首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tabalumab, a human IgG4 monoclonal antibody (mAb) with neutralizing activity against both soluble and membrane B‐cell activating factor (BAFF), has been under development for the treatment of autoimmune diseases. The purpose of this study was to determine the potential adverse effects of maternal tabalumab exposure on pregnancy, parturition, and lactation of the mothers and on the growth, viability, and development of the offspring through postnatal day (PND) 204. Tabalumab was administered by subcutaneous injection to presumed pregnant cynomolgus monkeys (16–19 per group) every 2 weeks from gestation day (GD) 20 to 22 until parturition at doses of 0, 0.3, or 30 mg/kg. Evaluations in mothers and infants included clinical signs, body weight, toxicokinetics, blood lymphocyte phenotyping, T‐cell‐dependent antibody response (infants only), antitherapeutic antibody (ATA), organ weights (infants only), and gross and microscopic histopathology. Infants were also examined for external and visceral morphologic and neurobehavioral development. There were no adverse tabalumab‐related effects on maternal or infant endpoints. An expected pharmacological decrease in peripheral blood B‐lymphocytes occurred in adults and infants; however, B‐cell recovery was evident by PND154 in adults and infants at 0.3 mg/kg and by PND204 in infants at 30 mg/kg. At 30 mg/kg, a reduced IgM antibody response to T‐cell‐dependent antigen keyhole limpet hemocyanin (KLH) was observed following primary immunization. Following secondary KLH immunization, all infants in both dose groups mounted anti‐KLH IgM and IgG antibody responses similar to control. Placental and mammary transfer of tabalumab was demonstrated. In conclusion, the no‐observed‐adverse‐effect level for maternal and developmental toxicity was 30 mg/kg, the highest dose tested. Exposures at 30 mg/kg provide a margin of safety of 16× the anticipated clinical exposure.  相似文献   

2.
LY500307 is a selective estrogen receptor beta (ERβ) agonist that was developed for the treatment of benign prostatic hyperplasia. The in vitro functional selectivity of LY500307 for ERβ agonist activity is 32‐fold above the activity at the alpha receptor (ERα). LY500307 was evaluated in a series of male (M) and female (F) rat fertility and rat and rabbit embryo‐fetal development (EFD) studies, using 20 or 25 animals/group. LY500307 was administered daily by oral gavage starting 2 weeks (F) or 10 weeks (M) before mating, during cohabitation, until necropsy (M) or through gestation day (GD) 6 (F) in the fertility studies and from GD 6 to 17 (rats) or GD 7 to 19 (rabbits) in the EFD studies. Dosage levels of LY500307 ranged from 0.03 to 10 mg/kg/day for rats and from 1 to 25 mg/kg/day for rabbits. Fertility, estrous, maternal reproductive endpoints, conceptus viability, sperm parameters, organ weights, and histopathology were evaluated in the fertility studies. Maternal reproductive endpoints and fetal viability, weight, and morphology were evaluated in the EFD studies. Toxicokinetics were assessed in satellite animals. At 10 mg/kg/day in the male fertility study, findings included decreased body weight (BW); food consumption (FC); fertility, mating, and conception indices; sperm concentration; and reproductive tissue weight (associated with atrophic histologic changes). In the female fertility study, effects included decreased BW and FC at ≥0.3 mg/kg/day and persistent diestrus, delayed mating, and reduced fertility/conception indices at 3 mg/kg/day. In the rat EFD study, findings included decreased maternal BW and FC and increased incidences of adverse clinical signs, abortion, maternal mortality/moribundity, postimplantation loss, and fetal skeletal variations at 3 mg/kg/day. Effects in the rabbit EFD study were limited to decreases in maternal BW and FC at 25 mg/kg/day. In general, systemic maternal exposure increased proportionally with dosage in rats, but less than proportionally in rabbits. In conclusion, the no‐observed adverse effect levels following LY500307 administration were 1 mg/kg/day for male rat fertility, 0.3 mg/kg/day for female rat fertility and EFD, and 25 mg/kg/day for rabbit EFD. Adverse reproductive and developmental effects only occurred at or above parentally toxic dosage levels and were considered predominantly due to off‐target ERα effects.  相似文献   

3.
BACKGROUND: Sodium thioglycolate, which has widespread occupational and consumer exposure to women from cosmetics and hair‐care products, was evaluated for developmental toxicity by topical exposure during the embryonic and fetal periods of pregnancy METHODS: Timed‐mated Sprague–Dawley rats (25/group) and New Zealand White (NZW) rabbits (24/group) were exposed to sodium thioglycolate in vehicle (95% ethanol:distilled water, 1:1) by unoccluded topical application on gestational days (GD) 6–19 (rats) or 6–29 (rabbits) for 6 hr/day, at 0, 50, 100, or 200 mg/kg body weight/day (rats) and 0, 10, 15, 25, or 65 mg/kg/day (rabbits). At termination (GD 20 rats; GD 30 rabbits), fetuses were examined for external, visceral, and skeletal malformations and variations. RESULTS: In rats, maternal topical exposure to sodium thioglycolate, at 200 mg/kg/day (the highest dose tested) on GD 6–19, resulted in maternal toxicity, including reduced body weights and weight gain, increased relative water consumption and one death. Treatment‐related increases in feed consumption and changes at the application site occurred at all doses, in the absence of increased body weights or body weight change. Fetal body weights/litter were decreased at 200 mg/kg/day, with no other embryo/fetal toxicity and no treatment‐related teratogenicity in any group. In rabbits, maternal topical exposure to sodium thioglycolate on GD 6–29 resulted in maternal dose‐related toxicity at the dosing site in all groups; no maternal systemic toxicity, embryo/fetal toxicity, or treatment‐related teratogenicity were observed in any group. CONCLUSIONS: A no observed adverse effect level (NOAEL) was not identified for maternal toxicity in either species with the dosages tested. The developmental toxicity NOAEL was 100 mg/kg/day (rats) and ≥65 mg/kg/day (rabbits; the highest dose tested). The clinical relevance of theses study results is uncertain because no data were available for levels, frequency, or duration of exposures in female workers or end users. Birth Defects Research Part B 68:144–161, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

4.
PPD10558 is an orally active, lipid‐lowering 3–hydroxy‐3‐methylglutaryl coenzyme A (HMG‐CoA) reductase inhibitor (statin) being developed as a treatment for hypercholesterolemia in patients who have not been able to tolerate statins because of statin‐associated myalgia. We have studied the potential developmental toxicity effects of PPD10558 in pregnant rats and rabbits given daily oral doses during the period of organogenesis. Rats were dosed with 0, 20, 80, or 320 mg/kg/day from Gestation Day (GD) 6 to 17 and rabbits received dose levels of 0, 12.5, 25, or 50 mg/kg/day from GD 6 to 18. Additional groups in both studies served as toxicokinetic animals and received the PPD10558 in the same manner as the main study groups at the same dose levels. Blood samples were collected from toxicokinetic animals at designated time points on GD 6 and 17 in rats and GD 6 and 18 in rabbits. Fetal exposure in rats was assessed on GD 20. Maternal and developmental parameters were evaluated in rats and rabbits on GD 20 and GD 29, respectively. No maternal and developmental toxicity was observed at any of the dose levels used in the rat study. Evidence of fetal exposure was determined in fetal plasma with mean fetal concentrations of PPD10558 and the metabolite (PPD11901) found to be between 1 and 6% of the mean maternal concentrations. In rabbits, marked maternal toxicity including mortality (eight deaths; 1 dose at 25 and 7 at 50 mg/kg/day), abortions (2 at 25 mg/kg/day and 6 at 50 mg/kg/day) and reduction in gestation body weight, gestation body weight changes and decreased food consumption were observed. In addition, fetal body weights of the combined sexes were significantly reduced at 50 mg/kg/day in comparison with the controls. Mean peak exposure (Cmax) and total exposure (AUC(0–24)) of PPD11901 in both rats and rabbits were higher than that of PPD10558 on GD 6 and GD 17 at each of the three dose levels.. Based on the results of these studies, the no observed adverse effect level (NOAEL) for maternal and developmental toxicity in rats was considered to be ≥320 mg/kg/day, the highest dose level used in the study. The NOAEL for maternal and developmental toxicity in rabbits was 12.5 mg/kg/day and 25 mg/kg/day, respectively.  相似文献   

5.
Atrazine (ATR), hydroxyatrazine (OH‐ATR), and the three chloro metabolites of ATR (deethylatrazine [DEA], deisopropylatrazine [DIA], diaminochlorotriazine [DACT]) were evaluated for developmental effects in rats and rabbits. Three developmental toxicity studies were conducted on ATR in rats (two studies) and rabbits and a developmental toxicity study was conducted in rats for each of the four ATR metabolites DEA, DIA, DACT, and OH‐ATZ. ATR administration by gavage to pregnant rats and rabbits from implantation (gestation day [GD] 6 in rat, GD 7 in rabbit) through closure of the palate (GD 15 in rat and GD 19 in rabbit) did not statistically significantly alter the incidence of developmental abnormalities or malformations at dose levels up to 100 (rat) or 75 (rabbit) mg/kg bw/day. There were no effects on developmental toxicity parameters for DEA, DIA, DACT, or OH‐ATR at oral dose levels up to 100, 100, 150, or 125 mg/kg bw/day, respectively, with the exception of reductions in fetal body weight by DACT and OH‐ATR in the presence of decreased maternal body weight gain. ATR did not adversely affect developmental end points in a two‐generation study conducted in rats exposed to dose levels up to 500 ppm (38.7 mg/kg/day) in the diet. The 500‐ppm dose level resulted in significantly reduced maternal body weight gain. Overall, data show that neither ATR nor its metabolites statistically significantly affected rat or rabbit embryo‐fetal development even at dose levels producing maternal toxicity.  相似文献   

6.
BACKGROUND : Angiogenesis plays a key role in embryo–fetal development and, based on nonclinical safety data, the majority of vascular endothelial growth factor (VEGF)-targeted antiangiogenic agents used in cancer therapy are not recommended during pregnancy. We investigated the effects of sunitinib (an oral inhibitor of multiple receptor tyrosine kinases [RTKs] including VEGF-receptors) on embryo–fetal development. METHODS : Presumed-pregnant Sprague-Dawley rats and New Zealand White rabbits received repeated daily oral doses of sunitinib (0–30 mg/kg/day), during the major period of organogenesis. Clinical/physical examinations were performed throughout the gestation phase, and blood samples were collected to determine systemic exposure. Necropsy (including uterine examination) was performed on all animals and fetal morphology was examined. RESULTS : The no-observed-adverse-effect level was 1–5 mg/kg/day for maternal toxicity and 3 mg/kg/day for developmental toxicity in rats; 1 and 0.5 mg/kg/day, respectively, in rabbits. Embryo–fetal toxicity included decreases in the number of live fetuses and increases in the numbers of resorptions and post-implantation/complete litter losses; these were observed at doses of ≥5 mg/kg/day in rats and 5 mg/kg/day in rabbits. Malformations included fetal skeletal malformations (generally thoracic/lumbar vertebral alterations) in rats and cleft lip/palate in rabbits. These developmental effects were observed at ∼5.5- (rats) and ∼0.3-times (rabbits) the human systemic exposure at the approved sunitinib dose (50 mg/day). CONCLUSIONS : Similar effects have been reported with the prototype monoclonal antibody bevacizumab. As is typically observed for potent inhibitors of RTKs involved in angiogenesis, sunitinib was associated with embryo–fetal developmental toxicity in rats and rabbits at clinically relevant dose levels. Birth Defects Res (Part B) 33:204–213, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

7.
A humanized monoclonal antibody targeting transforming growth factor β1 (TGF‐β1 mab) has been used in development for the treatment of chronic kidney disease. Embryo‐fetal development studies were conducted in rats and rabbits using 30 and 25 animals per group, respectively. The TGF‐β1 mab was administered subcutaneously to rats at 0, 2, or 50 mg/kg/dose on gestation days (GDs) 6, 10, and 14 and intravenously to rabbits at 0 or 3 mg/kg/dose on GDs 7, 12 to 19, and at 30 mg/kg/dose on GDs 7, 12, 14, 16, and 18. Maternal reproductive endpoints and fetal viability, weight, and morphology were evaluated. There was no indication of maternal or embryo‐fetal toxicity in the rat. Effects in the rabbit were limited to the fetus where the 30 mg/kg TGF‐β1 mab dose produced a slight decrease in fetal weight and an increase in the incidence of retrocaval ureter and an absent and/or malpositioned kidney/ureter in two fetuses. In conclusion, TGF‐β1 mab produced no adverse maternal or embryo‐fetal findings in rats when administered ≤50 mg/kg on GDs 6, 10, and 14. TGF‐β1 mab did not demonstrate maternal toxicity or embryo‐fetal lethality at doses as high as 30 mg/kg when administered on GDs 7, 12, 14, 16, and 18 in rabbits. Fetal growth and morphology were affected only at 30 mg/kg; thus, the no observed adverse effect level was 3 mg/kg in rabbits. The margin of safety for both rats and rabbits was ≥37‐fold the clinical exposure level.  相似文献   

8.
BACKGROUND: CNTO 530is a biopharmaceutical consisting of a novel peptide that mimics the actions of erythropoietin, fused to the Fc fragment of human IgG4. Pharmacokinetic and pharmacodynamic studies showed that CNTO 530 produced sustained increases in red blood cell parameters in rats and rabbits and that the serum half life of CNTO 530 was 2 days in rabbits and 3 days in rats. METHODS: For the evaluation of embryofetal development, CNTO 530 was injected at loading doses of 0, 0.9/1, 6, or 60 mg/kg subcutaneously (SC) on gestation day (GD)7 followed by maintenance doses of 0, 0.3, 2, or 20 mg/kg SC every 3 days through GD16 in rats and every 2 days through GD19 in rabbits (GD0 was the day of mating). Rats were Caesarean sectioned on GD21, rabbits on GD29. RESULTS: Administration of CNTO 530 was associated with an increase in hematocrit at all dose levels and a decrease in maternal body weight gains. Fetuses exhibited reduced body weight and delayed ossification. Soft tissue changes were limited to cardiovascular alterations in the high‐dose rabbits only. Rat and rabbit fetuses were exposed to CNTO 530 in all dose groups. CONCLUSIONS: These studies show that the embryo/fetal development effects observed following CNTO 530 treatment during organogenesis are qualitatively similar to those seen with other erythropoietin agonists and are likely a secondary consequence of increased hematocrit in the dams. Unlike other erythropoietin receptor agonists, CNTO 530 was able to cross the placental barrier, which was considered likely the result of FcRn‐mediated transcytosis. Birth Defects Res (Part B) 89:87–96, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
10.
BACKGROUND: Our laboratory has been conducting positive control studies to evaluate the utility of micro‐computed tomography (micro‐CT) for qualitative evaluation of fetal skeletal morphology. All‐trans‐retinoic acid (atRA) was used to produce a different spectrum of defects compared to our previous studies with boric acid and hydroxyurea. METHODS: Groups of five mated Crl:CD(SD) female rats each were administered vehicle or atRA (2.5–50 mg/kg) on GD 10, and groups of four mated Dutch Belted rabbits each were dosed with vehicle or atRA (6.25–25 mg/kg) on GD 9. Cesarean sections were performed on GD 21 and 28, respectively. Following external examination the viscera were removed and fetuses scanned in a micro‐CT imaging system. Fetuses were subsequently stained with alizarin red. Skeletal morphology was evaluated by each method without the knowledge of treatment group. Total bone mineral content (BMC) of each fetus was quantitated using the micro‐CT images. RESULTS: In rats there were dose‐related increases in the incidence of extra lumbar vertebra and non‐dose‐related increases in supernumerary ribs at all dose levels. There were decreases in mean number of ossified sacrocaudal vertebra at ≥5 mg/kg, and increases in skull bone malformations at ≥10 mg/kg. Rabbits were less sensitive on a mg/kg basis since skeletal malformations and a decrease in mean number of ossified sacrocaudal vertebra were observed only in the 25‐mg/kg group. Micro‐CT evaluation detected essentially the same incidence of skeletal abnormalities as seen in alizarin red‐stained rat and rabbit fetuses. BMC analysis showed a trend toward slight decreases in atRA‐treated rats, but no notable changes in rabbits. CONCLUSIONS: These results add support to our previous work that demonstrates that micro‐CT imaging can effectively assess rat and rabbit fetal skeletal morphology. Birth Defects Res (Part B) 89:408–417, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
BACKGROUND: The potential embryotoxic and teratogenic effects of decabromodiphenyl ethane (DBDPEthane; CASRN 84852–53–9) were evaluated in prenatal developmental studies using rats and rabbits and performed in accordance with international guidelines and Good Laboratory Practice standards. Preliminary dose‐range‐finding studies were conducted, which indicated doses up to 1,250 mg/kg‐day were well tolerated by both rats and rabbits. METHODS: For the developmental studies, animals were administered DBDPEthane via gavage at dosage levels of 0, 125, 400, or 1,250 mg/kg‐day from gestation day (GD) 6 through 15 for rats and GDs 6 through 18 for rabbits. All female rats and rabbits were sacrificed on GD 20 or GD 29, respectively, and subjected to cesarean section. Fetuses were individually weighed, sexed, and examined for external, visceral and skeletal abnormalities. RESULTS: No treatment‐related mortality, abortions, or clinical signs of toxicity were observed during the study. Body weights, body weight gain, and food consumption were not affected by treatment. No significant internal abnormalities were observed in either species on necropsy. Cesarean section parameters were comparable between control and treated groups. No treatment‐induced malformations or developmental variations occurred. CONCLUSIONS: Based on these results, no evidence of maternal toxicity, developmental toxicity, or teratogenicity was observed in rats or rabbits treated with DBDPEthane at dosage levels up to 1,250 mg/kg‐day. Birth Defects Res (Part B) 89:139–146, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
BACKGROUND: Although the potential risk of carbon nanotubes (CNTs) to humans has recently increased due to expanding production and widespread use, the potential adverse effects of CNTs on embryo–fetal development have not yet been determined. METHODS: This study investigated the potential effects of multi‐wall CNTs (MWCNTs) on pregnant dams and embryo–fetal development in rats. MWCNTs were administered to pregnant rats by gavage at 0, 40, 200, and 1,000 mg/kg/day. All dams were subjected to Cesarean section on day 20 of gestation, and the fetuses were examined for any morphological abnormalities. RESULTS: All animals survived to the end of the study. A decrease in thymus weight was observed in the high dose group in a dose‐dependent manner. However, maternal body weight, food consumption, and oxidant–antioxidant balance in the liver were not affected by treatment with MWCNTs. No treatment‐related differences in gestation index, fetal deaths, fetal and placental weights, or sex ratio were observed between the groups. Morphological examinations of the fetuses demonstrated no significant difference in incidences of abnormalities between the groups. CONCLUSIONS: The results show that repeated oral doses of MWCNTs during pregnancy induces minimal maternal toxicity and no embryo–fetal toxicity at 1,000 mg/kg/day in rats. The no‐observed‐adverse‐effect level of MWCNTs is considered to be 200 mg/kg/day for dams and 1,000 mg/kg/day for embryo–fetal development. In this study, the dosing formulation was not analyzed to determine the degree of reaggregation (or not), nor were blood levels of CNT's measured in the dosed animals to verify or characterize absorption. Birth Defects Res (Part B) 92:69–76, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

13.
BACKGROUND: A series of studies were conducted to assess Polysorbate 80 (PS80), Propylene Glycol (PG), and Hydroxypropyl‐β‐Cyclodextrin (HPβCD), when compared with Hydroxypropyl Methylcellulose (MC) in developmental and reproductive toxicology (DART) studies. METHODS: In the rat fertility study, 20 mg/kg MC, 10 mg/kg PS80, 1,000 mg/kg PG, 500 mg/kg HPβCD or 1,000 mg/kg HPβCD were administered orally before/during mating, and on gestation Day (GD) 0–7, followed by an assessment of embryonic development on GD 14. In the rat and rabbit teratology studies, the doses of MC, PS80, PG, and HPβCD were the same as those in the fertility study. In these teratology studies, pregnant females were dosed during the period of organogenesis, followed by an assessment of fetal external, visceral, and skeletal development. RESULTS: In the rat fertility and rat teratology studies, PS80, PG, and HPβCD did not exhibit toxicity, when compared with MC. Similarly, in the rabbit teratology study, there was no PS80 or PG‐related toxicity, when compared with MC. However, individual rabbits in the 500 and 1,000 mg/kg HPβCD groups exhibited maternal toxicity, which included stool findings, decreased food consumption, and body weight gain. Furthermore, one rabbit each in the 500 and 1,000 mg/kg HPβCD groups exhibited evidence of abortion, which was considered secondary to maternal toxicity. CONCLUSIONS: Although HPβCD was not well tolerated in rabbits at doses of 500 and 1,000 mg/kg, PS80 and PG were comparable to MC and should be considered for use in developmental and reproductive toxicology studies. Birth Defects Res (Part B) 89:504–516,2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
BACKGROUND: Aperi‐ and postnatal reproduction toxicity study was conducted in rats treated with Hematide, a synthetic PEGylated peptidic erythropoiesis stimulating agent (ESA). METHODS: Hematide, at IV doses of 0, 0.5, 3, and 15 mg/kg, was administered from implantation through lactation on gestation days (GDs) 5 and 18 and lactation day (LD) 13. RESULTS: Hematide induced pronounced polycythemia in all Hematide‐treated dams. On LDs 2 and 21, hemoglobin (Hgb) increases above control levels were 3.1, 5.2, and 5.0 g/dL and 4.1, 5.1, and 5.5 g/dL at the 0.5, 3, and 15 mg/kg/dose, respectively. There were no effects on parturition, lactation, or maternal behavior in the F0 generation female rats. A slight decrease in pup viability on postpartum days 2–4 and lower body weights and/or body weight gain for the F1 generation were associated with pronounced polycythemia and decreases in maternal body weight gain and/or food consumption at ≥3 mg/kg/dose. Hematide fetal exposure was negligible. No Hematide effect, other than on growth and survival, was noted on developmental, functional, mating, and fertility end points in the F1 generation rats, and no effect on litter or fetal parameters was observed in the F2 generation. The maternal no‐observed‐adverse‐effect level (NOAEL) for Hematide was 0.5 mg/kg, and the NOAEL for parturition and maternal behavior was 15 mg/kg. The NOAEL for F1 pup viability and growth was 0.5 mg/kg/dose. CONCLUSIONS: In conclusion, the Hematide‐associated adverse findings were attributed to exaggerated erythropoiesis (pronounced and prolonged polycythemia) resulting from administration of an ESA to pregnant animals. Birth Defects Res (Part B) 89:155–163, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
BACKGROUND: The developmental toxicity, toxicokinetics, and hematological effects of the antimalarial drug, artesunate, were previously studied in rats and rabbits and have now been studied in cynomolgus monkeys. METHODS: Groups of up to 15 pregnant females were dosed on Gestation Days (GD) 20–50 or for 3–7‐day intervals. RESULTS: At 30 mg/kg/day, 6 embryos died between GD30 and GD40. Histologic examination of 3 live embryos (GD26–GD36) revealed a marked reduction in embryonic erythroblasts and cardiomyopathy. At 12 mg/kg/day, 6 embryos died between GD30 and GD45. Four surviving fetuses examined on GD100 had no malformations, but long bone lengths were slightly decreased. At the developmental no‐adverse‐effect‐level (4 mg/kg/day), maternal plasma AUC was 3.68 ng.h/mL for artesunate and 6.93 ng.h/ml for its active metabolite, dihydroartemisinin (DHA). No developmental toxicity occurred with administration of 12 mg/kg/day for 3 or 7 days, GD29–31 or GD27–33 (maternal plasma AUC of 9.84 ng.h/mL artesunate and 16.4 ng.h/mL DHA). Exposures at embryotoxic doses were substantially lower than human therapeutic exposures. However, differences in monkey and human Vss for artesunate (0.5 L/kg vs. 0.18 L/kg) confound relying solely on AUC for assessing human risk. Decreases in reticulocyte count occur at therapeutic doses in humans. Changes to reticulocyte counts at embryotoxic doses in monkeys (≥12 mg/kg/day) were variable and generally minor. CONCLUSIONS: Artesunate was embryolethal at ≥12 mg/kg/day when dosed for at least 12 days at the beginning of organogenesis, but not when dosed for 3 or 7 days, indicating that developmental toxicity of artesunate is dependent upon duration of dosing in cynomologus monkeys. Birth Defects Res (Part B) 83:418–434, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
The critical periods of axial skeletal development in rats and mice have been well characterized, however the timing of skeletal development in rabbits is not as well known. It is important to have a more precise understanding of this timing of axial skeletal development in rabbits due to the common use of this species in standard nonclinical studies to assess embryo–fetal developmental toxicity. Hydroxyurea, a teratogen known to induce a variety of fetal skeletal malformations, was administered to New Zealand White rabbits as a single dose (500 mg/kg) on individual days during gestation (gestation day,GD 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 19) and fetal external, visceral, and skeletal morphology was examined following cesarean sections on GD 29. A wide range of fetal skeletal effects was observed following hydroxyurea treatment, with a progression of malformations from anterior to posterior structures over time, as well as from proximal to distal structures over time. The sensitive window of axial skeletal development was determined to be GD 8 to 13, while disruption of appendicular and cranio‐facial skeletal development occurred primarily from GD 11 to 16 and GD 11 to 12, respectively. The results of this study provide a better understanding of the critical developmental window for different segments of the rabbit skeleton, which will aid in the design of window studies to investigate teratogenicity in rabbits.  相似文献   

17.
BACKGROUND: The purpose of this study was to evaluate the effects of lasofoxifene, a selective estrogen receptor modulator (SERM), on rat and rabbit fetal development. METHODS: Lasofoxifene was administered orally to rats (1, 10, 100 mg/kg) between gestation days (GD) 6-17, and in rabbits (0.1, 1, 3 mg/kg) between GD 6-18. Maternal body weight and food consumption were monitored throughout pregnancy. Fetuses were delivered by Cesarean section on GD 21 in rats, and GD 28 in rabbits, to evaluate fetal viability, weight, and morphology. Drug concentrations in maternal plasma were measured in a separate cohort of animals at several time points commencing on GD 17 (rats) and 18 (rabbits). On GD 18 (rat) and GD 19 (rabbit) drug concentrations were measured in maternal plasma and in fetal tissue 2 hr post dosing to determine the fetal to maternal drug ratio. RESULTS: In rats, there were dose-related declines in maternal weight gain and food consumption. Post implantation loss was significantly increased at dosages of 10 and 100 mg/kg, and the number of viable fetuses was decreased at 100 mg/kg. The placental weights increased, whereas fetal weights decreased in a dose-dependent manner. Lasofoxifene-related teratologic findings were noted at 10 and 100 mg/kg and included imperforate anus with hypoplastic tails, dilatation of the ureters and renal pelvis, misaligned sternebrae, hypoflexion of hindpaw, wavy ribs, and absent ossification of sternebrae. In rabbits, neither maternal weight gain nor food consumption were affected during treatment. Between GD 26-28, there was a dose-dependent increased incidence of red discharge beneath the cages. At 1 and 3 mg/kg, resorptions and post-implantation loss increased. There were no significant external or visceral effects, but 3 mg/kg there was an increased incidence of supernumerary ribs. Although the maternal plasma Cmax and AUC(0-24) were dose-dependent, the exposures in the rat were many orders of magnitude greater than in the rabbit even for the same 1 mg/kg dose. The single time point fetal/maternal drug ratio was higher in the rat (1.3-0.78) than in the rabbit (0.21-0.16). CONCLUSION: In general, both maternal and fetal effects of lasofoxifene were similar to those reported with other SERMs. Although the incidence or severity of these effects was, in some instances, greater in the rat than in the rabbit, the doses and the resultant maternal and fetal exposures were many orders of magnitude higher in the rat, suggesting the rabbit to be more sensitive to the toxicological effects of lasofoxifene.  相似文献   

18.
The combination of artemether plus lumefantrine is a type of artemisinin‐based combination therapy (ACT) recommended by the World Health Organization for uncomplicated falciparum malaria except in the first trimester of pregnancy. The first trimester restriction was based on the marked embryotoxicity in animals (including embryo death and cardiac and skeletal malformations) of artemisinins such as artesunate, dihydroartemisinin, and artemether. Before recommending ACTs for use in the first trimester, the World Health Organization has requested that all information relevant to the assessment of risk of ACTs to the embryo be made available to the public. This report describes the results of embryo‐fetal development studies of artemether alone, lumefantrine alone, and the combination in rats and rabbits as well as toxicokinetic studies of lumefantrine in pregnant rabbits. The developmental no‐effect levels for lumefantrine were 300 mg/kg/day in rats (based on a 25% decrease in litter size at 1000 mg/kg/day) and 1000 mg/kg/day in rabbits. The calculated safety margins based on human equivalent dose and plasma Cmax and AUC values were in the range of 2.5‐ to 17‐fold. The developmental no‐effect levels for artemether were 3 mg/kg/day in rats and 25 mg/kg/day in rabbits. Lumefantrine caused no teratogenicity and was not a potent embryotoxin in rats and rabbits. Expected artemisinin‐like findings were seen with artemether alone and with artemether/lumefantrine combined except that no malformations were observed. There were no findings in pregnant rats and rabbits that would cause increased concern for the use of artemether–lumefantrine in the first trimester compared to other ACTs.  相似文献   

19.
BACKGROUND: Histone deacetylase (HDAC) inhibitors have been shown to mediate the regulation of gene expression, induce cell growth, cell differentiation, and apoptosis of tumor cells. These compounds are now marketed or are in clinical development. One such HDAC inhibitor, vorinostat (suberoylanilide hydroxamic acid [SAHA], Zolinza), was assessed for its potential effects on fertility in Sprague–Dawley rats. METHODS: Female rats were administered oral dose levels of 0 (vehicle only), 15, 50, or 150 mg/kg/day of vorinostat for 14 days before cohabitation, during cohabitation, and through Gestation Day (GD) 7. In a separate study, male rats were administered oral dose levels of 0 (vehicle only), 20, 50, or 150 mg/kg/day for 10 weeks before cohabitation, during cohabitation, and until the day before scheduled sacrifice (approximately 14 weeks total). In both studies, % peri‐implantation loss and % postimplantation loss were evaluated on GD 15–17. Testicular weight and histomorphology, cauda epididymal sperm count, and sperm motility were evaluated in the male rat study at termination. RESULTS: There were treatment‐related decreases in body weight gain at 150 mg/kg/day in both studies. There were no effects on mating or fertility indices in either study. In the female study there were increased numbers of corpora lutea in all drug‐treated groups (only 1 or 2 affected dams in low and mid‐dose groups), and a marked increase in percent postimplantation loss only in the high‐dose group. No treatment‐related effects were observed on litter or sperm parameters of the male study. CONCLUSIONS: Vorinostat had no effects on mating or fertility in rats up to 150 mg/kg/day. There were no indications of reproductive toxicity in drug‐treated male rats. Increases in corpora lutea or resorptions were observed in treated female rats. Birth Defects Res (Part B) 80:1–8, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

20.
BACKGROUND: VLA‐4 (Very late antigen 4, integrin α4β1) plays an important role in cell‐cell interactions that are critical for development. Homozygous null knockouts of the α4subunit of VLA‐4 or VCAM‐1 (cell surface ligand to VLA‐4) in mice result in abnormal placental and cardiac development and embryo lethality. Objectives of the current study were to assess and compare the teratogenic potential of three VLA‐4 antagonists. METHODS: IVL745, HMR1031, and IVL984 were each evaluated by the subcutaneous route in standard embryo‐fetal developmental toxicity studies in rats and rabbits. IVL984 was also evaluated in mice. Fetuses were examined externally, viscerally, and skeletally. RESULTS: IVL745 did not cause significant maternal or fetal effects at doses up to 100 or 250 mg/kg/day in rats or rabbits, respectively. HMR1031 treatment resulted in marked maternal toxicity and slight fetal toxicity at the highest tested doses of 200 and 75 mg/kg/day in rats and rabbits, respectively. HMR1031 embryo‐fetal effects consisted of slightly lower body weight and crown‐rump length in rats and minor sternebral defects in rabbits. IVL984 treatment resulted in minimal maternal effects at doses up to 40, 15, and 100 mg/kg/day in rats, rabbits, and mice, respectively (excluding abortions in rabbits). However, marked developmental effects were observed at the lowest tested IVL984 doses, 1, 0.2, and 3 mg/kg/day in rats, rabbits, and mice, respectively. IVL984 embryo‐fetal effects consisted of increased total post‐implantation loss due to early resorptions and high incidences of cardiac malformations and skeletal malformations and/or variations. Notably, spiral septal defects were observed in up to 76% of rat fetuses and up to 58% of rabbit fetuses. CONCLUSIONS: Dramatic differences in teratogenic potential were observed: IVL745 was not teratogenic, HMR1031 caused slight embryo‐fetal effects at maternally‐toxic doses, and IVL984 was a potent teratogen at doses where direct maternal toxicity was limited to abortions in rabbits. Prominent effects of IVL984 included embryo lethality and cardiac malformations including spiral septal defects in three species. Birth Defects Res B 71:55–68, 2004. © 2004 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号