首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present communication, newly synthesized 8-quinolinamines (25-27) related to previously reported 2-tert-butylprimaquine (2) were evaluated for their in vitro antimalarial activity against chloroquine sensitive and resistant Plasmodium falciparum strains, in vivo antimalarial activity against P. berghei infected mice, in vitro antileishmanial activity against Leishmania donovani, in vitro antimicrobial activity against various fungi and bacteria, and cytotoxicity in a panel of mammalian cell lines. No promising cytotoxicities were observed for compounds reported herein. Analogue 25 was found to exhibit curative antimalarial activity at a dose of 25 mg/kg/dayx4 in a P. berghei infected mice model, and produced suppressive activity at a lower dose of 10 mg/kg/dayx4. In vitro antileishmanial activities (IC50 and IC90) comparable to standard drug pentamidine were exhibited by all synthesized 8-quinolinamines 25-27. At the same time, promising antibacterial and antifungal activities were also observed for synthesized compounds against a panel consisting of several bacteria and fungi.  相似文献   

2.
白桦脂酸的研究进展   总被引:3,自引:0,他引:3  
白桦脂酸是一种五环三萜酸,存在于多种天然植物,特别是白桦树皮中,毒性低,安全指数高。近年来发现白桦脂酸具有抗肿瘤、抗HIV、抗炎、抗菌、抗疟疾等多种生物活性,特别是在抗黑色素瘤与抗HIV方面具有突出的表现,从而引起了人们极大的研究兴趣。对白桦脂酸的来源和生物活性进行了简要综述。  相似文献   

3.
Several new euglobal analogues (named as S-euglobals) were synthesized from phloroglucinol via a biomimetic three-component reaction involving Knoevenagel condensation followed by [4+2]-Diels-Alder cycloaddition with monoterpene. Newly synthesized euglobal analogues involve monoterpenes that have not yet been encountered in natural euglobals. S-Euglobals along with previously synthesized robustadial A and B were evaluated for in vitro antileishmanial, antimalarial, antimicrobial, and cytotoxic activities. Out of 16, nine analogues were found to exhibit antileishmanial activity against Leishmania donovani promastigotes. Analogue 7 was the most potent with IC(50) of 2.4 microg/mL and IC(90) of 8 microg/mL, followed by analogues 8 and 11 (IC(50) 5.5 and 9.5 microg/mL). Antileishmanial activity of robustadial A (5) and B (6) was moderate with IC(50) of 20 and 16 microg/mL, respectively. Robustadial A and B and S-euglobal 8 exhibited weak antimalarial activity against Plasmodium falciparum (IC(50) of 2.7-4.76 microg/mL). Few of the euglobal analogues showed antibacterial activity against methicillin-resistant Staphylococcus aureus. Amongst these, analogue 11 was the most potent with IC(50) of 1.0 microg/mL and MIC of 5.0 microg/mL. Most of the compounds were not cytotoxic up to 25 microg/mL in a panel of cell lines consisting of both cancer (SK-MEL, KB, BT-549, and SK-OV-3) as well as non-cancer kidney (Vero and LLC-PK11) cells.  相似文献   

4.
We report the synthesis, in vitro antiprotozoal (against Plasmodium and Leishmania), antimicrobial, cytotoxicity (Vero and MetHb-producing properties), and in vivo antimalarial activities of two series of 8-quinolinamines. N1-{4-[2-(tert-Butyl)-6-methoxy-8-quinolylamino]pentyl}-(2S/2R)-2-aminosubstitutedamides (21-33) and N1-[4-(4-ethyl-6-methoxy-5-pentyloxy-8-quinolylamino)pentyl]-(2S/2R)-2-aminosubstitutedamides (51-63) were synthesized in six steps from 6-methoxy-8-nitroquinoline and 4-methoxy-2-nitro-5-pentyloxyaniline, respectively. Several analogs displayed promising antimalarial activity in vitro against Plasmodium falciparum D6 (chloroquine-sensitive) and W2 (chloroquine-resistant) clones with high selectivity indices versus mammalian cells. The most promising analogs (21-24) also displayed potent antimalarial activity in vivo in a Plasmodium berghei-infected mouse model. Most interestingly, many analogs exhibited promising in vitro antileishmanial activity against Leishmania donovani promastigotes, and antimicrobial activities against a panel of pathogenic bacteria and fungi. Several analogs, notably 21-24, 26-32, and 60, showed less MetHb formation compared to primaquine indicating the potential of these compounds in 8-quinolinamine-based antimalarial drug development.  相似文献   

5.
Sixty-five compounds were isolated from the roots of Eurycoma longifolia and characterized by comprehensive analyses of their 1D and 2D NMR, and mass spectral data. Among these isolates, four quassinoid diterpenoids were reported from natural sources for the first time, namely eurycomalide A (1), eurycomalide B (2), 13beta, 21-dihydroxyeurycomanol (3), and 5alpha, 14beta, 15beta-trihydroxyklaineanone (4). Screening of cytotoxicity, anti-HIV and antimalarial activity of these isolated compounds was also furnished by in vitro assays. Compounds 12, 13, 17, 18, 36, 38, 59, and 62 demonstrated strong cytotoxicity toward human lung cancer (A-549) cell lines, however, 12, 13, 17, 38, 57, 58, and 59 exhibited strong cytoxicity toward human breast cancer (MCF-7) cell lines. Compounds 57 and 58 displayed potent antimalarial activity against the resistant Plasmodium falciparum. The thorough studies on the stereochemistry of the different quassinoid diterpenoids provide a clear reference to the scientists who are interested on this field.  相似文献   

6.
Austroplenckia populnea (Celastraceae), known as "marmelinho do campo", is used in Brazilian folk medicine as antimicrobial, anti-inflammatory, and antitumoural agent. The aim of the present work was to evaluate the antimicrobial, antileishmanial and antimalarial activities of the crude hydroalcoholic extract of A. populnea (CHE) and some of its isolated compounds. The phytochemical study of the CHE was carried out affording the isolation of methyl populnoate (1), populnoic acid (2), and stigmast-5-en-3-O-beta-(D-glucopyranoside) (3). This is the first time that the presence of compound 3 in A. populnea is reported. The results showed that the CHE presents antifungal and antibacterial activities, especially against Candida glabrata and Candida albicans, for which the CHE showed IC50 values of 0.7 microg mL(-1) and 5.5 microg mL(-1), respectively, while amphotericin B showed an IC50 value of 0.1 microg mL(-1) against both microorganisms. Compounds 1-3 were inactive against all tested microorganisms. In the antileishmanial activity test against Leishmania donovani, the CHE showed an IC50 value of 52 microg mL(-1), while compounds 2 and 3 displayed an IC50 value of 18 microg mL(-1) In the antimalarial assay against Plasmodium falciparum (D6 and W2 clones), it was observed that all evaluated samples were inactive. In order to compare the effect on the parasites with the toxicity to mammalian cells, the cytotoxicity activity of the isolated compounds was evaluated against Vero cells, showing that all evaluated samples exhibited no cytotoxicity at the maximum dose tested.  相似文献   

7.
A new compound (1), named diaporthelactone, together with two known compounds (2 and 3) were isolated from the culture of Diaporthe sp., a marine fungus growing in the submerged rotten leaves of Kandelia candel in the mangrove nature conservation areas of Fugong, Fujian Province of China. The new compound was elucidated to be 1,3-dihydro-4-methoxy-7-methyl-3-oxo-5-isobenzofuran-carboxyaldehyde (1), which showed cytotoxic activity against KB and Raji cell lines (IC50 6.25 and 5.51 microg mL(-1), respectively). Two known compounds, 7-methoxy-4,6-dimethyl-3H-isobenzofuran-1-one (2) and mycoepoxydiene (3), were also demonstrated to exhibit cytotoxic activities for the first time. All three compounds were assessed for antimicrobial activity.  相似文献   

8.
Deoxypreussomerin derivatives, palmarumycins JC1 (1) and JC2 (2), and two dimeric naphthoquinones, isodiospyrin (3) and its new derivative isodiospyrol A (4), were isolated from dried fruits of Diospyros ehretioides. Structures of the isolated compounds were elucidated by spectroscopic analyses. Palmarumycins were not found in the extract of freshly collected fruits; however, they were present in dried fruit extract. The absence of palmarumycins in fresh fruits of D. ehretioides, together with the chemotaxonomic point of view, we proposed that palmarumycins JC1 (1) and JC2 (2) are more likely to be fungal metabolites, i.e., endophytes or epiphytes. The isolation of palmarumycins 1 and 2 from dried D. ehretioides fruits could be reproducible; both plant samples collected in the years 2002 and 2004 provided the same result, and, therefore, symbiont fungal strains should be specific to the plant host, D. ehretioides, and they can grow on the fruits during drying the sample. Palmarumycin JC1 (1) did not exhibit antimalarial, antifungal, antimycobacterial, and cytotoxic activities. Palmarumycin JC2 (2) exhibited antimalarial (IC50 4.5 microg/ml), antifungal (IC50 12.5 microg/ml), antimycobacterial (MIC 6.25 microg/ml), and cytotoxic (IC50 11.0 microg/ml for NCI-H187 cell line) activities. In our bioassay systems, isodiospyrin (3) did not exhibit antimycobacterial, antifungal, antimalarial, and cytotoxic activities. Isodiospyrol A (4) exhibited antimalarial (IC50 2.7 microg/ml) and antimycobacterial (MIC 50 microg/ml) activities, but was inactive towards Candida albicans. Compound 4 also exhibited cytotoxicity against BC cells (IC50 12.3 microg/ml), but not towards KB and Vero cell lines.  相似文献   

9.
Two novel antimicrobial and cytotoxic triterpenoids, isopseudolarifuroic acids A (1) and B (2), were isolated from the bark of Pseudolarix kaempferi. The structural elucidation of two novel compounds was carried out mainly by spectroscopic methods, and also by computer modeling. Compounds 1 and 2 exhibited significant cytotoxic activities against several tumor cell lines. Compound 1 also showed most potent antimicrobial activities against both Gram-positive and Gram-negative bacteria.  相似文献   

10.
The genus Tithonia is an important source of diverse natural products, particularly sesquiterpene lactones, diterpenes, and flavonoids. The collected information in this review attempts to summarize the recent developments in the ethnobotany, biological activities, and secondary metabolite chemistry of this genus. More than 100 structures of natural products from Tithonia are reported in this review. The species that has been most investigated in this genus is T. diversifolia, from which ca. 150 compounds were isolated. Biological studies are described to evaluate the anti-inflammatory, analgesic, antimalarial, antiviral, antidiabetic, antidiarrhoeal, antimicrobial, antispasmodic, vasorelaxant, cancer-chemopreventive, cytotoxic, toxicological, bioinsecticide, and repellent activities. A few of these studies have been carried out with isolated compounds from Tithonia species, but the majority has been conducted with different extracts. The relationship between the biological activity and the toxicity of compounds isolated from the plants of this genus as well as T. diversifolia extracts still remains unclear, and mechanisms of action remain to be determined.  相似文献   

11.
In the present communication, naturally occurring phloroglucinol-monoterpene adducts, euglobals G1-G4 (3b/a and 4a/b) and 16 new analogues (13a/b-18a/b and 19-22) were synthesized by biomimetic approach. These synthetic compounds differ from natural euglobals in the nature of monoterpene and acyl functionality. All of these compounds were evaluated for their antibacterial, antifungal, antileishmanial and antimalarial activities. Analogue 17b possessed good antibacterial activity against methicillin-resistant Staphylococcus aureus, while analogues 19-22 possessed potent antifungal activity against Candida glabrata with IC50s ranging from 1.5 to 2.5 microg/mL. Euglobals along with all synthesized analogues exhibited antileishmanial activity. Amongst these, euglobal G2 (3a), G3 (4a) and analogues 13a and 14a showed potent antileishmanial activity with IC50s ranging from 2.8 to 3.9 microg/mL. Analogue 16a possessed antimalarial activity against chloroquine sensitive D6 clone of Plasmodium falciparum. None of the compounds showed toxicity against mammalian kidney fibroblasts (vero cells) upto the concentration of 4.76 microg/ml.  相似文献   

12.
In the present study, 5-substituted-1,3,4-oxadiazolin-2-thiones (1a-b) were synthesized via the ring closure reactions of appropriate acid hydrazides with carbon disulphide. N-(Benzothiazol-2-yl)-2-[[5-substituted-1,3,4-oxadiazol-2-yl]sulfanyl]acetamide derivatives (3a-j) were obtained by the nucleophilic substitution reactions of 5-substituted-1,3,4-oxadiazolin-2-thiones (1a-b) with N-(benzothiazol-2-yl)-2-chloroacetamides. The chemical structures of the compounds were elucidated by IR, (1)H NMR, (13)C NMR and FAB(+)-MS spectral data and elemental analyses. The synthesized compounds were screened for their antimicrobial activities against Micrococcus luteus, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Listeria monocytogenes and Candida albicans. All compounds except compound 3h exhibited the highest antibacterial activity against P. aeruginosa. Among all compounds (3a-j), the compounds bearing 4-methoxyphenoxymethyl moiety on oxadiazole ring (3a-e) exhibited the highest inhibitory activity against C. albicans. Although compound 3j did not possess 4-methoxyphenoxymethyl moiety on oxadiazole ring, this derivative also exhibited the same level of anti-candidal activity. The compounds were also investigated for their cytotoxic effects using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Compound 3a exhibited the highest cytotoxic activity, whereas compound 3g possessed the lowest cytotoxic activity against NIH/3T3 cells.  相似文献   

13.
Based on the fact that different isomers may exhibit substantial distinct activities, quantum chemical calculations and automated molecular docking simulations were carried out for 13 dispiro-1,2,4,5-tetraoxane compounds, which experimentally exist as a mixture of several isomers, to elucidate the most probable isomer(s) responsible for their antimalarial activity. The results indicate significant effects of stereoisomer on the binding mode and the activity. Moreover, the antimalarial potency of each compound can be described by the docking results. Compounds 1, 2, 4, 5, 7, and 9 have the most probable isomers coordinate suitably with heme iron and hence they have high activities while the most probable isomer in compounds 3 and 8 could not bind appropriately to heme yielding only moderate activities. On the other hand, the steric hindrance in compounds 11-13 prevents an approach of heme iron to peroxide bonds resulting in a devoid of antimalarial activity. However, compounds 6 and 10 with isopropyl substituents exhibit a different docking character, which is possibly caused by a limitation in molecular flexibility of the available docking technique. Our results can be used as a guideline for stereochemical control in synthesis process to improve drug's potency.  相似文献   

14.
Herein, we report synthesis, characterization, antimicrobial and antimalarial activities of azines Schiff base ligands (L1−L4) and their palladium (II) complexes ( C1−C4 ) of [Pd(L)(OAc)2] type. The azine ligands (L1−L4) were prepared by condensation of carbonyl compounds with hydrazine hydrate and their complexes by the reaction of palladium acetate with L1−L4 ligands in 1 : 1 molar ratio. The prepared ligands and their complexes were characterized by spectral characterization using 1H &13C-NMR, FT-IR and mass spectral studies, which revealed that the ligands coordinates via azomethine nitrogen and heteroatom or aryl carbon with palladium. Moreover, Schiff bases and their palladium (II) complexes have been screened for their antibacterial (S. aureus, B. subtillis, and S. typhi, P. aeruginosa), antifungal (C. albicans, A. niger, and A. clavatus) and antimalarial (P. falciparum) activities. The Schiff base L4 showed good results for antibacterial against S. aureus (MIC, 50 μg/mL) and antimalarial against P. falciparum (IC50, 0.83 μg/mL). The complex C1 showed best antibacterial activity (MIC, 62.5 μg/mL) against S. typhi and the complex C4 exhibited remarkable antimalarial activity (IC50, 0.42 μg/mL) among the tested compounds. Thus, azines based ligands and their Pd complexes can be good antimicrobial and antimalarial agents if explored further.  相似文献   

15.
A series of N'-substituted-2-(5-nitrofuran or 5-nitrothiophen-2-yl)-3H-benzo[d]imidazole-5-carbohydrazide derivatives were synthesized and investigated for their abilities to inhibit β-hematin formation, hemoglobin hydrolysis and in vivo for their antimalarial efficacy in rodent Plasmodium berghei. Selected analogues were screened for their antitubercular activity against sensitive MTB H(37)Rv and multidrug-resistant MDR-MTB strains, and cytotoxic activity against a panel of human tumor cell lines and two nontumourogenic cell lines. Compounds 3a, 5a, f, 6g were the most promising as inhibitors of β-hematin formation, however, their effect as inhibitors of hemoglobin hydrolysis were marginal. The most active compounds to emerge from the in vitro and in vivo murine studies were 3a and 6i, suggesting an antimalarial activity via inhibition of β-hematin formation and are as efficient as chloroquine. The cytotoxic and antitubercular activities of the present compounds were not comparable with those of the standard drugs employed. But, however, compound 5b showed better antitubercular activity compared to rifampin against multidrug-resistant MDR-MTB strains. Compounds 3a, 6i and 5b showed a good safety index.  相似文献   

16.
A new series of sulfur, selenium and tellurium peptidomimetic compounds was prepared employing the Passerini and Ugi isocyanide based multicomponent reactions (IMCRs). These reactions were clearly superior to conventional methods traditionally used for organoselenium and organotellurium synthesis, such as classical nucleophilic substitution and coupling methods. From the biological point of view, these compounds are of considerable interest because of suspected anticancer and antimicrobial activities. While the sulfur and selenium containing compounds generally did not show either anticancer or antimicrobial activities, their tellurium based counterparts frequently exhibited antimicrobial activity and were also cytotoxic. Some of the compounds synthesized even showed selective activity against certain cancer cells in cell culture. These compounds induced a cell cycle delay in the G0/G1 phase. At closer inspection, the ER and the actin cytoskeleton appeared to be the primary cellular targets of these tellurium compounds, in line with some of our previous studies. As most of these peptidomimetic compounds also comply with Lipinski’s Rule of Five, they promise good bioavailability, which needs to be studied as part of future investigations.  相似文献   

17.
In continuing our search of potent antimalarials based on 8-aminoquinoline structural framework, three series of novel bis(8-aminoquinolines) using convenient one to four steps synthetic procedures were synthesized. The bisquinolines were evaluated for in vitro antimalarial (Plasmodiumfalciparum), antileishmanial (Leishmaniadonovani), antimicrobial (a panel of pathogenic bacteria and fungi), cytotoxicity, ??-hematin inhibitory and methemoglobin (MetHb) formation activities. Several compounds exhibited superior antimalarial activities compared to parent drug primaquine. Selected compounds (44, 61 and 79) when tested for in vivo blood-schizontocidal antimalarial activity (Plasmodiumberghei) displayed potent blood-schizontocial activities. The bisquinolines showed negligible MetHb formation (0.2-1.2%) underlining their potential in the treatment of glucose-6-phosphate dehydrogenase deficient patients. The bisquinoline analogues (36, 73 and 79) also exhibited promising in vitro antileishmanial activity, and antimicrobial activities (43, 44 and 76) against a panel of pathogenic bacteria and fungi. The results of this study provide evidence that bis(8-aminoquinolines), like their bis(4-aminoquinolines) and artemisinin dimers counterparts, are a promising class of antimalarial agents.  相似文献   

18.
Seventeen cucurbitane-type triterpenoids, 1-17, including six new compounds, (23E)-3β,25-dihydroxy-7β-methoxycucurbita-5,23-dien-19-al (1), (23S*)-3β-hydroxy-7β,23-dimethoxycucurbita-5,24-dien-19-al (6), (23R*)-23-O-methylmomordicine IV (7), (25ξ)-26-hydroxymomordicoside L (8), 25-oxo-27-normomordicoside L (9), and 25-O-methylkaravilagenin D (12), were isolated from a MeOH extract of the leaves of Japanese Momordica charantia. The structures of new compounds were elucidated on the basis of extensive spectroscopic analyses and comparison with literature. Compounds 1-17 were examined for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced with 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells, a known primary screening test for inhibitors of tumor promotion. Four compounds, 1, (23E)-3β,7β-dihydroxy-25-methoxycucurbita-5,23-dien-19-al (2), karavilagenin D (11), and 12, showed potent inhibitory effects on EBV-EA induction with IC(50) values in the range of 242-264 mol ratio/32 pmol TPA. In addition, compounds 1 and 11 exhibited inhibitory effects on skin-tumor promotion in an in vivo two-stage mouse skin carcinogenesis test based on 7,12-dimethylbenz[a]anthracene (DMBA) as initiator, and with TPA as a promoter. Furthermore, upon evaluation of the cytotoxic activities of compounds 1-17 against human cancer cell lines, compounds 2, 5-7, 9, and 14 showed potent activities against HL60 cell line, and compound 2 against SK-BR-3 cell line.  相似文献   

19.
Medicinal plants are becoming an important research area for novel and bioactive molecules for drug discovery. Novel therapeutic strategies and agents are urgently needed to treat different incurable diseases. Many plant derived active compounds are in human clinical trials. Currently ursolic acid is in human clinical trial for treating cancer, tumor, and skin wrinkles. This review includes the clinical use of ursolic acid in various diseases including anticancer, antitumor, and antiwrinkle chemotherapies, and the isolation and purification of this tritepernoid from various plants to update current knowledge on the rapid analysis of ursolic acid by using analytical methods. In addition, the chemical modifications of ursolic acid to make more effective and water soluble derivatives, previous and current information regarding, its natural and semisynthetic analogs, focusing on its anticancer, cytotoxic, antitumor, antioxidant, anti-inflammatory, anti-HIV, acetyl cholinesterase, α-glucosidase, antimicrobial, and hepatoprotective activities, briefly discussion is attempted here for its research perspectives. This review article contains fourteen medicinally important ursolic acid derivatives and 351 references.  相似文献   

20.
A simple synthesis of novel 13-aryl-13H-benzo[g]benzothiazolo [2,3-b]quinazoline-5,14-dione derivatives was accomplished in excellent yields via the reaction of 2-aminobenzothiazole, aromatic aldehydes and 2-hydroxy-1,4-naphthoquinone in the presence of amberlyst-15. The antiproliferative activities of all the synthesized compounds were assessed on two different human cancer cell lines (HepG2 and Hela), and the results showed that most of the new compounds showed good to potent cytotoxic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号