首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
胃肠道内源菌群组成了人体内最大的微生物环境,它构成复杂,种类繁多,并且与人类的疾病和健康息息相关。同时新生儿阶段是建立肠道微生态系统的关键时期。对于新生儿来讲,肠道细菌定植过程中发生的异常可以提高许多疾病的发病风险。近年来国内外学者对新生儿肠道细菌定植状况及其影响因素进行了深入的临床和基础研究并取得了一定的进展。本文对影响生命早期肠道微生态系统建立和发展的主要因素进行系统地阐述,这些影响因素包括孕妇的口腔卫生、分娩时间、喂养方式、分娩方式、抗生素的使用以及益生菌的应用等。  相似文献   

2.
Many childhood diseases such as autism spectrum disorders, allergic disease, and obesity are on the increase. Although environmental factors are thought to play a role in this increase. The mechanisms at play are unclear but increasing evidence points to an interaction with the gastrointestinal microbiota as being potentially important. Recently this community of bacteria and perturbation of its colonization in early life has been linked to a number of diseases. Many factors are capable of influencing this colonization and ultimately leading to an altered gut microbiota which is known to affect key systems within the body. The impact of the microbial composition of our gastrointestinal tract on systems outside the gut is also becoming apparent. Here we highlight the factors that are capable of impacting on microbiota colonization in early‐life and the developing systems that are affected and finally how this may be involved in the manifestation of childhood diseases. Birth Defects Research (Part C) 105:296–313, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
The pioneer microbiota of the neonatal gut are essential for gut maturation, and metabolic and immunologic programming. Recent research has shown that early bacterial colonization may impact the occurrence of disease later in life (microbial programming). Despite early conflicting evidence, it has long been considered that the womb is a sterile environment and human microbial colonization begins at birth. In the last few years, several findings have reiterated the presence of microbes in infant first stool (meconium) and pointed to the existence of in utero microbial colonization of the infant gut. The dominant bacterial taxa detected in meconium specimens belong to the Enterobacteriaceae family (Escherichia genus) and lactic acid bacteria (notably members of the genera Leuconostoc, Enterococcus, and Lactococcus). Maternal atopy promotes dominance of Enterobacteriaceae in newborn meconium, which in turn may lead to respiratory problems in the infant. This microbial interaction with the host immune system may in fact, originate during fetal life. Our review evaluates the evidence for an intrauterine origin of meconium microbiota, their composition and influences, and potential clinical implications on infant health. Birth Defects Research (Part C) 105:265–277, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
BackgroundIn intensive pig husbandry systems, antibiotics are frequently administrated during early life stages to prevent respiratory and gastro-intestinal tract infections, often in combination with stressful handlings. The immediate effects of these treatments on microbial colonization and immune development have been described recently. Here we studied whether the early life administration of antibiotics has long-lasting effects on the pig’s intestinal microbial community and on gut functionality.Conclusions/SignificanceThe results obtained in this study indicate that early life (day 4 after birth) perturbations have long-lasting effects on the gut system, both in gene expression (day 55) as well as on microbiota composition (day 176). At day 55 high variance was observed in the microbiota data, but no significant differences between treatment groups, which is most probably due to the newly acquired microbiota during and right after weaning (day 28). Based on the observed difference in gene expression at day 55, it is hypothesized that due to the difference in immune programming during early life, the systems respond differently to the post-weaning newly acquired microbiota. As a consequence, the gut systems of the treatment groups develop into different homeostasis.  相似文献   

5.
The mucosal surfaces of the gut and airways have important barrier functions and regulate the induction of immunological tolerance. The rapidly increasing incidence of chronic inflammatory disorders of these surfaces, such as inflammatory bowel disease and asthma, indicates that the immune functions of these mucosae are becoming disrupted in humans. Recent data indicate that events in prenatal and neonatal life orchestrate mucosal homeostasis. Several environmental factors promote the perinatal programming of the immune system, including colonization of the gut and airways by commensal microorganisms. These complex microbial-host interactions operate in a delicate temporal and spatial manner and have an important role in the induction of homeostatic mechanisms.  相似文献   

6.
This review describes current understandings about the nature of the very low birth weight infant (VLBW) gut microbiome. VLBW infants often experience disruptive pregnancies and births, and prenatal factors can influence the maturity of the gut and immune system, and disturb microbial balance and succession. Many VLBWs experience rapid vaginal or Caesarean births. After birth these infants often have delays in enteral feeding, and many receive little or no mother's own milk. Furthermore the stressors of neonatal life in the hospital environment, common use of antibiotics, invasive procedures and maternal separation can contribute to dysbiosis. These infants experience gastrointestinal dysfunction, sepsis, transfusions, necrotizing enterocolitis, oxygen toxicity, and other pathophysiological consditions that affect the normal microbiota. The skin is susceptible to dysbiosis, due to its fragility and contact with NICU organisms. Dysbiosis in early life may resolve but little is known about the timing of the development of the signature gut microbiome in VLBWs. Dysbiosis has been associated with a number of physical and behavioral problems, including autism spectrum disorders, allergy and asthma, gastrointestinal disease, obesity, depression, and anxiety. Dysbiosis may be prevented or ameliorated in part by prenatal care, breast milk feeding, skin to skin contact, use of antibiotics only when necessary, and vigilance during infancy and early childhood. Birth Defects Research (Part C) 105:252–264, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
由于呼吸道黏膜免疫系统具有很好的防御保护作用和强大的清除病原体的能力,过去学术界曾经一度认为健康机体的肺是无菌的。随着不依赖于体外培养的第二代测序技术的发展,关于肺部共生微生物的结构组成及其免疫调节功能的研究越来越受重视。肺部菌群的结构组成与出生方式、饮食结构、生活环境和抗生素使用等多种因素有关,生命早期的肺部菌群的形成和发育会影响全生命周期的呼吸道疾病的发生和发展。肺部菌群通过与宿主免疫系统相互作用调节肺部免疫稳态,还可以与肠道菌群、呼吸道病毒相互作用影响呼吸道感染。因此,干预生命早期肺部菌群的结构组成可以成为预防和控制呼吸道疾病的有效策略和新靶点。  相似文献   

8.
Kelly D  King T  Aminov R 《Mutation research》2007,622(1-2):58-69
The mammalian gastrointestinal tract harbors a complex microbiota consisting of between 500 and 1000 distinct microbial species. Comparative studies based on the germ-free gut have provided clear evidence that the gut microbiota is instrumental in promoting the development of both the gut and systemic immune systems. Early microbial exposure of the gut is thought to dramatically reduce the incidence of inflammatory, autoimmune and atopic diseases further fuelling the scientific viewpoint, that microbial colonization plays an important role in regulating and fine-tuning the immune system throughout life. Recent molecular diversity studies have provided additional evidence that the human gut microbiota is compositionally altered in individuals suffering from inflammatory bowel disorders, suggesting that specific bacterial species are important to maintaining immunological balance and health. New and exciting insights into how gut bacteria modulate the mammalian immune system are emerging. However, much remains to be elucidated about how commensal bacteria influence the function of cells of both the innate and adaptive immune systems in health and disease.  相似文献   

9.
Humans are colonized after birth by microbial organisms that form a heterogeneous community, collectively termed microbiota. The genomic pool of this macro-community is named microbiome. The gut microbiota is essential for the complete development of the immune system, representing a binary network in which the microbiota interact with the host providing important immune and physiologic function and conversely the bacteria protect themselves from host immune defense. Alterations in the balance of the gut microbiome due to a combination of environmental and genetic factors can now be associated with detrimental or protective effects in experimental autoimmune diseases. These gut microbiome alterations can unbalance the gastrointestinal immune responses and influence distal effector sites leading to CNS disease including both demyelination and affective disorders. The current range of risk factors for MS includes genetic makeup and environmental elements. Of interest to this review is the consistency between this range of MS risk factors and the gut microbiome. We postulate that the gut microbiome serves as the niche where different MS risk factors merge, thereby influencing the disease process.  相似文献   

10.

Background

Acquisition of the intestinal microbiota in early life corresponds with the development of the mucosal immune system. Recent work on caesarean-delivered infants revealed that early microbial composition is influenced by birthing method and environment. Furthermore, we have confirmed that early-life environment strongly influences both the adult gut microbiota and development of the gut immune system. Here, we address the impact of limiting microbial exposure after initial colonization on the development of adult gut immunity.

Methodology/Principal Findings

Piglets were born in indoor or outdoor rearing units, allowing natural colonization in the immediate period after birth, prior to transfer to high-health status isolators. Strikingly, gut closure and morphological development were strongly affected by isolator-rearing, independent of indoor or outdoor origins of piglets. Isolator-reared animals showed extensive vacuolation and disorganization of the gut epithelium, inferring that normal gut closure requires maturation factors present in maternal milk. Although morphological maturation and gut closure were delayed in isolator-reared animals, these hard-wired events occurred later in development. Type I IFN, IL-22, IL-23 and Th17 pathways were increased in indoor-isolator compared to outdoor-isolator animals during early life, indicating greater immune activation in pigs originating from indoor environments reflecting differences in the early microbiota. This difference was less apparent later in development due to enhanced immune activation and convergence of the microbiota in all isolator-reared animals. This correlated with elevation of Type I IFN pathways in both groups, although T cell pathways were still more affected in indoor-reared animals.

Conclusions/Significance

Environmental factors, in particular microbial exposure, influence expression of a large number of immune-related genes. However, the homeostatic effects of microbial colonization in outdoor environments require sustained microbial exposure throughout development. Gut development in high-hygiene environments negatively impacts on normal succession of the gut microbiota and promotes innate immune activation which may impair immune homeostasis.  相似文献   

11.
The gastrointestinal inflammatory disorder, necrotizing enterocolitis (NEC), is among the most serious diseases for preterm neonates. Nutritional, microbiological and immunological dysfunctions all play a role in disease progression but the relationship among these determinants is not understood. The preterm gut is very sensitive to enteral feeding which may either promote gut adaptation and health, or induce gut dysfunction, bacterial overgrowth and inflammation. Uncontrolled inflammatory reactions may be initiated by maldigestion and impaired mucosal protection, leading to bacterial overgrowth and excessive nutrient fermentation. Tumor necrosis factor alpha, toll-like receptors and heat-shock proteins are identified among the immunological components of the early mucosal dysfunction. It remains difficult, however, to distinguish the early initiators of NEC from the later consequences of the disease pathology. To elucidate the mechanisms and identify clinical interventions, animal models showing spontaneous NEC development after preterm birth coupled with different forms of feeding may help. In this review, we summarize the literature and some recent results from studies on preterm pigs on the nutritional, microbial and immunological interactions during the early feeding-induced mucosal dysfunction and later NEC development. We show that introduction of suboptimal enteral formula diets, coupled with parenteral nutrition, predispose to disease, while advancing amounts of mother's milk from birth (particularly colostrum) protects against disease. Hence, the transition from parenteral to enteral nutrition shortly after birth plays a pivotal role to secure gut growth, digestive maturation and an appropriate response to bacterial colonization in the sensitive gut of preterm neonates.  相似文献   

12.
The gastrointestinal microbiome is recognized as a critical component in host immune function, physiology, and behavior. Early life experiences that alter diet and social contact also influence these outcomes. Despite the growing number of studies in this area, no studies to date have examined the contribution of early life experiences on the gut microbiome in infants across development. Such studies are important for understanding the biological and environmental factors that contribute to optimal gut microbial colonization and subsequent health. We studied infant rhesus monkeys (Macaca mulatta) across the first 6 months of life that were pseudo‐randomly assigned to one of two different rearing conditions at birth: mother‐peer‐reared (MPR), in which infants were reared in social groups with many other adults and peers and nursed on their mothers, or nursery‐reared (NR), in which infants were reared by human caregivers, fed formula, and given daily social contact with peers. We analyzed the microbiome from rectal swabs (total N = 97; MPR = 43, NR = 54) taken on the day of birth and at postnatal Days 14, 30, 90, and 180 using 16S rRNA gene sequencing. Bacterial composition differences were evident as early as 14 days, with MPR infants exhibiting a lower abundance of Bifidobacterium and a higher abundance of Bacteroides than NR infants. The most marked differences were observed at 90 days, when Bifidobacterium, Lactobacillus, Streptococcus, Bacteroides, Clostridium, and Prevotella differed across rearing groups. By Day 180, no differences in the relative abundances of the bacteria of interest were observed. These novel findings in developing primate neonates indicate that the early social environment as well as diet influence gut microbiota composition very early in life. These results also lay the groundwork for mechanistic studies examining the effects of early experiences on gut microbiota across development with the ultimate goal of understanding the clinical significance of developmental changes.  相似文献   

13.
The most important trigger for immune system development is the exposure to microbial components immediately after birth. Moreover, targeted manipulation of the microbiota can be used to change host susceptibility to immune-mediated diseases. Our aim was to analyze how differences in early gut colonization patterns change the composition of the resident microbiota and future immune system reactivity. Germ-free (GF) mice were either inoculated by single oral gavage of caecal content or let colonized by co-housing with specific pathogen-free (SPF) mice at different time points in the postnatal period. The microbiota composition was analyzed by denaturing gradient gel electrophoresis for 16S rRNA gene followed by principal component analysis. Furthermore, immune functions and cytokine concentrations were analyzed using flow cytometry, ELISA or multiplex bead assay. We found that a single oral inoculation of GF mice at three weeks of age permanently changed the gut microbiota composition, which was not possible to achieve at one week of age. Interestingly, the ex-GF mice inoculated at three weeks of age were also the only mice with an increased pro-inflammatory immune response. In contrast, the composition of the gut microbiota of ex-GF mice that were co-housed with SPF mice at different time points was similar to the gut microbiota in the barrier maintained SPF mice. The existence of a short GF postnatal period permanently changed levels of systemic regulatory T cells, NK and NKT cells, and cytokine production. In conclusion, a time window exists that enables the artificial colonization of GF mice by a single oral dose of caecal content, which may modify the future immune phenotype of the host. Moreover, delayed microbial colonization of the gut causes permanent changes in the immune system.  相似文献   

14.

Background and Aims

It is known that postnatal functional maturation of the small intestine is facilitated by microbial colonization of the gut. Preterm infants exhibit defects in gut maturation, weak innate immunity against intestinal infection and increased susceptibility to inflammatory disorders, all of which may be related to the inappropriate microbial colonization of their immature intestines. The earliest microbes to colonize the preterm infant gut encounter a naïve, immature intestine. Thus this earliest microbiota potentially has the greatest opportunity to fundamentally influence intestinal development and immune function. The aim of this study was to characterize the effect of early microbial colonization on global gene expression in the distal small intestine during postnatal gut development.

Methods

Gnotobiotic mouse models with experimental colonization by early (prior to two weeks of life) intestinal microbiota from preterm human infants were utilized. Microarray analysis was used to assess global gene expression in the intestinal epithelium.

Results and Conclusion

Multiple intestinal genes involved in metabolism, cell cycle regulation, cell-cell or cell-extracellular matrix communication, and immune function are developmental- and intestinal microbiota- regulated. Using a humanized gnotobiotic mouse model, we demonstrate that certain early preterm infant microbiota from prior to 2 weeks of life specifically induce increased NF-κB activation and a phenotype of increased inflammation whereas other preterm microbiota specifically induce decreased NF-κB activation. These fundamental differences correlate with altered clinical outcomes and suggest the existence of optimal early microbial communities to improve health outcomes.  相似文献   

15.
Colonizing commensal bacteria after birth are required for the proper development of the gastrointestinal tract. It is believed that bacterial colonization pattern in neonatal gut affects gut barrier function and immune system maturation. Studies on the development of faecal microbiota in infants showed that the neonatal gut was first colonized with enterococci followed by other microbiota such as Bifidobacterium. Other studies showed that babies who developed allergy were less often colonized with Enterococcus during the first month of life as compared to healthy infants. Many studies have been conducted to elucidate how bifidobacteria or lactobacilli, some of which are considered probiotic, regulate infant gut immunity. However, fewer studies have been focused on enterococi. In our study, we demonstrate that E. faecalis, isolated from healthy newborns, suppress inflammatory responses activated in vivo and in vitro. We found E. faecalis attenuates proinflammatory cytokine secretions, especially IL-8, through JNK and p38 signaling pathways. This finding shed light on how the first colonizer, E.faecalis, regulates inflammatory responses in the host.  相似文献   

16.
Microbes living in the mammalian gut exist in constant contact with immunity system that prevents infection and maintains homeostasis. Enteric alpha defensins play an important role in regulation of bacterial colonization of the gut, as well as in activation of pro- and anti-inflammatory responses of the adaptive immune system cells in lamina propria. This review summarizes currently available data on functions of mammalian enteric alpha defensins in the immune defense and changes in their secretion in intestinal inflammatory diseases and cancer.  相似文献   

17.
Some clinical studies have suggested a relationship between allergic diseases and gut microbiota. We aimed to study bifidobacterial colonization at species and strain levels in ten allergic French infants included at their first clinical consultation and 20 controls matching for age at sampling, mode of delivery, per partum antibiotics, type of feeding and antibiotics in the first weeks of life. The faecal microbiota was analyzed by culture methods and TTGE. Bifidobacterial species and strains were identified using multiplex PCR and Box-PCR fingerprinting. No differences were observed between groups in the number of colonized infants or in the levels of colonization by the main aerobic and anaerobic genera. All infants were colonized with high levels of Bifidobacterium except for one in each group. One to 5 Bifidobacterium species and 1 to 7 strains were observed per subject independently of allergic status and age at sampling. Our study showed the infants to be colonized by several species and strains, including several strains from the same species. This diversity in Bifidobacterium colonization was not related with the allergic status and showed that the link between Bifidobacterium colonization and allergic diseases is complex and cannot be restricted to the role attributed to Bifidobacterium species.  相似文献   

18.

Background

Early microbial colonization of the gut reduces the incidence of infectious, inflammatory and autoimmune diseases. Recent population studies reveal that childhood hygiene is a significant risk factor for development of inflammatory bowel disease, thereby reinforcing the hygiene hypothesis and the potential importance of microbial colonization during early life. The extent to which early-life environment impacts on microbial diversity of the adult gut and subsequent immune processes has not been comprehensively investigated thus far. We addressed this important question using the pig as a model to evaluate the impact of early-life environment on microbe/host gut interactions during development.

Results

Genetically-related piglets were housed in either indoor or outdoor environments or in experimental isolators. Analysis of over 3,000 16S rRNA sequences revealed major differences in mucosa-adherent microbial diversity in the ileum of adult pigs attributable to differences in early-life environment. Pigs housed in a natural outdoor environment showed a dominance of Firmicutes, in particular Lactobacillus, whereas animals housed in a hygienic indoor environment had reduced Lactobacillus and higher numbers of potentially pathogenic phylotypes. Our analysis revealed a strong negative correlation between the abundance of Firmicutes and pathogenic bacterial populations in the gut. These differences were exaggerated in animals housed in experimental isolators. Affymetrix microarray technology and Real-time Polymerase Chain Reaction revealed significant gut-specific gene responses also related to early-life environment. Significantly, indoor-housed pigs displayed increased expression of Type 1 interferon genes, Major Histocompatibility Complex class I and several chemokines. Gene Ontology and pathway analysis further confirmed these results.

Conclusion

Early-life environment significantly affects both microbial composition of the adult gut and mucosal innate immune function. We observed that a microbiota dominated by lactobacilli may function to maintain mucosal immune homeostasis and limit pathogen colonization.  相似文献   

19.
The gut associated lymphoid tissue (GALT) should protect intestinal mucosa against pathogens, but also avoid hypersensitivity reactions to food proteins, normal bacterial flora and other environmental macromolecules. The interaction between epithelial cells and microflora is fundamental to establish gut mucosal barrier and GALT development. The normal colonization of intestine by commensal bacteria is thus crucial for a correct development of mucosal immune system. Probiotic bacteria are normal inhabitants of microflora and may confer health benefits to the host. The modification of the intestinal microflora towards a healthier probiotics enriched microflora may generate beneficial mucosal immunomodulatory effects and may represent a new strategy to cure intestinal and allergic diseases. The health benefits may be specific for different probiotic strains. Ongoing research is providing new insights into the probiotic beneficial effects and related mechanisms. This review represents an update of immunomodulatory activity of different probiotics and of the more accredited mechanisms underlying such activities. Presented at the Second Probiotic Conference, Košice, 15–19 September 2004, Slovakia.  相似文献   

20.
The human gut microbiota has been the interest of extensive research in recent years and our knowledge on using the potential capacity of these microbes are growing rapidly. Microorganisms colonized throughout the gastrointestinal tract of human are coevolved through symbiotic relationship and can influence physiology, metabolism, nutrition and immune functions of an individual. The gut microbes are directly involved in conferring protection against pathogen colonization by inducing direct killing, competing with nutrients and enhancing the response of the gut-associated immune repertoire. Damage in the microbiome (dysbiosis) is linked with several life-threatening outcomes viz. inflammatory bowel disease, cancer, obesity, allergy, and auto-immune disorders. Therefore, the manipulation of human gut microbiota came out as a potential choice for therapeutic intervention of the several human diseases. Herein, we review significant studies emphasizing the influence of the gut microbiota on the regulation of host responses in combating infectious and inflammatory diseases alongside describing the promises of gut microbes as future therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号