共查询到20条相似文献,搜索用时 0 毫秒
1.
Drosophila adult structures derive from imaginal discs, which are sacs with apposed epithelial sheets, the disc proper (DP) and the peripodial epithelium (PE). The Drosophila TGF-beta family member decapentaplegic (dpp) contributes to the development of adult structures through expression in all imaginal discs, driven by enhancers from the 3' cis-regulatory region of the gene. In the eye/antennal disc, there is 3' directed dpp expression in both the DP and PE associated with cell proliferation and eye formation. Here, we analyze a new class of dpp cis-regulatory mutations, which specifically disrupt a previously unknown region of dpp expression, controlled by enhancers in the 5' regulatory region of the gene and limited to the PE of eye/antennal discs. These are the first described Drosophila mutations that act by solely disrupting PE gene expression. The mutants display defects in the ventral adult head and alter peripodial but not DP expression of known dpp targets. However, apoptosis is observed in the underlying DP, suggesting that this peripodial dpp signaling source supports cell survival in the DP. 相似文献
2.
During Drosophila eye development, cell differentiation is preceded by the formation of a morphogenetic furrow, which progresses across the epithelium from posterior to anterior. Cells within the morphogenetic furrow are apically constricted and shortened along their apical-basal axis. However, how these cell shape changes and, thus, the progression of the morphogenetic furrow are controlled is not well understood. Here we show that cells simultaneously lacking Hedgehog and Dpp signal transduction fail to shorten and do not enter the morphogenetic furrow. Moreover, we have identified a gene, cadherin Cad86C, which is highly expressed in cells of the leading flank of the morphogenetic furrow. Ectopic activation of either the Hedgehog or Dpp signal transduction pathway results in elevated Cad86C expression. Conversely, simultaneous loss of both Hedgehog and Dpp signal transduction leads to decreased Cad86C expression. Finally, ectopic expression of Cad86C in either eye-antennal imaginal discs or wing imaginal discs results in apical constriction and shortening of cells. We conclude that Hedgehog and Dpp signaling promote the shortening of cells within the morphogenetic furrow. Induction of Cad86C expression might be one mechanism through which Hedgehog and Dpp promote these cell shape changes. 相似文献
3.
The EGFR signalling cascade is responsible for coordinating a wide variety of events during Drosophila eye development. It remains something of a mystery how it is that cells are able to interpret the signal so as to choose the appropriate response from the battery of possibilities: division, differentiation, cell shape change and so on. Since the cascade is essentially linear below the receptor, different cellular responses cannot be regulated by alternative signal transduction pathways. The main diversity lies upstream, in the multiple activating ligands. Spitz, Gurken and Vein have been long studied, but little is known about the physiological functions of the fourth ligand, Keren, although various roles have been predicted based on the differences between mutants in the known ligands and those of the receptor. Here, we have isolated a mutant in the keren gene, and demonstrate that Keren does indeed participate in EGFR signalling in the eye, where it acts redundantly with Spitz to control R8 spacing, cell clustering and survival. Thus, specificity cannot be determined by ligand choice, and must instead be a consequence of cell-intrinsic factors, although we speculate that there may be some quantitative differences in signalling elicited by the two ligands. 相似文献
4.
During Drosophila eye development, localized Notch signaling at the dorsal ventral (DV)-midline promotes growth of the entire eye field. This long-range action of Notch signaling may be mediated through the diffusible ligand of the Jak/STAT pathway, Unpaired (Upd), which was recently identified as a downstream target of Notch. However, Notch activity has not been shown to be cell-autonomously required for Upd expression and therefore yet another diffusible signal may be required for Notch activation of Upd. Our results clarify the Notch requirement, demonstrating that Notch activity at the DV-midline leads to cell-autonomous expression of Upd as monitored in loss and gain-of-function Notch clones. In addition, mutations in the Jak/STAT pathway interact genetically with the Notch pathway by suppressing Notch mediated overgrowth. N(act) clones show non-autonomous effects on the cell cycle anterior to the furrow, indicating function of the Jak/STAT pathway. However, cell-autonomous effects of Notch within and posterior to the furrow are independent of Upd. Here, Notch autonomously maintains cells in a proliferative state and blocks photoreceptor differentiation. 相似文献
5.
6.
7.
Bose A Kahali B Zhang S Lin JM Allada R Karandikar U Bidwai AP 《Mechanisms of development》2006,123(9):649-664
Lateral inhibition is critical for cell fate determination and involves the functions of Notch (N) and its effectors, the Enhancer of Split Complex, E(spl)C repressors. Although E(spl) proteins mediate the repressive effects of N in diverse contexts, the role of phosphorylation was unclear. The studies we describe implicate a common role for the highly conserved Ser/Thr protein kinase CK2 during eye and bristle development. Compromising the functions of the catalytic (alpha) subunit of CK2 elicits a rough eye and defects in the interommatidial bristles (IOBs). These phenotypes are exacerbated by mutations in CK2 and suppressed by an increase in the dosage of this protein kinase. The appearance of the rough eye correlates, in time and space, to the specification and refinement of the 'founding' R8 photoreceptor. Consistent with this observation, compromising CK2 elicits supernumerary R8's at the posterior margin of the morphogenetic furrow (MF), a phenotype characteristic of loss of E(spl)C and impaired lateral inhibition. We also show that compromising CK2 elicits ectopic and split bristles. The former reflects the specification of excess bristle SOPs, while the latter suggests roles during asymmetric divisions that drive morphogenesis of this sensory organ. In addition, these phenotypes are exacerbated by mutations in CK2 or E(spl), indicating genetic interactions between these two loci. Given the centrality of E(spl) to the repressive effects of N, our studies suggest conserved roles for this protein kinase during lateral inhibition. Candidates for this regulation are the E(spl) repressors, the terminal effectors of this pathway. 相似文献
8.
9.
10.
11.
12.
Dopamine is necessary for the aversive olfactory associative memory formation in Drosophila, but its effect on other stages of memory is not known. Herein, we studied the effect of enhanced dopaminergic signaling on aversive olfactory memory retention in flies. We used l-3,4-dihydroxyphenylalanine (l-DOPA) to elevate dopamine levels: l-DOPA-treated flies exhibited a normal learning performance, but a decrease in 1-h memory. Dopamine transporter (DAT) mutant flies or flies treated with the DAT inhibitor desipramine exhibited poor memory retention. Flies subjected to heat stress after training exhibited a decrease in memory. Memory was restored by blocking dopaminergic neuronal output during heat stress, suggesting that dopamine is involved in heat stress-induced memory impairment in flies. Taken together, our findings suggest that increased dopaminergic signaling impairs aversive olfactory memory retention in flies. 相似文献
13.
In homozygous mutants of Drosophila lethal-2-giant larvae (lgl), tissues lose apico-basal cell polarity and exhibit ectopic proliferation. Here, we use clonal analysis in the developing eye to investigate the effect of lgl null mutations in the context of surrounding wild-type tissue. lgl− clones in the larval eye disc exhibit ectopic expression of the G1-S regulator, Cyclin E, and ectopic proliferation, but do not lose apico-basal cell polarity. Decreasing the perdurance of Lgl protein in larval eye disc clones, by forcing extra proliferation of lgl− tissue (using a Minute background), leads to a loss in cell polarity and to more extreme ectopic cell proliferation. Later in development at the pupal stage, lgl mutant photoreceptor cells show aberrant apico-basal cell polarity, but this is not associated with ectopic proliferation, presumably because cells are differentiated. Thus in a clonal context, the ectopic proliferation and cell polarity defects of lgl− mutants are separable. Furthermore, lgl− mosaic eye discs have alterations in the normal patterns of apoptosis: in larval discs some lgl− and wild-type cells at the clonal boundary undergo apoptosis and are excluded from the epithelia, but apoptosis is decreased elsewhere in the disc, and in pupal retinas lgl− tissue shows less apoptosis. 相似文献
14.
Dussillol-Godar F Brissard-Zahraoui J Limbourg-Bouchon B Boucher D Fouix S Lamour-Isnard C Plessis A Busson D 《Developmental biology》2006,291(1):53-66
The Suppressor of fused (Su(fu)) protein is known to be a negative regulator of Hedgehog (Hh) signal transduction in Drosophila imaginal discs and embryonic development. It is antagonized by the kinase Fused (Fu) since Su(fu) null mutations fully suppress the lack of Fu kinase activity. In this study, we overexpressed the Su(fu) gene in imaginal discs and observed opposing effects depending on the position of the cells, namely a repression of Hh target genes in cells receiving Hh and their ectopic expression in cells not receiving Hh. These effects were all enhanced in a fu mutant context and were suppressed by cubitus interruptus (Ci) overexpression. We also show that the Su(fu) protein is poly-phosphorylated during embryonic development and these phosphorylation events are altered in fu mutants. This study thus reveals an unexpected role for Su(fu) as an activator of Hh target gene expression in absence of Hh signal. Both negative and positive roles of Su(fu) are antagonized by Fused. Based on these results, we propose a model in which Su(fu) protein levels and isoforms are crucial for the modulation of the different Ci states that control Hh target gene expression. 相似文献
15.
A E Christiansen T Ding Y Fan H K Graves H-M Herz J L Lindblad A Bergmann 《Cell death and differentiation》2013,20(2):302-311
Hedgehog (Hh) signaling is important for development and homeostasis in vertebrates and invertebrates. Ligand-independent, deregulated Hh signaling caused by loss of negative regulators such as Patched causes excessive cell proliferation, leading to overgrowth in Drosophila and tumors in humans, including basal-cell carcinoma and medulloblastoma. We show that in Drosophila deregulated Hh signaling also promotes cell survival by increasing the resistance to apoptosis. Surprisingly, cells with deregulated Hh activity do not protect themselves from apoptosis; instead, they promote cell survival of neighboring wild-type cells. This non-cell autonomous effect is mediated by Hh-induced Notch signaling, which elevates the protein levels of Drosophila inhibitor of apoptosis protein-1 (Diap-1), conferring resistance to apoptosis. In summary, we demonstrate that deregulated Hh signaling not only promotes proliferation but also cell survival of neighboring cells. This non-cell autonomous control of apoptosis highlights an underappreciated function of deregulated Hh signaling, which may help to generate a supportive micro-environment for tumor development. 相似文献
16.
An important step in Drosophila neurogenesis is to establish the neural dorsoventral (DV) patterning. Here we describe how dpp loss-of- and gain-of-function mutation affects the homeobox-containing neural DV patterning genes expressed in the ventral neuroectoderm. Ventral nervous system defective (vnd), intermediate neuroblast defective (ind), muscle-specific homeobox (msh), and orthodenticle (otd) genes participate in development of the central nervous system and peripheral nervous system, and encode homeodomain proteins. otd and msh genes were ectopically expressed in dpp loss-of-function mutation, but vnd and ind were not affected. However, when dpp was ectopically expressed in the ventral neuroectoderm by rho-GAL4/UAS-dpp system, it caused the repression of vnd, and msh expressions in ventral and dorsal columns of the neuroectoderm, respectively, but not that of ind. The later expression pattern of otd was also restricted by Dpp. The expression pattern of msh, vnd and otd in dpp loss-of-function and gain-of-function mutation indicates that Dpp activity does not reach to the ventral midline and it works locally to establish the dorsal boundary of the ventral neuroectoderm. 相似文献
17.
Experiments reported in this paper investigate the properties of a change in the responsiveness of adult Drosophila melanogaster induced by exposure to different rearing media. This effect has previously been described as habituation or associative learning. Exposure to food medium containing 0.08% menthol induced a positive response to menthol odour in a T-maze olfactometer. A brief (one hour) exposure to mentholic food just before testing was sufficient to induce a change in responsiveness. The effect did not persist through periods of more than an hour of separation from mentholic medium.Effects induced by exposure to a single compound were not specific to that compound alone. Menthol-reared flies (MRFs) differed from plain reared flies (PRFs) in their responsiveness to the odours of benzaldehyde and ethyl acetate, as well as menthol, and exposure to ethyl acetate induced a change in response to menthol odour.That there was an induced positive response to menthol in MRFs suggests that conventional habituation is insufficient to explain the induced change in responsiveness, but the generalised nature of this behavioural induction in MRFs is hard to explain in terms of associative learning. The mechanism underlying the induction remains elusive. 相似文献
18.
19.
Programmed cell death (PCD) is utilized in a wide variety of tissues to refine structure in developing tissues and organs. However, little is understood about the mechanisms that, within a developing epithelium, combine signals to selectively remove some cells while sparing essential neighbors. One popular system for studying this question is the developing Drosophila pupal retina, where excess interommatidial support cells are removed to refine the patterned ommatidial array. In this paper, we present data indicating that PCD occurs earlier within the pupal retina than previously demonstrated. As with later PCD, this death is dependent on Notch activity. Surprisingly, altering Drosophila Epidermal Growth Factor Receptor or Ras pathway activity had no effect on this death. Instead, our evidence indicates a role for Wingless signaling to provoke this cell death. Together, these signals regulate an intermediate step in the selective removal of unneeded interommatidial cells that is necessary for a precise retinal pattern. 相似文献
20.
The Drosophila eye field that gives rise to the visual system and dorsal head epidermis forms an unpaired anlage located in the dorsal head ectoderm. The eye field expresses and requires both Dpp and EGFR signaling for its development. As shown in previous studies, EGFR is required for cell maintenance in the developing visual system. Dpp initially switches on the early eye genes so and eya in the eye field. Consecutively, high levels of Dpp in the dorsal midline inhibit these genes and promote development of head epidermis. We show that Dpp negatively regulates EGFR signaling, thereby increasing the amount of cell death in the dorsal midline. By this mechanism, Dpp controls the formation of a bilateral visual system and indirectly modulates cell death, which is essential for normal head morphogenesis. Loss of either Dpp or its downstream target, Zen, abolishes head epidermis fate and leads to the misexpression of dp-ERK in the dorsal midline. The resulting morphological phenotype consists of cyclopia, reduction of cell death, and failure of head involution. Ectopic expression of activated EGFR inhibits the Dpp target race and thereby causes cyclopia and defective head involution. We discuss possible mechanisms of Dpp and EGFR interaction in the embryo. 相似文献