首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Female mice were exposed maternally to piperonyl butoxide (PBO) through diet to provide levels of 0 (control), 0.015, 0.03, and 0.06% during gestation and lactation periods, and selected reproductive and neurobehavioral parameters were measured in F1 generation. There was no adverse effect of PBO on litter size, litter weight, or sex ratio at birth. The average body weights of offspring showed no significant effects of PBO treatment through the lactation period in both sexes except for the low‐dose group of females on PND 21. With respect to behavioral developmental parameters, swimming direction of female offspring on PND 7 was significantly accelerated in the low‐dose group (p = 0.022). Exploratory behavior examination in male offspring indicated that total distance and movement time shortened significantly in dose‐related manners (p = 0.0138 and 0.00231, respectively), average time of rearing lengthened significantly in a dose‐related manner (p = 0.00814), and the frequencies of mice with urination was increased significantly in a dose‐related manner (p < 0.05). For spontaneous behavior examination, the average time of movement in males and average time of rearing in females showed slightly dose‐related effects in the F1 generation. The dose levels of PBO in the present study produced some adverse effects in neurobehavioral parameters in mice.  相似文献   

2.
Clothianidin was given in the diet to provide levels of 0% (control), 0.003%, 0.006%, and 0.012% from 5 weeks of age of the F0 generation to 11 weeks of age of the F1 generation in mice. Selected reproductive and neurobehavioral parameters were measured. In exploratory behavior in the F0 generation, average time of movement, number of rearing, and rearing time of adult males increased significantly in a dose‐related manner. There was no adverse effect of clothianidin on litter size, litter weight, or sex ratio at birth. The average body weight of male and female offspring was increased significantly in a dose‐related manner during the early lactation period. With respect to behavioral developmental parameters, swimming head angle at postnatal day (PND) 7 of male offspring was accelerated significantly in a dose‐related manner. Negative geotaxis at PND 7 of female offspring was accelerated significantly in a dose‐related manner. For movement activity of exploratory behavior in the F1 generation, number of rearing of female offspring increased significantly in a dose‐related manner. Movement time of adult males increased significantly in a dose‐related manner. The dose levels of clothianidin in the present study produced several adverse effects in neurobehavioral parameters in mice. Nevertheless, it would appear that the levels of the actual dietary intake of clothianidin are unlikely to produce adverse effects in humans.  相似文献   

3.
Female mice were exposed maternally to imazalil through diet to provide levels of 0 (control), 0.0006, 0.0018, and 0.0054% during gestation and lactation periods, and selected reproductive and neurobehavioral parameters were measured in F1 generation. There was no adverse effect of imazalil on litter size, litter weight, or sex ratio at birth. With respect to behavioral developmental parameters, surface righting on postnatal day 4 of male offspring was delayed significantly in a dose‐related manner (p < 0.05). Regarding exploratory behavior in the F1 generation, movement time was significantly long (p = 0.0206) in the low‐dose group of males at 8 weeks of age. Spontaneous behavior examination in males indicated that movement time increased but in females decreased in the low‐dose groups in the F1 generation. The dose levels of imazalil in the present study produced some adverse effects in neurobehavioral parameters in mice.  相似文献   

4.
Brilliant blue FCF of food color was given in the diets of mice at levels of 0% (control), 0.08, 0.24, and 0.72% from 5 weeks of age in the F0 generation and continuing to 11 weeks of age in the F1 generation and selected reproductive and neurobehavioral parameters were measured. Mice were mated at 9 weeks of age and dams were delivered offspring at 12 weeks of age. Offspring were weaned at 4 weeks of age. Regarding exploratory behavior at 8 weeks of age in the F0 generation, movement time (sec) displayed a significant tendency to be increased and the average time of rearing (sec) displayed a significant tendency to be decreased in females in the treatment groups in a trend test (p = 0.019 and 0.027, respectively). In the F1 generation, the development of surface righting at postnatal day 4 was delayed significantly in the high‐dose group (0.72%) in male and female offspring, and those effects were significantly related to dose in a trend test (p< 0.01 for both). Regarding exploratory behavior at 8 weeks of age in the F1 generation, the number of horizontal activities exhibited a significant tendency to be decreased in females in the treatment groups in a trend test (p = 0.015). Regarding spontaneous behavior, average time of movement (sec) was significantly accelerated in females in the high‐dose group. The dose levels of brilliant blue FCF used in the present study produced a few significant effects on neurobehavioral parameters in multiple generations in mice.  相似文献   

5.
To better understand the effect of arsenic on central nervous system by prenatal and early life exposure, the oxidative stress and neurotransmitter metabolic enzymes were determined in offspring rats' brain cortex and hippocampus. Forty‐eight pregnant rats were randomly divided into four groups, each group was given free access to drinking water that contained 0, 10, 50, and 100 mg/L NaAsO2 from gestation day 6 (GD 6) until postnatal day 42 (PND 42). Once pups were weaned, they started to drink the same arsenic (As)‐containing water as the dams. The level of malondialdehyde in 100 mg/L As‐exposed pup's brain on PND 0 and cortex on PND 28 and 42 were significantly higher than in the control group (p < 0.05). Reduced glutathione (GSH) levels showed a clear decreasing trend in pup's cortex and hippocampus on PND 42. Activity of acetylcholinesterase was significantly higher in 100 mg/L As‐exposed pup's hippocampus than in control group on PND 28 and 42. mRNA expression of glutamate decarboxylase (GAD65 and GAD67) in 100 mg/L As‐exposed pup's cortex or hippocampus on PND 28 and 42 were significantly higher than in control (p < 0.05). These alterations in the neurotransmitters and reduced antioxidant defence may lead to neurobehavioral and learning and memory changes in offspring rats. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:368–378, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20349  相似文献   

6.
This study was conducted to assess potential adverse functional and/or morphological effects of styrene on the neurological system in the F2 offspring following F0 and F1 generation whole-body inhalation exposures. Four groups of male and female Crl:CD (SD)IGS BR rats (25/sex/group) were exposed to 0, 50, 150, and 500 ppm styrene for 6 hr daily for at least 70 consecutive days prior to mating for the F0 and F1 generations. Inhalation exposure continued for the F0 and F1 females throughout mating and through gestation day 20. On lactation days 1 through 4, the F0 and F1 females received styrene in virgin olive oil via oral gavage at dose levels of 66, 117, and 300 mg/kg/day (divided into three equal doses, approximately 2 hr apart). Inhalation exposure of the F0 and F1 females was re-initiated on lactation day 5 and continued through weaning of the F1 or F2 pups on postnatal day (PND) 21. Developmental landmarks were assessed in F1 and F2 offspring. The neurological development of randomly selected pups from the F2 generation was assessed by functional observational battery, locomotor activity, acoustic startle response, learning and memory evaluations, brain weights and dimension measurements, and brain morphometric and histologic evaluation. Styrene exposure did not affect survival or the clinical condition of the animals. As expected from previous studies, slight body weight and histopathologic effects on the nasal olfactory epithelium were found in F0 and F1 rats exposed to 500 ppm and, to a lesser extent, 150 ppm. There were no indications of adverse effects on reproductive performance in either the F0 or F1 generation. There were exposure-related reductions in mean body weights of the F1 and F2 offspring from the mid and high-exposure groups and an overall pattern of slightly delayed development evident in the F2 offspring only from the 500-ppm group. This developmental delay included reduced body weight (which continued through day 70) and slightly delayed acquisition of some physical landmarks of development. Styrene exposure of the F0 and F1 animals had no effect on survival, the clinical condition or necropsy findings of the F2 animals. Functional observational battery evaluations conducted for all F1 dams during the gestation and lactation periods and for the F2 offspring were unaffected by styrene exposure. Swimming ability as determined by straight channel escape times measured on PND 24 were increased, and reduced grip strength values were evident for both sexes on PND 45 and 60 in the 500-ppm group compared to controls. There were no other parental exposure-related findings in the F2 pre-weaning and post-weaning functional observational battery assessments, the PND 20 and PND 60 auditory startle habituation parameters, in endpoints of learning and memory performance (escape times and errors) in the Biel water maze task at either testing age, or in activity levels measured on PND 61 in the 500-ppm group. Taken together, the exposure-related developmental and neuromotor changes identified in F2 pups from dams exposed to 500 ppm occurred in endpoints known to be both age- and weight-sensitive parameters, and were observed in the absence of any other remarkable indicators of neurobehavioral toxicity. Based on the results of this study, an exposure level of 50 ppm was considered to be the NOAEL for growth of F2 offspring; an exposure level of 500 ppm was considered to be the NOAEL for F2 developmental neurotoxicity.  相似文献   

7.
Atrazine (ATZ) was administered daily by gavage to pregnant female Sprague Dawley rats at doses of 0, 6.25, 25 or 50 mg/kg/day, either during gestation, lactation and post‐weaning (G/L/PW cohort) to F1 generation female offspring or only from postnatal day (PND 21) until five days after sexual maturation (vaginal opening) when the estrogen‐primed, luteinizing hormone (LH) surge was evaluated (PW cohort). Additional subgroups of F1 females received the vehicle or ATZ from PND 21–133 or from PND 120–133. Slight reductions in fertility and the percentage of F1 generation pups surviving to PND 21 in the gestationally exposed 50 mg/kg dose group were accompanied by decreased food intake and body weight of dams and F1 generation offspring. The onset of puberty was delayed in of the F1 generation G/L/PW females at doses of 25 and 50 mg/kg/day. F1 generation females in the PW high‐dose ATZ group also experienced a delay in the onset of puberty. ATZ had no effect on peak LH or LH AUC in ovariectomized rats 5 days after sexual maturation, irrespective of whether the F1 generation females were treated from gestation onward or only peripubertally. There was no effect of ATZ treatment on the estrous cycle, peak LH or LH AUC of F1 generation females exposed from gestation through to PND 133 or only for two weeks from PND 120–133. These results indicate that developing females exposed to ATZ are not more sensitive compared to animals exposed to ATZ as young adults  相似文献   

8.
A substantial number of human epidemiological data, as well as experimental studies, suggest that adverse maternal stress during gestation is involved in abnormal behavior, mental, and cognition disorder in offspring. To explore the effect of prenatal stress (PS) on hippocampal neurons, in this study, we observed the dendritic field of pyramidal neurons in hippocampal CA3, examined the concentration of glutamate (Glu), and detected the expression of synaptotagmin‐1 (Syt‐1) and N‐methyl‐D ‐aspartate receptor 1 (NR1) in hippocampus of juvenile female offspring rats. Pregnant rats were divided into two groups: control group (CON) and PS group. Female offspring rats used were 30‐day old. The total length of the apical dendrites of pyramidal neurons in hippocampal CA3 of offspring was significantly shorter in PS than that in CON (p < 0.01). The number of branch points of the apical dendrites of pyramidal neurons in hippocampal CA3 of offspring was significantly less in PS (p < 0.01). PS offspring had a higher concentration of hippocampal Glu compared with CON (p < 0.05). PS offspring displayed increased expression of Syt‐1 and decreased NR1 in hippocampus compared with CON (p < 0.001 and p < 0.01, respectively). The expression of NR1 in different hippocampus subfields of offspring was significantly decreased in PS than that in CON (p < 0.05‐0.01). This study shows that PS increases the Glu in hippocampus and causes apical dendritic atrophy of pyramidal neurons of hippocampal CA3 in offspring rats. The decline of NR1 in hippocampus may be an adaptive response to the increased Glu. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2010  相似文献   

9.
OBJECTIVE: The purpose of this study was to examine whether gestational exposure to major environmental endocrine‐disrupting chemicals, nonylphenol (NP), would lead to nerve behavioral and learning and memory capacity alterations in the male offspring of rats, and reproductive development alterations in the male offspring of rats. METHODS: Dams were gavaged with NP at a dose level of 50 mg/kg/day, 100 mg/kg/day or 200 mg/kg/day daily from gestational day 9 to 15, and at a dose level of 40 mg/kg/day, 80 mg/kg/day or 200 mg/kg/day daily from gestational day 14 to 19 (transplacental exposures). RESULTS: Exposure to 200 mg/kg/day NP produced a significant decrease in learning and memory functions in offspring rats (P<0.05) in Morris water maze task, as demonstrated by the increased escape latency and number of error. In Step‐down Avoidance Test, offspring rats exposed to NP spent more reaction time (RT) and presented lower latency to first step‐down than the control offspring (P<0.01). In utero exposure to 80 and 200 mg/kg/day NP produced a significant decrease in the number of live pups per litter and ratio of anogenital distance to body length on PND 0 (P<0.05), and also testes and prostate weight, activities of ALP, plasma testosterone concentration, cauda epididymis sperm counts, daily sperm production et al. respectively on PND 90 (P<0.05). Histopathological examination of the brain biopsy illustrates that exposure to NP at high dose induces the presence of abnormal distribution of spermatozoa showed in lumina of the seminiferous tubules, and absence of spermatogenesis and spermiogenesis. CONCLUSION: Gestational exposure to nonylphenol might induce neurotoxic and reproductive toxic effects on F1 male rats. Birth Defects Res (Part B) 89:418–428, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Di-(2-ethylhexyl)phthalate (DEHP), a distinctive endocrine-disrupting chemical, is widely used as a plasticizer in a variety of consumer products. It can easily cross the placenta and enter breast milk and then it is rapidly absorbed by offspring. Since it is generally accepted that individuals are more sensitive to chemical exposure during vital developmental periods, we investigated whether DEHP exposure during lactation affects cardiac insulin signaling and glucose homeostasis in the F1 male rat offspring at postnatal day 22 (PND22). Lactating Wistar rats were administered with DEHP (1, 10, and 100 mg/kg/d) or olive oil from lactation day 1 to 21 by oral gavage. All the male pups were perfused and killed on PND22. On the day before the killing, they were kept for fasting overnight and blood was collected. The cardiac muscle was dissected out, washed in ice-cold physiological saline repeatedly and used for the assay of various parameters. DEHP-exposed offspring had significantly lower body weight than the control. DEHP-exposed offspring showed elevated blood glucose, decreased 14C-2-deoxyglucose uptake and 14C-glucose oxidation in cardiac muscle at PND22. The concentration of upstream insulin signaling molecules such as insulin receptor subunit β (InsRβ) and insulin receptor substrate 1 (IRS1) were downregulated in DEHP-exposed offspring. However, no significant alterations were observed in protein kinase B (Akt) and Akt substrate of 160 kDa (AS160). Surprisingly, phosphorylation of IRS1 Tyr632 and Akt Ser473 were diminished. Low levels of glucose transporter type 4 (GLUT4) protein and increased GLUT4 Ser488 phosphorylation which decreases its intrinsic activity and translocation towards plasma membrane were also recorded. Lactational DEHP exposure predisposes F 1 male offspring to cardiac glucometabolic disorders at PND22, which may impair cardiac function.  相似文献   

11.
Little is known about the occurrence of individual variation in sexual behavior and how maternal nutrition can affect this variation. We tested the hypothesis that male offspring of female meadow voles, Microtus pennsylvanicus, that were 30% food restricted (FR) during days 1–7 of lactation (FR 1–7), days 8–14 of lactation (FR 8–14), or late days 15–21 of lactation (FR 15–21) lactation show persistent, negative effects on their sexual behavior as adults relative to male offspring of females that were not food restricted. We measured three components of sexual behavior, attractivity, proceptivity, and receptivity, beginning when the males were 98 d of age. Food restriction during middle lactation (FR 8–14) but not during early (FR 1–7) and late lactation (FR 15–21) was sufficient to induce adult male voles to produce anogenital marks that were not as attractive as those produced by control males. Food restriction during lactation did not affect the proceptive behavior of male voles but did affect their receptivity. Only four of 12 FR 8–14 male voles mated compared to nine of 12 FR 1–7 males, eight of 12 FR 15–21 males, and eight of 11 control males. However, no differences existed in their copulatory behavior among the males that did mate. The body weight of FR 1–7 and FR 8–14 males was lower than that of FR 15–21 and control males when they were between 22 d of age (weaning) and 48 d of age (puberty) but was similar when the males were 98 d of age. Food intake was similar for the FR and control males between day 22 and day 98. It remains unclear, however, whether this type of maternal effect represents strategic programing of offspring behavior in response to the environment experienced by mothers or is a product of developmental processes of food restriction prior to weaning (Evolution 58 , 2004, 2574).  相似文献   

12.
Neonatal rats were exposed to airborne manganese sulfate (MnSO4) (0, 0.05, 0.5, or 1.0 mg Mn/m3) during gestation (d 0–19) and postnatal days (PNDs) 1–18. On PND19, rats were killed, and we assessed biochemical end points indicative of oxidative stress in five brain regions: cerebellum, hippocampus, hypothalamus, olfactory bulb, and striatum. Glutamine synthetase (GS) and tyrosine hydroxylase (TH) protein levels, metallothionein (MT), TH and GS mRNA levels, and reduced and oxidized glutathione (GSH and GSSG, respectively) levels were determined for all five regions. Mn exposure (all three doses) significantly (p=0.0021) decreased GS protein levels in the cerebellum, and GS mRNA levels were significantly (p=0.0008) decreased in the striatum. Both the median and high dose of Mn significantly (p=0.0114) decreased MT mRNA in the striatum. Mn exposure had no effect on TH protein levels, but it significantly lowered TH mRNA levels in the olfactory bulb (p=0.0402) and in the striatum (p=0.0493). Mn eposure significantly lowered GSH levels at the median dose in the olfactory bulb (p=0.032) and at the median and high dose in the striatum (p=0.0346). Significantly elevated (p=0.0247) GSSG, which can be indicative of oxidative stress, was observed in the cerebellum of pups exposed to the high dose of Mn. These data reveal that alterations of oxidative stress biomarkers resulting from in utero and neonatal exposures of airborne Mn exist. Coupled with our previous study in which similarly exposed rats were allowed to recover from Mn exposure for 3 wk, it appears that many of these changes are reversible. It is important to note that the doses of Mn utilized represent levels that are a hundred- to a thousand-fold higher than the inhalation reference concentration set by the United States Environmental Protection Agency.  相似文献   

13.
The aim of this study was to investigate whether sex, season, and/or chronotype influence the sleep behavior of university students. Detailed data were collected on activity/rest patterns by wrist actigraphy combined with diaries. Thirty‐four medical students (19 female and 15 male) were monitored by Actiwatch® actometers for 15 consecutive days in May and again in November. The data of a modified Horne and Östberg chronotype questionnaire, which were collected from 1573 female and 1124 male medical school students surveyed in the spring and autumn over an eight‐year period, were evaluated. Actiwatch® sleep analysis software was used to process the activity data with statistical analyses performed with ANOVA. We found no significant sex‐specific differences in sleep efficiency, sleep onset latency, or actual sleep‐time duration. However, we did find a difference in sleep efficiency between morning and evening types, with morning types having a higher sleep efficiency (87.9%, SD=1.3) than evening types (84.3%, SD=0.87%; p=0.007). Seasonal differences were also detected: the actual sleep‐time duration in autumn was significantly longer (mean 6.9 h, SD=0.13 h) than in spring (6.6 h, SD=0.1 h; p=0.013). Evaluation of the chronotype questionnaire data showed that individuals with no special preference for morningness or eveningness (i.e., so‐called intermediates) were most common. The distribution of chronotypes was related to the sex of subject. Men displayed eveningness significantly more often than women (28.9% males vs. 20.8% females; p<0.001), while females exhibited greater morningness (20.3% females vs.15.6% males; p<0.001). Sex influences chronotype distribution, but not actual sleep time‐duration, sleep onset latency, or sleep efficiency. The latter, however, differed among chronotypes, while actual sleep‐time duration was affected by season.  相似文献   

14.
The maternal protein diet during the perinatal period can program the health of adult offspring. This study in rats evaluated the effects of protein quantity and quality in the maternal diet during gestation and lactation on weight and adiposity in female offspring. Six groups of dams were fed a high-protein (HP; 47% protein) or normal-protein (NP; 19% protein) isocaloric diet during gestation (G) using either cow's milk (M), pea (P) or turkey (T) proteins. During lactation, all dams received the NP diet (protein source unchanged). From postnatal day (PND) 28 until PND70, female pups (n=8) from the dam milk groups were exposed to either an NP milk diet (NPMW) or to dietary self-selection (DSS). All other pups were only exposed to DSS. The DSS design was a choice between five food cups containing HPM, HPP, HPT, carbohydrates or lipids. The weights and food intakes of the animals were recorded throughout the study, and samples from offspring were collected on PND70. During the lactation and postweaning periods, body weight was lower in the pea and turkey groups (NPG and HPG) versus the milk group (P<.0001). DSS groups increased their total energy and fat intakes compared to the NPMW group (P<.0001). In all HPG groups, total adipose tissue was increased (P=.03) associated with higher fasting plasma leptin (P<.05). These results suggest that the maternal protein source impacted offspring body weight and that protein excess during gestation, irrespective of its source, increased the risk of adiposity development in female adult offspring.  相似文献   

15.
Male and female mice were housed in cages, containing different types of bedding materials (wood flakes or pulp chips), from 4 weeks of age in the F0 generation to 11 weeks of age in the F1 generation; selected reproductive and neurobehavioral parameters were measured in the F1 generation. There were no adverse effects of bedding materials on litter size, litter weight, or sex ratios at the time of birth. With regard to behavioral development parameters, bedding materials did not influence any variables (p > 0.05) in both sexes. Regarding exploratory behavior in the F1 generation, number of defecations significantly varied (p = 0.0203) with bedding materials in males at 3 weeks of age. The number of horizontal activities also significantly varied (p = 0.0342) with bedding materials in males at 8 weeks of age. Multiple‐T water maze performance data indicated that the time required was significantly shortened across trials in pulp chips group than wood flakes group in males (p = 0.0211). Moreover, all spontaneous behavior variables in males significantly varied with bedding materials, particularly the average time of movement was significantly different (p = 0.0037) in distance between parallel lines of types of bedding materials in the F1 generation. The present study shows that bedding materials influence the neurobehavioral development in mice  相似文献   

16.
17.
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are relevant to fetal and infant growth and development. Objective: to assess whether long-term exposure to dietary ω-3 PUFA imbalance alters pre- and/or postnatal pups' development and reproductive function later in life. Mice dams were fed with ω-3 PUFA Control (soybean oil, 7%), Deficient (sunflower oil, 7%) or Excess (blend oil; 4.2% cod-liver+2.8% soybean) diet before conception and throughout gestation-lactation and later on, their pups received the same diet from weaning to adulthood. Offspring somatic, neurobiological and reproductive parameters were evaluated. Excess pups were lighter during the preweaning period and shorter in length from postnatal day (PND) 7 to 49, compared to Control pups (P<.05). On PND14, the percentage of pups with eye opening in Excess group was lower than those from Control and Deficient groups (P<.05). In Excess female offspring, puberty onset (vaginal opening and first estrus) occurred significantly later and the percentage of parthenogenetic oocytes on PND63 was higher than Control and Deficient ones (P<.05). Deficient pups were shorter in length (males: on PND14, 21, 35 and 49; females: on PND14, 21 and 42) compared with Control pups (P<.05). Deficient offspring exhibited higher percentage of bending spermatozoa compared to Control and Excess offspring (P<.05). These results show that either an excessively high or insufficient ω-3 PUFA consumption prior to conception until adulthood seems inadvisable because of the potential risks of short-term adverse effects on growth and development of the progeny or long-lasting effects on their reproductive maturation and function.  相似文献   

18.
In mammals with biparental care of offspring, males and females may bear substantial energetic costs of reproduction. Adult strategies to reduce energetic stress include changes in activity patterns, reduced basal metabolic rates, and storage of energy prior to a reproductive attempt. I quantified patterns of behavior in five groups of wild siamangs (Symphalangus syndactylus) to detect periods of high energetic investment by adults and to examine the relationships between infant care and adult activity patterns. For females, the estimated costs of lactation peaked at around infant age 4–6 months and were low by infant age 1 year, whereas the estimated costs of infant‐carrying peaked between ages 7 and 12 months, and approached zero by age 16 months. There was a transition from primarily female to male care in the second year of life in some groups. Females spent significantly less time feeding during lactation than during the later stages of infant care, suggesting that female siamangs do not use increased food intake to offset the costs of lactation. Female feeding time was highest between infant ages 16 and 21 months, a period of relatively low female investment in the current offspring that coincided with the period of highest male investment in infant care. This suggests that male care may reduce the costs of infant care for females in the later stages of a reproductive attempt. The female energy gain resulting from male care was likely invested in somatic maintenance and future reproduction, rather than the current offspring. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
The expression profile of Haptoglobin (Hp) gene in total milk somatic cells (SCC) of high-yielding cross-bred Karan Fries (KF) was studied during early, mid, and late lactation cycle. Milk samples (200 ml/animals) were collected from 10 high-yielding and 10 low-yielding cows throughout the lactation cycle (from day 7 to day 300) with an interval of one month. Relative mRNA expression profiles of Hp by RT polymerase chain reaction was studied in high-yielding cows, whereas low-yielding cows were taken as control. The folds of induction of Hp was significantly (p < 0.001) downregulated by a mean factor of 0.207 in milk SCC during early lactating cows. Whereas, it was significantly (p < 0.01) upregulated by a mean factor of 20.888 during mid lactation. The expression was unaltered during the late lactation. The study demonstrates that Hp is synthesized within the mammary gland and significantly upregulated during mid-lactation period compared to other stages of lactation cycle.  相似文献   

20.
Alterations in the milk constituents throughout the lactation cycle have been studied in 20 Karan-Fries cross-bred cows (Holstein Fresian x Tharparkar) divided into two groups, viz. elite (n = 10) and non-elite (n = 10). About 100 ml of composite milk samples (from all the quarters) were collected through hand milking in sterile tubes from the day of calving at 15-day interval till 300 days of lactation cycle. Different milk constituents (viz. fat, protein, lactose, Solid not fat) were estimated by automatic milk analyzer. The daily milk yield varied significantly (p < 0.01) between group and different days of lactation cycle. Milk fat percentage of milk did not differ significantly between groups and different days of lactation cycle. Milk protein and lactose percentage did not differ significantly between groups but differed significantly (p < 0.001) between days. Solid not fat (SNF) percentage of milk was significantly (p < 0.01) higher in elite cows compared to non-elite cows and also varied significantly (p < 0.05) during different days of lactation cycle. In both the group of cows, milk protein, fat, and SNF percentage was highest and lactose percentage was lowest up to 1st week of lactation cycle and rapidly declined thereafter due to the transition of the colostrum into milk. After 2nd week of lactation, all the milk constituents under study were almost remained unaltered till the end of the cycle. The above stated investigation not only substantiates the already existing information of lactation stage-specific alteration in milk constituents but also depict the exact point of transition of these constituents during the lactation cycle so the nutritional and managemental interventions could be carried out in proper time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号