CRISPR/Cas9)基因编辑技术构建亚甲基四氢叶酸脱氢酶1(methylenetetrahydrofolate dehydrogenase 1, MTHFD1))基因敲除人胚肾(HEK-293)稳定细胞系。方法:利用在线软件筛选出评分最高的3条针对MTHFD1基因的单向导RNA (sg RNA),然后合成sg RNA序列并将其插入到含有GFP标签的质粒中;重组质粒转染HEK-293细胞后通过流式细胞仪分选出已被转入sg RNA的单细胞,通过测序确认单克隆细胞系中MTHFD1的DNA序列突变状态;最后应用实时荧光定量多聚核苷酸链式反应(real-time quantitative Polymerase Chain Reaction, RT-q PCR)和蛋白质印迹(Western blot)方法检测单克隆细胞中MTHFD1的m RNA和蛋白表达水平。结果:重组载体中含有正确的sg RNA序列;测序结果显示该细胞系中MTHFD1基因发生了单个碱基插入突变和6个碱基的缺失突变;RT-qPCR结果显示单克隆细胞系中MTHFD1在m RNA水平显著降低;Western blot检测成功构建MTHFD1蛋白缺失的HEK-293细胞。结论:本研究利用CRISPR/Cas9技术成功构建的MTHFD1敲除HEK-293细胞系。  相似文献   

9.

BACKGROUND

Genetic variation in enzymes involved in vitamin metabolism is a candidate for analysis in studies of how nutritional covariates may impact a disease state. The role of folate pathway genes in birth defects and cardiovascular disease in humans has been widely studied. Since incidence rates for these disorders vary by geographic origins, it is useful to know which variants are the best candidates for studies based on genotype and allele frequency, as well as linkage disequilibrium (LD) in founder populations.

METHODS

Six polymorphisms in five folate metabolism‐related genes (MTHFR, MTHFD, MTRR, GCP2, and RFC1) were genotyped on a collection of 1064 DNA samples from populations around the world, which were made available by the Centre d'Étude du Polymorphisme Humain (CEPH) consortium for analysis.

RESULTS

In this study we report the genotype frequencies for variants in the MTHFR, MTHFD, MTRR, GCP2, and RFC1 genes, and the LD for two variants (C677T and A1298C) in MTHFR.

CONCLUSIONS

The rare allele frequency for each of the five genes studied varied widely. LD is strongest in Pakistani and Brazilian populations (D′ = 1.0) and weakest in Mexican populations (D′ = 0.45). These findings will allow the selection of variants that will provide the most power in studies of folate pathway genes involving different ancestral populations, and contribute to our knowledge of the population distribution of selected nutritional gene variants. Birth Defects Research (Part A), 2003. © 2003 Wiley‐Liss, Inc.
  相似文献   

10.
11.
12.
13.
Brown adipose tissue (BAT) is a promising weapon to combat obesity and metabolic disease. BAT is thermogenic and consumes substantial amounts of glucose and fatty acids as fuel for thermogenesis and energy expenditure. To study BAT function in large human longitudinal cohorts, safe and precise detection methodologies are needed. Although regarded a gold standard, the foray of PET-CT into BAT research and clinical applications is limited by its high ionizing radiation doses. Here, we show that brown adipocytes release exosomes in blood plasma that can be utilized to assess BAT activity. In the present study, we investigated circulating protein biomarkers that can accurately and reliably reflect BAT activation triggered by cold exposure, capsinoids ingestion and thyroid hormone excess in humans. We discovered an exosomal protein, methylene tetrahydrofolate dehydrogenase (NADP+ dependent) 1-like (MTHFD1L), to be overexpressed and detectable in plasma for all three modes of BAT activation in human subjects. This mitochondrial protein is packaged as a cargo within multivesicular bodies of the endosomal compartment and secreted as exosomes via exocytosis from activated brown adipocytes into the circulation. To support MTHFD1L as a conserved BAT activation response in other vertebrates, we examined a rodent model and also proved its presence in blood of rats following BAT activation by cold exposure. Plasma concentration of exosomal MTHFD1L correlated with human BAT activity as confirmed by PET-MR in humans and supported by data from rats. Thus, we deduce that MTHFD1L appears to be overexpressed in activated BAT compared to BAT in the basal nonstimulated state.  相似文献   

14.
Liver hepatocellular carcinoma (LIHC) is one of the most frequently occurring primary malignant liver tumors and seriously harms people’s health in the world. Methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L) has been shown to be associated with colon cancer cell proliferation, colony formation and invasion. In the present study, a total of 370 LIHC and 51 normal samples data were downloaded from The Cancer Genome Atlas (TCGA) database. Bioinformatics and immunohistochemistry (IHC) analysis showed that MTHFD1L is highly expressed in liver tumors. Correlation analysis suggested the differences of vital status between high- and low-expression MTHFD1L groups of LIHC. Univariate and multivariate Cox proportional hazards regression were performed to identify the relationship between clinical characteristics and overall survival (OS). In addition, to explore whether MTHFD1L has an effect on the immune infiltration of LIHC. The correlation between MTHFD1L expression and 24 immune cells were analyzed by ImmuneCellAI database. Furthermore, we combined three databases CIBERSORT, TIMER and ImmuneCellAI to do a comprehensive validation and determined that dendritic cells (DCs) resting, macrophage M0 and macrophage M2 closely related to the expression of MTHFD1L. The results showed that MTHFD1L was a potential prognostic biomarker for LIHC, and could help to elucidate that how the immune microenvironment promotes liver cancer development.  相似文献   

15.
This article describes a concise and efficient synthesis of 1-acetylen-2,3-di-O-benzyl-tetrahydrofurans from tartaric acid esters using as the key step the stereocontrolled cyclization of Co(2)(CO)(6)-complexed propargylic diols. This molecule led to enantiomerically pure 1,4-anhydro-arabinitol and alpha,beta-dihydroxy-gamma-alkyl-butyrolactones. In the latter case, the critical methylene oxidation at the oxygen vicinal position was performed by RuO(4).  相似文献   

16.
17.
High-mobility-group (HMG) proteins are a family of non-histone chromosomal proteins which bind to DNA. They have been implicated in multiple aspects of gene regulation and cellular differentiation. Sulfoglucuronyl carbohydrate binding protein, SBP-1, which is also localized in the neuronal nuclei, was shown to be required for neurite outgrowth and neuronal migration during development of the nervous system. In order to establish relationship between SBP-1 and HMG family proteins, two HMG proteins were isolated and purified from developing rat cerebellum by heparin-sepharose and sulfatide-octyl-sepharose affinity column chromatography and their biochemical and biological properties were compared with those of SBP-1. Characterization by high performance liquid chromatography--mass spectrometry (HPLC-MS), partial peptide sequencing and western blot analysis showed the isolated HMG proteins to be HMG-1 and HMG-2. Isoelectric focusing, HPLC-MS and peptide sequencing data also suggested that HMG-1 and SBP-1 were identical. Similar to SBP-1, both HMG proteins bound specifically to sulfated glycolipids, sulfoglucuronylglycolipids (SGGLs), sulfatide and seminolipid in HPTLC-immuno-overlay and solid-phase binding assays. The HMG proteins promoted neurite outgrowth in dissociated cerebellar cells, which was inhibited by SGGLs, anti-Leu7 hybridoma (HNK-1) and anti-SBP-1 peptide antibodies, similar to SBP-1. The proteins also promoted neurite outgrowth in explant cultures of cerebellum. The results showed that the cerebellar HMG-1 and -2 proteins have similar biochemical and biological properties and HMG-1 is most likely identical to SBP-1.  相似文献   

18.
Syntheses of trans-(1R,2R) and cis-(1S,2R)-1-amino-2-indanol (AI) were accomplished by a series of enantioselective enzymatic reactions using lipase and transaminase (TA). Lipase catalysed enantioselective hydrolysis of 2-acetoxyindanone was employed to prepare (R)-2-hydroxy indanone (HI). trans-AI (5 mM) (de > 98%) was produced from 20 mM (R)-2- HI using omega-TA and 50 mM (S)-1-aminoindan as an amino donor in water-saturated ethyl acetate. For the production of cis-AI, the diastereomeric (2R)-AI was synthesized from (R)-2-HI using reductive amination, and the kinetic resolution was performed with omega-TA. The enantioselectivity of omega-TA for (2R)-AI was increased to 22.1 in the presence of 5% gamma-cyclodextrin. cis-AI (15.4 mM) (96% de) was obtained from 40 mM (2R)-AI using 30 mM pyruvate and omega-TA (25 mg) in 10 mL of 100 mM phosphate buffer (pH 7.0).  相似文献   

19.
1‐Phenyl‐5‐p‐tolyl‐1H‐1, 2, 3‐triazole (PPTA) was a synthesized compound. The result of acute toxicities to mice of PPTA by intragastric administration indicated that PPTA did not produce any significant acute toxic effect on Kunming strain mice. It exhibited the various potent inhibitory activities against two kinds of bananas pathogenic bacteria, black sigatoka and freckle, when compared with that of control drugs and the inhibitory rates were up to 64.14% and 43.46%, respectively, with the same concentration of 7.06 mM. The interaction of PPTA with human serum albumin (HSA) was studied using fluorescence polarization, absorption spectra, 3D fluorescence, and synchronous spectra in combination with quantum chemistry and molecular modeling. Multiple modes of interaction between PPTA and HSA were suggested to stabilize the PPTA–HSA complex, based on thermodynamic data and molecular modeling. Binding of PPTA to HSA induced perturbation in the microenvironment around HSA as well as secondary structural changes in the protein.  相似文献   

20.
Alterations in folate metabolism may contribute to the process of carcinogenesis by influencing DNA methylation and genomic stability. Polymorphisms in genes encoding enzymes involved in this pathway may alter enzyme activity and consequently interfere in concentrations of homocysteine and S-adenosylmethionine that are important for DNA synthesis and cellular methylation reactions. The objectives were to investigate MTHFD1 G1958A, BHMT G742A, TC2 C776G and TC2 A67G polymorphisms involved in folate metabolism on head and neck cancer risk and the association between these polymorphisms with risk factors. Polymorphisms were investigated in 762 individuals (272 patients and 490 controls) by polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) and Real Time-PCR. Chi-square and Multiple logistic regression were used for the statistical analysis. Multiple logistic regression showed that tobacco and male gender were predictors for the disease (P < 0.05). Hardy–Weinberg equilibrium showed that the genotypic distributions were in equilibrium for both groups in all polymorphisms studied. The BHMT 742GA or AA genotypes associated with tobacco consumption (P = 0.016) increase the risk for head and neck squamous cell carcinoma (HNSCC). The present study suggests that BHMT 742GA polymorphism associated to tobacco modulate HNSCC risk. However, further investigation of gene–gene interactions in folate metabolism and studies in different populations are needed to investigate polymorphisms and HNSCC risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号