首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A rapid alternative method is presented for the determination of pyridoxal 5'-phosphate (pyridoxal-P). The method involves the colorimetric analysis of thiocyanate liberated from S-cyanohomocysteine (Hcy (CN)) in the presence of cyanide when catalyzed by the pyridoxal-P dependent enzyme, gamma-cyano-alpha-aminobutyric acid (gamma-CNabu)-synthase (Hcy (CN) thiocyano-lyase [adding CN]). The rate of formation of thiocyanate is determined by the increase in absorbance at 470 nm on treatment of the enzymatic reaction mixture with FeCl3.  相似文献   

3.
Pyridoxal 5'-phosphate and other aromatic aldehydes inactivate rhodanese. The inactivation reaches higher extents if the enzyme is in the sulfur-free form. The identification of the reactive residue as an amino group has been made by spectrophotometric determination of the 5'-phosphorylated pyridoxyl derivative of the enzyme. The inactivation increases with pyridoxal 5'-phosphate concentration and can be partially removed by adding thiosulfate or valine. Prolonged dialysis against phosphate buffer also leads to the enzyme reactivation. The absorption spectra of the pyridoxal phosphate - rhodanese complex show a peak at 410 nm related to the Schiff base and a shoulder in the 330 nm region which is probably due to the reaction between pyridoxal 5'-phosphate and both the amino and thiol groups of the enzyme that appear reasonably close to each other. The relationship betweenloss of activity and pyridoxal 5'-phosphate binding to the enzyme shows that complete inactivation is achieved when four lysyl residues are linked to pyridoxal 5'-phosphate.  相似文献   

4.
A new and very sensitive fluorometric method for the determination of pyridoxal and pyridoxal 5′-phosphate is reported. The specificity is based on the reductive amination of pyridoxal and its 5′-phosphate with methyl anthranilate and sodium cyanoborohydride at pH 4,5 to 5,0. Separation of the highly fluorescent methyl-N-pyridoxyl anthranilate was achieved by a combination of column and thin-layer chromatography on silica gel. This method has been applied to the assay of pyridoxal and pyridoxal 5′-phosphate in seruum.  相似文献   

5.
6.
Specific spin-labeling of transfer ribonucleic acid molecules.   总被引:5,自引:5,他引:0       下载免费PDF全文
The spin labels anhydride (ASL), bromoacetamide (BSL) and carbodiimide (CSL) were used to label selectively tRNAGlu, tRNA fMet and tRNAPhe from E. coli. The preparation and characterization of the sites of labeling of eight new spin-labeled tRNAs are described. The sites of labeling are: s2U using ASL, BSL and CLS and tRNAGlu; s4U using ASL and BSL on tRNAfMet and tRNAPhe; U-37 with CSL on tRNfMet; U-33 with CSL on tRNAPhe. The rare base X at position 47 of tRNAPhe has been acylated with a spin-labeled N-hydroxysuccinimide (HSL). The 3'end of unfractionated tRNA molecules has been chemically modified to a morpholino spin-labeled analogue (MSL). Their respective e.s.r. spectra are reported and discussed.  相似文献   

7.
8.
Crude lysates from a strain of enterotoxigenic E. coli have been shown to catalyse the incorporation of [32P] from [adenylate-32P] NAD+ into an 11,000 dalton protein in rat liver membranes. [32P] incorporation paralleled adenylate cyclase activation and the results suggest that the mechanism of action of the heat-labile E. coli enterotoxin may involve ADP-ribosylation of an intracellular acceptor protein.  相似文献   

9.
Bovine pancreatic ribonuclease A was allowed to react with pyridoxal 5'-phosphate at pH 8 and 4 degrees. After reduction with sodium borohydride, the principal products formed in the initial stages of modification were separated by successive chromatography on CM-cellulose and SP-Sephadex. The isolated derivatives were identified as Nalpha-(P-pyridoxyl)-Lys-1-,Nepsilon-(P-pyridoxyl)-Lys-7-, and Nepsilon-(P-pyridoxyl)-Lys-41-ribonuclease A. These results are interpreted in terms of the specificity of pyridoxal-P as a protein reagent.  相似文献   

10.
11.
12.
It has been shown that horse muscle acylphosphatase is inhibited by pyridoxal 5'-phosphate and that the inhibition is pH dependent, reversible and competitive with respect to substrate binding. Spectral analysis on the EI complex demonstrates the presence of a Schiff base. Reduction of the pyridoxal 5'-phosphate-inhibited enzyme with sodium borohydride, followed by amino acid analysis, produces a diminution of the free lysine peak and the appearance of a new peak corresponding to epsilon-pyridoxyllysine. The results suggest that there is at least one NH2-lysyl residue of horse muscle acylphosphatase at or near the active site of the enzyme.  相似文献   

13.
Inhibition of glutamic dehydrogenase by pyridoxal 5'-phosphate   总被引:12,自引:0,他引:12  
  相似文献   

14.
Pyridoxal 5'-phosphate (PLP), a lysine-specific reagent, has been used to modify G-actin. At pH 7.5, PLP reacted with 1.7-2 lysines on G-actin. Limited proteolytic digestion experiments indicated that, in agreement with previous works, essentially lysine-61 was modified in a 1:1 fashion by PLP, other lysines being much less reactive. A PLP-derivatized affinity label of ATP binding sites, AMPPLP, reacted with two additional lysines that do not appear to be located in the ATP site on G-actin. PLP-G-actin did not polymerize spontaneously up to 30 microM; however, it retained other essential native properties of G-actin. PLP-actin bound to the barbed ends of actin filaments with an equilibrium dissociation constant of 4 microM and prevented dilution-induced depolymerization like a capping protein. PLP-actin copolymerized with unmodified actin. The stability of F-actin copolymers decreased with the fraction of PLP-actin incorporated, consistent with a model within which the actin-PLP-actin interactions in the copolymer are 50-fold weaker, and PLP-actin-PLP-actin interactions are 200-fold weaker than regular actin-actin interactions. PLP-actin bound DNase I with an equilibrium association constant of 2 nM-1, i.e., 10-fold lower than that of unmodified actin. PLP modification did not affect the binding of G-actin to myosin subfragment 1. However, polymerization of PLP-actin by myosin subfragment 1 was not observed in low ionic strength buffers, whereas PLP-F-actin-S1 filaments, in which the stoichiometry PLP-actin:S1 is 1:1, were formed with an apparent critical concentration of 4.5 microM in the presence of 0.1 M KCl.  相似文献   

15.
16.
A reversed-phase high-performance liquid chromatography (HPLC) method with fluorometric detection was developed for the routine determination of pyridoxal 5'-phosphate (PLP) and 4-pyridoxic acid (4-PA) in serum. Chlorite postcolumn derivatization was used to oxidize PLP to a more fluorescent carboxylic acid form. Sensitivity improved fourfold for PLP using chlorite postcolumn derivatization over traditional bisulfite postcolumn derivatization. The HPLC injection cycle was 15 min, facilitating a throughput of 60 patient samples (72 injections that included standards and quality control (QC) samples) in 18.5h. Method precision was evaluated using three serum QC pools with PLP and 4-PA concentrations of 11.5-34.8 nmol/L and 10.4-21.0 nmol/L, respectively. Within-run (n=7) repeatabilities were 0.6-1.2% for PLP and 0.9-1.8% for 4-PA. Run-to-run (n=23) reproducibilities were 3.6-6.7% for PLP and 3.7-5.6% for 4-PA. Relative detection (3sigma(0)) and quantitation (10sigma(0)) limits were 0.3 and 0.9 nmol/L, respectively, for both PLP and 4-PA using a 10-microl sample injection volume. Analytical recoveries ranged from 97 to 102%. Patient-matched serum and plasma specimens (n=25) were analyzed to evaluate specimen-type bias. Of the plasma types evaluated, heparinized plasma introduced the lowest relative bias for PLP (-5.3%) and minimal bias for 4-PA (-2.3%) compared with serum. Ethylenediaminetetraacetic acid (EDTA) plasma showed the lowest bias for 4-PA (0.7%) but a relatively high bias for PLP (13.0%) due to a chromatographic interference. Human serum samples from a non-representative population subset (n=303) were commensurate with values published for other vitamin B(6) HPLC methods. These values gave geometric means of 42.4 nmol/L for PLP and 27.3 nmol/L for 4-PA. Medians for PLP and 4-PA were 40.1 and 21.8 nmol/L, respectively. The high sensitivity, precision, and throughput of this method, combined with its minimal serum specimen (150 microl) and sample injection (10 microl) volume requirements, make it well suited for routine clinical vitamin B(6) analysis.  相似文献   

17.
18.
Modification of gastric (H+ + K+)-ATPase with pyridoxal 5'-phosphate   总被引:2,自引:0,他引:2  
Pig gastric membrane vesicles enriched in (H+ + K+)-ATPase were covalently modified with pyridoxal 5'-phosphate (PLP). The modification resulted in inhibition of K+-dependent ATP hydrolysis, formation of phosphoenzyme and ATP-driven H+-uptake catalyzed by (H+ + K+)-ATPase. ATP, ADP, and adenyl-5'-yl imidodiphosphate were protective ligands, whereas Mg2+ and K+ were not. Specific PLP-binding of about 4.5 nmol/mg membrane protein was necessary for complete inhibition of the enzyme activity, indicating that the stoichiometry of PLP-binding to the enzyme was about 1:1. Limited proteolysis of the enzyme modified with [3H]PLP by trypsin suggests that PLP specifically modifies the lysine residue located in the 16-kDa fragment of the enzyme cleaved by trypsin. These results suggested that PLP binds to a specific lysine residue in the nucleotide-binding site or a region in its vicinity and inhibits the substrate binding or phosphorylation step of (H+ + K+)-ATPase.  相似文献   

19.
Reconstitution of apophosphorylase with pyridoxal 5'-phosphate analogs   总被引:6,自引:0,他引:6  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号