首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Summary Yeast strain 990 carries a mutation mapping to the oli1 locus of the mitochondrial genome, the gene encoding ATPase subunit 9. DNA sequence analysis indicated a substitution of valine for alanine at residue 22 of the protein. The strain failed to grow on nonfermentable carbon sources such as glycerol at low temperature (20°C). At 28°C the strain grew on nonfermentable carbon sources and was resistant to the antibiotic oligomycin. ATPase activity in mitochondria isolated from 990 was reduced relative to the wild-type strain from which it was derived, but the residual activity was oligomycin resistant. Subunit 9 (the DCCD-binding proteolipid) from the mutant strain exhibited reduced mobility in SDS-polyacrylamide gels relative to the wild-type proteolipid. Ten revertant strains of 990 were analyzed. All restored the ability to grow on glycerol at 20°C. Mitotic segregation data showed that eight of the ten revertants were attributable to mitochondrial genetic events and two were caused by nuclear events since they appeared to be recessive nuclear suppressors. These nuclear mutations retained partial resistance to oligomycin and did not alter the electrophoretic behavior of subunit 9 or any other ATPase subunit. When mitochondrial DNA from each of the revertant strains was hybridized with an oligonucleotide probe covering the oli1 mutation, seven of the mitochondrial revertants were found to be true revertants and one a second mutation at the site of the original 990 mutation. The oli1 gene from this strain contained a substitution of glycine for valine at residue 22. The proteolipid isolated from this strain had increased electrophoretic mobility relative to the wild-type proteolipid.Abbreviations DCCD dicyclohexylcarbodiimide - SDS sodium dodecyl sulfate - PMSF phenylmethylsulfonyl fluoride - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonate - SMP submitochondrial particles - mit- mitochondrial point mutant  相似文献   

2.
A temperature-conditional mit- mutant of Saccharomyces cerevisiae has been characterized; the mutant strain h45 cannot grow at 36 degrees C on nonfermentable substrates yet appears to be normal at 28 degrees C. The mutation in strain h45 maps genetically to the oli1 region of the mitochondrial DNA (mtDNA) genome, and prevents the synthesis at 36 degrees C of the oli1 gene product, subunit 9 of the mitochondrial ATPase complex. Since the level of oli1 mRNA in mutant h45 is close to normal at 36 degrees C, it is concluded that there is a specific block in translation of this mRNA at the non-permissive temperature. DNA sequence analysis of mtDNA from strain h45 reveals an additional T residue inserted 88 bp upstream of the oli1 coding region, in the A,T-rich sequence that is transcribed into the 5'-untranslated region of the oli1 mRNA. Sequence data on two revertants show that one returns to wild-type parental (J69-1B) mtDNA sequence, whilst the other contains an inserted A residue adjacent to the T inserted in the original h45 mutant. The results are discussed in terms of the stability of folds in RNA upstream of putative ribosome-binding sites in mitochondrial mRNA, and the potential action of nuclear-coded proteins that might be activators of the translation of specific mitochondrial mRNAs in yeast mitochondria.  相似文献   

3.
The nucleotide sequence of the yeast mitochondrial olil gene has been obtained in a series of mit- mutants with mutations in this gene, which codes for subunit 9 of of the mitochondrial ATPase complex. Subunit 9 is the proteolipid, 76 amino acids in length, necessary for the proton translocation function of the membrane Fo-sector. These mutants were classified on the basis of their rescue by a petite strain shown here to retain the entire wild-type olil gene. The mutation in one mit- strain removes a positively charged residue (Arg39----Met) which is likely to be located in a segment of subunit 9 that protrudes from the inner mitochondrial membrane. In a second mit- mutant, a negatively charged residue replaces a conserved glycine residue (Gly18----Asp) in a glycine-rich segment of the protein that is most likely embedded within the membrane. Other mit- mutations result in frameshifts with predicted products 7, 65 and 68 amino acid residues long. In each mit- mutant, there is the loss of one or more of the amino acid residues that are highly conserved among diverse species. The location and nature of specific changes pinpoint amino acid residues in subunit 9 essential to the activity of the mitochondrial ATPase complex.  相似文献   

4.
The regulatory subunits of cyclic AMP (cAMP)-dependent protein kinase from a dibutyryl cAMP-resistant S49 mouse lymphoma cell mutant, clone U200/65.1, and its revertants were visualized by two-dimensional polyacrylamide gel electrophoresis. Clone U200/65.1 co-expressed electrophoretically distinguishable mutant and wild-type subunits (Steinberg et al., Cell 10:381-391, 1977). In all 48 clones examined, reversion of the mutant to dibutyryl cAMP sensitivity was accompanied by alterations in regulatory subunit labeling patterns. Some spontaneous (3 of 11) and N-methyl-N'-nitro-N-nitrosoguanidine-induced (2 of 11) revertants retained mutant subunits, but these were altered in charge, degree of phosphorylation, or both. The charge alterations were consistent with single amino acid substitutions, suggesting that reversion was the result of second-site mutations in the mutant regulatory subunit allele that restored wild-type function, although not wild-type structure, to the gene product. The majority of spontaneous (8 of 11) and N-methyl-N'-nitro-N-nitrosoguanidine-induced (9 of 11) revertants and all of the revertants induced by ethyl methane sulfonate (14 of 14) and ICR191 (12 of 12) displayed only wild-type subunits. Dibutyryl cAMP-resistant mutants isolated from several of these revertants displayed new mutant but not wild-type subunits, suggesting that the revertant parent expresses only a single, functional regulatory subunit allele. The mutant regulatory subunit allele can, therefore, be modified in two general ways to produce revertant phenotypes: (i) by mutations that restore its wild-type function, and (ii) by mutations that eliminate its function.  相似文献   

5.
U P John  P Nagley 《FEBS letters》1986,207(1):79-83
The amino acid substitutions in subunit 6 of the mitochondrial ATPase complex have been determined for 4 oligomycin resistant mutants of Saccharomyces cerevisiae. The data were obtained for each mutant by nucleotide sequence analysis of the mitochondrial oli2 gene. Amino acid substitutions conferring oligomycin resistance in subunit 6 are located in two conserved regions that are thought to form domains which span the inner mitochondrial membrane. The disposition of these amino acid substitutions is consistent with the view that these two membrane-spanning domains interact structurally and functionally with the DCCD-binding proteolipid subunit 9 in the Fo-sector.  相似文献   

6.
The nucleotide sequence of the oli1 gene encoding mitochondrial ATPase subunit 9 (76 amino acids) has been determined for five oligomycin-resistant mutants of Saccharomyces cerevisiae. Three of the mutations affect amino acids in the vicinity of the glutamic acid residue 59 at which dicylohexyl carbodiimide binds. Two other mutations lead to substitution of amino acid 23, which would lie very close to residue 59 in the folded hairpin conformation that this protein is thought to adopt in the inner mitochondrial membrane. The apposition of residues 23 and those adjacent to residue 59, lying respectively in the two hydrophobic membrane-spanning arms of subunit 9, is considered to constitute an oligomycin-binding domain. By consideration of the amino acid substitutions in those mutants cross-resistant to venturicidin, a domain of resistance for venturicidin is defined to lie within the oligomycin-binding domain, also centered on residues 23 and 59. These data also clarify the genetic recombination behaviour of alleles previously defined to form part of the oli3 locus (mutants characterized by resistance to both oligomycin and venturicidin) together with alleles defined to form part of the oli1 locus (mutants not cross-resistant to venturicidin). The oli1 and oli3 loci can now be seen to form two overlapping extended groups within the oli1 gene, with sequenced oli3 mutations being as far apart as 125 nucleotides within the subunit 9 coding region of 231 nucleotides.  相似文献   

7.
In an earlier study, the ATP10 gene of Saccharomyces cerevisiae was shown to code for an inner membrane protein required for assembly of the F(0) sector of the mitochondrial ATPase complex (Ackerman, S., and Tzagoloff, A. (1990) J. Biol. Chem. 265, 9952-9959). To gain additional insights into the function of Atp10p, we have analyzed a revertant of an atp10 null mutant that displays partial recovery of oligomycin-sensitive ATPase and of respiratory competence. The suppressor mutation in the revertant has been mapped to the OLI2 locus in mitochondrial DNA and shown to be a single base change in the C-terminal coding region of the gene. The mutation results in the substitution of a valine for an alanine at residue 249 of subunit 6 of the ATPase. The ability of the subunit 6 mutation to compensate for the absence of Atp10p implies a functional interaction between the two proteins. Such an interaction is consistent with evidence indicating that the C-terminal region with the site of the mutation and the extramembrane domain of Atp10p are both on the matrix side of the inner membrane. Subunit 6 has been purified from the parental wild type strain, from the atp10 null mutant, and from the revertant. The N-terminal sequences of the three proteins indicated that they all start at Ser(11), the normal processing site of the subunit 6 precursor. Mass spectral analysis of the wild type and mutants subunit 6 failed to reveal any substantive difference of the wild type and mutant proteins when the mass of the latter was corrected for Ala --> Val mutation. These data argue against a role of Atp10p in post-translational modification of subunit 6. Although post-translational modification of another ATPase subunit interacting with subunit 6 cannot be excluded, a more likely function for Atp10p is that it acts as a subunit 6 chaperone during F(0) assembly.  相似文献   

8.
Second-Site Revertants of Escherichia Coli Trp Repressor Mutants   总被引:5,自引:2,他引:3  
L. S. Klig  D. L. Oxender    C. Yanofsky 《Genetics》1988,120(3):651-655
Second-site reversion studies were performed with five missense mutants with defects in the trp repressor of Escherichia coli. These mutants were altered throughout the gene. The same unidirectional mutagen used in the isolation of these mutants, hydroxylamine, was used in reversion studies, to increase the liklihood that the revertants obtained would have second-site changes. Most of the second-site revertants were found to have the same amino acid substitutions detected previously as superrepressor changes. These second-site revertant repressors were more active in vivo than their parental mutant repressors, in the presence or absence of exogenous tryptophan. Apparently superrepressor changes at many locations in this protein can act globally to increase the activity of mutant repressors.  相似文献   

9.
P Nagley  R M Hall  B G Ooi 《FEBS letters》1986,195(1-2):159-163
A series of isonuclear oligomycin-resistant mutants of Saccharomyces cerevisiae carrying mutations in the mitochondrial oli1 gene has been studied. DNA sequence analysis of this gene has been used to define the amino acid substitutions in subunit 9 of the mitochondrial ATPase complex. A domain of amino acids involved in oligomycin resistance can be recognized which encompasses residues in each of the two hydrophobic portions of the subunit 9 polypeptide that are thought to span the inner mitochondrial membrane. Certain amino acid substitutions also confer cross-resistance to venturicidin: these residues define an inner domain for venturicidin resistance. The expression of venturicidin resistance resulting from one particular substitution is modulated by nuclear genetic factors.  相似文献   

10.
Two mutants of Saccharomyces cerevisiae which show a loss of mitochondrial rutamycin-sensitive ATPase activity are described. Although phenotypically similar to mutants of the mitochondrial locus pho1 [F. Foury and A. Tzagoloff (1976) Eur. J. Biochem. 68, 113-119], these mutants define a second ATPase locus on the mitochondrial DNA (designated pho2), which is genetically unlinked to pho1. Analysis of recombination in crosses involving multiple antibiotic resistance markers indicates that the locus is in the segment of the genome between ery1 and oli2, very close to oli1. In fact it is proposed that the oli1 and pho2 mutations are in the same gene. Supporting evidence for this proposal includes: 1. The analysis of marker retention in petite mutants shows that the oli1 and pho2 loci were either retained or lost together in all cases. 2. Recombination frequencies of 0.05% or less are observed in crosses between the oli1 and pho2 loci. 3. When rho+ revertants are isolated from the pho2 mutants they frequently are oligomycin resistant. 4. pho2 mutants have an altered subunit 9 of the ATPase complex.  相似文献   

11.
We have isolated same-site and second-site revertants that restore partial activity, wild-type activity, or greater than wild-type activity, to lambda repressor proteins bearing different mutations in the DNA binding domain. In some cases the revertant repressors contain same-site substitutions that are similar to the wild-type side-chain (e.g. Tyr22----Phe, Ser77----Thr). The activity of these revertants makes it possible to assess the role of specific hydrogen bonds and/or packing interactions in repressor structure and function. In other same-site revertants, a very different type of residue is introduced (e.g. Ser35----Leu, Gly48----Asn). This indicates that the chemical and steric requirements at these side-chain positions are relaxed. Two of the second-site revertants, Glu34----Lys and Gly48----Ser, restore activity to more than one primary mutant. Both substitutions apparently increase the affinity of the repressor-operator interaction by introducing new contacts with operator DNA. These results suggest that reversion may be a generally applicable method for identifying sequence changes that increase the activity of a protein to greater than wild-type levels.  相似文献   

12.
The pho1 mutation belongs to the OL12 gene on mitochondrial DNA of Saccharomyces cerevisiae, which codes for a membrane factor subunit of the mitochondrial ATPase (apparent molecular mass 20 kDa). We analysed the ATPase complex from the pho1 mutant and from three revertants, after immunoprecipitation from mitochondrial extracts, by dodecyl sulphate/acrylamide gel electrophoresis. In two revertants the OL12 gene product appeared as an abundant slower migrating peptide, while in the pho mutant, two bands appeared in very low amounts. For the third revertant, a strong band appeared at the normal level. Sequencing of the OL12 gene from these strains gave the following results: the pho1 mutation is a frameshift, arising by insertion of an extra thymidine into a group of three. Two of the revertants contain the same group of four thymidines, but genetic compensation of the frameshift occurs 24 base pairs downstream by the loss of four bases, implying a deficit of one codon. The third revertant has recovered the normal three-thymidine sequence. There is excellent correlation between the modified sequences and electrophoretic migration of the peptide product. Owing to the leakiness of the pho1 phenotype (reduced but not nil growth rate on oxidizable carbon sources, 5-10% highly oligomycin-sensitive ATPase complex, low amounts of OL12 gene product peptides), some translational correction of the frameshift is bound to occur. Based on these results, the compatibility of abnormal ATPase architecture with modified energetic efficiency is discussed.  相似文献   

13.
14.
The uncE114 mutation (Gln42----Glu) in subunit c of the Escherichia coli H+ ATP synthetase causes uncoupling of proton translocation from ATP hydrolysis (Mosher, M. E., White, L. K., Hermolin, J., and Fillingame, R. H. (1985) J. Biol. Chem. 260, 4807-4814). In the background of strain ER, the mutation led to dissociation of F1 from the membrane. Ten revertants to the uncE114 mutation were isolated, and the uncE gene was cloned and sequenced. Six of the revertants were intragenic and had substitutions of glycine, alanine, or valine for the mutant glutamate residue at position 42. The intragenic, revertant uncE genes were incorporated into an otherwise wild type chromosome of strain ER. Membrane vesicles prepared from each of the revertants showed a restoration of F1 binding to F0. The Val42 revertant differed from the other two revertants in that the ATPase activity of F1 was inhibited when membrane bound. This was shown by the stimulation of ATPase activity when F1 was released from the membrane. The Gly42 and Ala42 revertants demonstrated membrane ATPase activity that was resistant to dicyclohexylcarbodiimide treatment. Resistance was shown to be due to the increased dissociation of F1 from the membrane under ATPase assay conditions. The Ala42 revertant showed a significant reduction in ATP-dependent quenching of quinacrine fluorescence that was attributed to less efficient coupling of ATP hydrolysis to H+ translocation, whereas the other revertants showed responses very near to that of wild type. Minor changes in the F1-F0 interaction in all three revertants were indicated by an increase in H+ leakiness, as judged by reduced NADH-dependent quenching of quinacrine fluorescence. The minor defects in the revertants support the idea that residue 42 is involved in the binding and coupling of F1 to F0 but also show that the conserved glutamine (or asparagine) is not absolutely necessary in this function.  相似文献   

15.
Our studies, which are aimed at understanding the catalytic mechanism of the alpha subunit of tryptophan synthase from Salmonella typhimurium, use site-directed mutagenesis to explore the functional roles of aspartic acid 60, tyrosine 175, and glycine 211. These residues are located close to the substrate binding site of the alpha subunit in the three-dimensional structure of the tryptophan synthase alpha 2 beta 2 complex. Our finding that replacement of aspartic acid 60 by asparagine, alanine, or tyrosine results in complete loss of activity in the reaction catalyzed by the alpha subunit supports a catalytic role for aspartic acid 60. Since the mutant form with glutamic acid at position 60 has partial activity, glutamic acid 60 may serve as an alternative catalytic base. The mutant form in which tyrosine 175 is replaced by phenylalanine has substantial activity; thus the phenolic hydroxyl of tyrosine 175 is not essential for catalysis or substrate binding. Yanofsky and colleagues have identified many missense mutant forms of the alpha subunit of tryptophan synthase from Escherichia coli. Two of these inactive mutant forms had either tyrosine 175 replaced by cysteine or glycine 211 replaced by glutamic acid. Surprisingly, a second-site revertant which contained both of these amino acid changes was partially active. These results indicated that the second mutation must compensate in some way for the first. We now extend the studies of the effects of specific amino acid replacements at positions 175 and 211 by two techniques: 1) characterization of several mutant forms of the alpha subunit from S. typhimurium prepared by site-directed mutagenesis and 2) computer graphics modeling of the substrate binding site of the alpha subunit using the x-ray coordinates of the wild type alpha 2 beta 2 complex from S. typhimurium. We conclude that the restoration of alpha subunit activity in the doubly altered second-site revertant results from restoration of the proper geometry of the substrate binding site.  相似文献   

16.
mit- Mutants carrying genetically defined mutations in the oli2 region of the mitochondrial DNA were analysed. Most of these mutants demonstrated either the absence of subunit 6 or its replacement by shorter mitochondrial translation products which could be shown to be structurally related to subunit 6 by using a rabbit anti F1F0-antiserum, and by limited proteolytic mapping of the new mitochondrial translation products. Three representative oli2 mit- strains were analysed for the effects of a grossly altered subunit 6 or of a complete absence of this subunit on the activity and assembly of the H+-ATPase. Our results suggest that this subunit is not required for the assembly of the proton channel of the enzyme complex. Thus, in the absence of subunit 6, the mitochondrial respiratory activities in the oli2 mutants were found to be still sensitive to oligomycin, a specific inhibitor of the H+-ATPase proton channel. Immunoprecipitation of the assembled H+-ATPase subunits from these mutant strains using a monoclonal anti-beta-subunit antibody indicates that subunit 6 is also not essential for the assembly of most F1 subunits to components of the F0 sector.  相似文献   

17.
A mitochondrial gene (denoted aap1) in Saccharomyces cerevisiae has been characterized by nucleotide sequence analysis of a region of mtDNA between the oxi3 and oli2 genes. The reading frame of the aap1 gene specifies a hydrophobic polypeptide containing 48 amino acids. The functional nature of this reading frame was established by sequence analysis of a series of mit- mutants and revertants. Evidence is presented that the aap1 gene codes for a mitochondrially synthesized polypeptide associated with the mitochondrial ATPase complex. This polypeptide (denoted subunit 8) is a proteolipid whose size has been previously assumed to be 10 kilodaltons based on its mobility on SDS-polyacrylamide gels, but the sequence of the aap1 gene predicts a molecular weight of 5,815 for this protein.  相似文献   

18.
Ellis TP  Lukins HB  Nagley P  Corner BE 《Genetics》1999,151(4):1353-1363
Mutations in the nuclear AEP2 gene of Saccharomyces generate greatly reduced levels of the mature form of mitochondrial oli1 mRNA, encoding subunit 9 of mitochondrial ATP synthase. A series of mutants was isolated in which the temperature-sensitive phenotype resulting from the aep2-ts1 mutation was suppressed. Three strains were classified as containing a mitochondrial suppressor: these lost the ability to suppress aep2-ts1 when their mitochondrial genome was replaced with wild-type mitochondrial DNA (mtDNA). Many other isolates were classified as containing dominant nuclear suppressors. The three mitochondrion-encoded suppressors were localized to the oli1 region of mtDNA using rho- genetic mapping techniques coupled with PCR analysis; DNA sequencing revealed, in each case, a T-to-C nucleotide transition in mtDNA 16 nucleotides upstream of the oli1 reading frame. It is inferred that the suppressing mutation in the 5' untranslated region of oli1 mRNA restores subunit 9 biosynthesis by accommodating the modified structure of Aep2p generated by the aep2-ts1 mutation (shown here to cause the substitution of proline for leucine at residue 413 of Aep2p). This mode of mitochondrial suppression is contrasted with that mediated by heteroplasmic rearranged rho- mtDNA genomes bypassing the participation of a nuclear gene product in expression of a particular mitochondrial gene. In the present study, direct RNA-protein interactions are likely to form the basis of suppression.  相似文献   

19.
A series of yeast mitochondrial mit- mutants with defects in the oli2 gene, coding for subunit 6 of the mitochondrial ATPase complex, has been analyzed at the DNA sequence level. Fifteen of sixteen primary mit- mutants were shown to contain frameshift or nonsense mutations predicting truncated subunit 6 polypeptides, in various strains ranging from about 20% to 95% of the wild-type length of 259 amino acids. In only one strain could the defect in subunit 6 function be assigned to amino acid substitution in an otherwise full-length subunit 6. Many mutants carried multiple base substitutions or insertions/deletions, presumably arising from the manganese chloride mutagenesis treatment. Revertants from three of the mit- mutants were analyzed: all contained full-length subunit 6 proteins with one or more amino acid substitutions. The preponderance of truncated proteins as opposed to substituted full-length proteins in oli2 mit- mutants is suggested to reflect the ability of subunit 6 to accommodate amino acid substitutions at many locations, with little or no change in its functional properties in the membrane FO-sector of the ATPase complex.  相似文献   

20.
Substitution of Thr26 by Gln in the lysozyme of bacteriophage T4 produces an enzyme with greatly reduced activity but essentially unaltered stability relative to wild type. Spontaneous second-site revertants of the mutant were selected genetically; two of them were chosen for structural and biochemical characterization. One revertant bears (in addition to the primary mutation) the substitution Tyr18----His, the other, Tyr18----Asp. The primary mutant and both revertant lysozyme genes were reconstructed in a plasmid-based expression system, and the proteins were produced and purified. The two revertant lysozymes exhibit enzymatic activities intermediate between wild type and the primary mutant; both also exhibit melting temperatures approximately 3 degrees C lower than either the wild type or the primary mutant. Crystals suitable for X-ray diffraction analysis were obtained from both revertant lysozymes, but not the primary mutant. Structures of the double mutant lysozymes were refined at 1.8-A resolution to crystallographic residuals of 15.1% (Tyr18----His) and 15.2% (Tyr18----Asp). Model building suggests that the side chain of Gln26 in the primary mutant is forced to protrude into the active site cleft, resulting in low catalytic activity. In contrast, the crystal structures of the revertants reveal that the double substitutions (Gln26 and His18, or Gln26 and Asp18) fit into the same space that is occupied by Thr26 and Tyr18 in the wild-type enzyme; the effect is a restructuring of the surface of the active site cleft, with essentially no perturbation of the polypeptide backbone. This restructuring is effected by a novel series of hydrogen bonds and electrostatic interactions that apparently stabilize the revertant structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号