首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The moderately halophilic, obligately anaerobic eubacteria Haloanaerobium praevalens DSM 2228 and Sporohalobacter marismortui ATCC 35420 are able to reduce a variety of nitrosubstituted aromatic compounds at a high rate to the corresponding amines. Compounds degraded included nitrobenzene, o-nitrophenol, m-nitrophenol, p-nitrophenol, nitroanilines, 2,4-dinitrophenol, and 2,4-dinitroaniline. Most of these compounds, when added at concentrations of 50 to 100 mg/liter, were completely transformed within 24 h, but at the highest concentrations growth rates were somewhat lowered. Growth of H. praevalens in the presence of 14C-labeled p-nitrophenol showed that the compound was not incorporated by the cells or degraded to acid-volatile compounds.  相似文献   

2.
Abstract Cell-free enzyme preparations of the obligately anaerobic halophilic eubacterium Haloanaerobium praevalens synthesize fatty acids from malonyl-CoA. The reaction is stimulated by NaCl and KCl at a concentration of 1 M, and only slightly inhibited by salt concentrations as high as 3 M. Thus, the fatty acid synthetase of H. praevalens is expected to the fully active at the high intracellular salt concentrations present, and it is the first fatty acid synthetase reported to be active in the presence of high salt concentrations.  相似文献   

3.
The rates of mineralization of nitrilotriacetic acid (NTA), 2,4-dichlorophenoxyacetic acid (2,4-D), p-nitrophenol, aniline, and isopropyl N-phenylcarbamate (IPC) at one or more concentrations ranging from 100 pg/ml to 1.0 microgram/ml were proportional to chemical concentrations in samples of three lakes. The rates at 100 pg of NTA, 2,4-D, p-nitrophenol, and aniline per ml in samples of one or more lakes were less than predicted, assuming the rates were linearly related to the concentration. Neither NTA nor 2,4-dichlorophenol at 2.0 ng/ml was mineralized in some lake waters, but higher levels of the two chemicals were converted to CO2 in samples of the same waters. In samples from two lakes, little or no mineralization of IPC or 2,4-D occurred at 1.0 microgram/ml, but 10 ng/ml or lower levels of the herbicides were mineralized. The mineralization in sewage of 1.0 microgram of NTA per ml was biphasic; about 20% of the substrate was mineralized in 20 h, and mineralization was only reinitiated after a period of 130 h. The biphasic transformation was not a result of the accumulation of organic products, and it was still evident if protozoan activity was inhibited. NTA also underwent a biphasic mineralization in lake waters, and the biphasic pattern was not altered by additions of growth factors and inorganic nutrients. From 40 to 60% of the carbon of aniline added to lake water at levels of 100 pg/ml to 1.0 microgram/ml was mineralized, but more than 90% of the carbon of NTA, 2,4-D, or p-nitrophenol added to lake water at 10 ng/ml or 1.0 microgram/ml was mineralized.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The rates of mineralization of nitrilotriacetic acid (NTA), 2,4-dichlorophenoxyacetic acid (2,4-D), p-nitrophenol, aniline, and isopropyl N-phenylcarbamate (IPC) at one or more concentrations ranging from 100 pg/ml to 1.0 microgram/ml were proportional to chemical concentrations in samples of three lakes. The rates at 100 pg of NTA, 2,4-D, p-nitrophenol, and aniline per ml in samples of one or more lakes were less than predicted, assuming the rates were linearly related to the concentration. Neither NTA nor 2,4-dichlorophenol at 2.0 ng/ml was mineralized in some lake waters, but higher levels of the two chemicals were converted to CO2 in samples of the same waters. In samples from two lakes, little or no mineralization of IPC or 2,4-D occurred at 1.0 microgram/ml, but 10 ng/ml or lower levels of the herbicides were mineralized. The mineralization in sewage of 1.0 microgram of NTA per ml was biphasic; about 20% of the substrate was mineralized in 20 h, and mineralization was only reinitiated after a period of 130 h. The biphasic transformation was not a result of the accumulation of organic products, and it was still evident if protozoan activity was inhibited. NTA also underwent a biphasic mineralization in lake waters, and the biphasic pattern was not altered by additions of growth factors and inorganic nutrients. From 40 to 60% of the carbon of aniline added to lake water at levels of 100 pg/ml to 1.0 microgram/ml was mineralized, but more than 90% of the carbon of NTA, 2,4-D, or p-nitrophenol added to lake water at 10 ng/ml or 1.0 microgram/ml was mineralized.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
2,4-Dichlorophenol (2,4-DCP) was anaerobically degraded in freshwater lake sediments. From observed intermediates in incubated sediment samples and from enrichment cultures, the following sequence of transformations was postulated. 2,4-DCP is dechlorinated to 4-chlorophenol (4-CP), 4-CP is dechlorinated to phenol, phenol is carboxylated to benzoate, and benzoate is degraded via acetate to methane and CO2; at least five different organisms are involved sequentially. The rate-limiting step was the transformation of 4-CP to phenol. Sediment-free enrichment cultures were obtained which catalyzed only the dechlorination of 2,4-DCP, the carboxylation of phenol, and the degradation of benzoate, respectively. Whereas the dechlorination of 2,4-DCP was not inhibited by H2, the dechlorination of 4-CP, and the transformation of phenol and benzoate were. Low concentrations of 4-CP inhibited phenol and benzoate degradation. Transformation rates and maximum concentrations allowing degradation were determined in both freshly collected sediments and in adapted samples: at 31 degrees C, which was the optimal temperature for the dechlorination, the average adaptation time for 2,4-DCP, 4-CP, phenol, and benzoate transformations were 7, 37, 11 and 2 days, respectively. The maximal observed transformation rates for these compounds in acclimated sediments were 300, 78, 2, 130, and 2,080 micromol/liter(-1)/day(-1), respectively. The highest concentrations which still allowed the transformation of the compound in acclimated sediments were 3.1 m/M 2,4-DCP, 3.1 mM 4-CP, 13 mM phenol, and greater than 52 mM benzoate. The corresponding values were lower for sediments which had not been adapted for the transformation steps.  相似文献   

6.
Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments   总被引:12,自引:0,他引:12  
2,4-Dichlorophenol (2,4-DCP) was anaerobically degraded in freshwater lake sediments. From observed intermediates in incubated sediment samples and from enrichment cultures, the following sequence of transformations was postulated. 2,4-DCP is dechlorinated to 4-chlorophenol (4-CP), 4-CP is dechlorinated to phenol, phenol is carboxylated to benzoate, and benzoate is degraded via acetate to methane and CO2; at least five different organisms are involved sequentially. The rate-limiting step was the transformation of 4-CP to phenol. Sediment-free enrichment cultures were obtained which catalyzed only the dechlorination of 2,4-DCP, the carboxylation of phenol, and the degradation of benzoate, respectively. Whereas the dechlorination of 2,4-DCP was not inhibited by H2, the dechlorination of 4-CP, and the transformation of phenol and benzoate were. Low concentrations of 4-CP inhibited phenol and benzoate degradation. Transformation rates and maximum concentrations allowing degradation were determined in both freshly collected sediments and in adapted samples: at 31 degrees C, which was the optimal temperature for the dechlorination, the average adaptation time for 2,4-DCP, 4-CP, phenol, and benzoate transformations were 7, 37, 11 and 2 days, respectively. The maximal observed transformation rates for these compounds in acclimated sediments were 300, 78, 2, 130, and 2,080 micromol/liter(-1)/day(-1), respectively. The highest concentrations which still allowed the transformation of the compound in acclimated sediments were 3.1 m/M 2,4-DCP, 3.1 mM 4-CP, 13 mM phenol, and greater than 52 mM benzoate. The corresponding values were lower for sediments which had not been adapted for the transformation steps.  相似文献   

7.
Combined cell suspensions of the 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-metabolizing organism Pseudomonas cepacia AC1100, and the 2,4-dichlorophenoxyacetic acid (2,4-D)-metabolizing organism Alcaligenes eutrophus JMP134 were shown to effectively degrade either of these compounds provided as single substrates. These combined cell suspensions, however, poorly degraded mixtures of the two compounds provided at the same concentrations. Growth and viability studies revealed that such mixtures of 2,4-D and 2,4,5-T were toxic to AC1100 alone and to combinations of AC1100 and JMP134. High-pressure liquid chromatography analyses of culture supernatants of AC1100 incubated with 2,4-D and 2,4,5-T revealed the accumulation of chlorohydroquinone as an apparent dead-end catabolite of 2,4-D and the subsequent accumulation of both 2,4-dichlorophenol and 2,4,5-trichlorophenol. JMP134 cells incubated in the same medium did not catabolize 2,4,5-T and were also inhibited in initiating 2,4-D catabolism. A new derivative of strain AC1100 was constructed by the transfer into this organism of the 2,4-D-degradative plasmid pJP4 from strain JMP134. This new strain, designated RHJ1, was shown to efficiently degrade mixtures of 2,4-D and 2,4,5-T through the simultaneous metabolism of these compounds.  相似文献   

8.
Combined cell suspensions of the 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-metabolizing organism Pseudomonas cepacia AC1100, and the 2,4-dichlorophenoxyacetic acid (2,4-D)-metabolizing organism Alcaligenes eutrophus JMP134 were shown to effectively degrade either of these compounds provided as single substrates. These combined cell suspensions, however, poorly degraded mixtures of the two compounds provided at the same concentrations. Growth and viability studies revealed that such mixtures of 2,4-D and 2,4,5-T were toxic to AC1100 alone and to combinations of AC1100 and JMP134. High-pressure liquid chromatography analyses of culture supernatants of AC1100 incubated with 2,4-D and 2,4,5-T revealed the accumulation of chlorohydroquinone as an apparent dead-end catabolite of 2,4-D and the subsequent accumulation of both 2,4-dichlorophenol and 2,4,5-trichlorophenol. JMP134 cells incubated in the same medium did not catabolize 2,4,5-T and were also inhibited in initiating 2,4-D catabolism. A new derivative of strain AC1100 was constructed by the transfer into this organism of the 2,4-D-degradative plasmid pJP4 from strain JMP134. This new strain, designated RHJ1, was shown to efficiently degrade mixtures of 2,4-D and 2,4,5-T through the simultaneous metabolism of these compounds.  相似文献   

9.
Anaerobic biodegradation of phenolic compounds in digested sludge.   总被引:8,自引:27,他引:8       下载免费PDF全文
We examined the anaerobic degradation of phenol and the ortho, meta, and para isomers of chlorophenol, methoxyphenol, methylphenol (cresol), and nitrophenol in anaerobic sewage sludge diluted to 10% in a mineral salts medium. Of the 12 monosubstituted phenols studied, only p-chlorophenol and o-cresol were not significantly degraded during an 8-week incubation period. The phenol compounds degraded and the time required for complete substrate disappearance (in weeks) were: phenol (2), o-chlorophenol (3), m-chlorophenol (7), o-methoxyphenol (2), m- and p-methoxyphenol (1), m-cresol (7), p-cresol (3), and o-, m-, and p-nitrophenol (1). Complete mineralization of phenol, o-chlorophenol, m-cresol, p-cresol, o-nitrophenol, p-nitrophenol, and o-, m-, and p-methoxyphenol was observed. In general, the presence of Cl and NO2 groups on phenols inhibited methane production. Elimination or transformation of these substituents was accompanied by increased methane production, o-Chlorophenol was metabolized to phenol, which indicated that dechlorination was the initial degradation step. The methoxyphenols were transformed to the corresponding dihydroxybenzene compounds, which were subsequently mineralized.  相似文献   

10.
The kinetics of mineralization of 14C-labeled phenol and aniline were measured at initial concentrations ranging from 0.32 to 5,000 ng and 0.30 ng to 500 micrograms/g of soil, respectively. Mineralization of phenol at concentrations less than or equal to 32 ng/g of soil and of aniline at all concentrations began immediately, and the curves for the evolution of labeled CO2 were biphasic. The patterns of mineralization of 4.0 ng of 2,4-dichlorophenol per g of soil and 20 ng of nitrilotriacetic acid per g of soil were similar to the patterns for phenol and aniline. The patterns of mineralization of 1.0 to 100 ng of p-nitrophenol and 6.0 ng of benzylamine per g of soil were also biphasic but after a short apparent lag period. The curves of CO2 evolution from higher concentrations of phenol and p-nitrophenol had increasing apparent lag phases and were S-shaped or linear. Cumulative plots of the percentage of substrate converted to CO2 were fit by nonlinear regression to first-order, integrated Monod, logistic, logarithmic, zero-order, three-half-order, and two-compartment models. None of the models of the Monod family provided the curve of best fit to any of the patterns of mineralization. The linear growth form of the three-half-order model provided the best fit for the mineralization of p-nitrophenol, with the exception of the lowest concentrations, and of benzylamine. The two-compartment model provided the best fit for the mineralization of concentrations of phenol below 100 ng/g, of several concentrations of aniline, and of nitrilotriacetic acid. It is concluded that models derived from the Monod equation, including the first-order model, do not adequately describe the kinetics of mineralization of low concentrations of chemicals added to soil.  相似文献   

11.
Kinetics of mineralization of organic compounds at low concentrations in soil   总被引:10,自引:0,他引:10  
The kinetics of mineralization of 14C-labeled phenol and aniline were measured at initial concentrations ranging from 0.32 to 5,000 ng and 0.30 ng to 500 micrograms/g of soil, respectively. Mineralization of phenol at concentrations less than or equal to 32 ng/g of soil and of aniline at all concentrations began immediately, and the curves for the evolution of labeled CO2 were biphasic. The patterns of mineralization of 4.0 ng of 2,4-dichlorophenol per g of soil and 20 ng of nitrilotriacetic acid per g of soil were similar to the patterns for phenol and aniline. The patterns of mineralization of 1.0 to 100 ng of p-nitrophenol and 6.0 ng of benzylamine per g of soil were also biphasic but after a short apparent lag period. The curves of CO2 evolution from higher concentrations of phenol and p-nitrophenol had increasing apparent lag phases and were S-shaped or linear. Cumulative plots of the percentage of substrate converted to CO2 were fit by nonlinear regression to first-order, integrated Monod, logistic, logarithmic, zero-order, three-half-order, and two-compartment models. None of the models of the Monod family provided the curve of best fit to any of the patterns of mineralization. The linear growth form of the three-half-order model provided the best fit for the mineralization of p-nitrophenol, with the exception of the lowest concentrations, and of benzylamine. The two-compartment model provided the best fit for the mineralization of concentrations of phenol below 100 ng/g, of several concentrations of aniline, and of nitrilotriacetic acid. It is concluded that models derived from the Monod equation, including the first-order model, do not adequately describe the kinetics of mineralization of low concentrations of chemicals added to soil.  相似文献   

12.
Sphingomonas strain UG30 mineralizes both p-nitrophenol (PNP) and pentachlorophenol (PCP). Our current studies showed that UG30 oxidatively metabolized certain other p-substituted nitrophenols, i.e., p-nitrocatechol, 2,4-dinitrophenol (2,4-DNP), and 4,6-dinitrocresol with liberation of nitrite. 2,6-DNP, o- or m-nitrophenol, picric acid, or the herbicide dinoseb were not metabolized. Studies using 14C-labelled 2,4-DNP indicated that in glucose-glutamate broth cultures of UG30, greater than 90% of 103 microM 2,4-DNP was transformed to other compounds, while 8-19% of the 2,4-DNP was mineralized within 5 days. A significant portion (20-50%) of the 2,4-DNP was metabolized to highly polar metabolite(s) with one major unidentified metabolite accumulating from 5 to 25% of the initial radioactivity. The amounts of 2,4-DNP mineralized and converted to polar metabolites was affected by glutamate concentration in the medium. Nitrophenolic compounds metabolized by UG30 were also suitable substrates for the UG30 PCP-4-monooxygenase (pcpB gene expressed in Escherichia coli) which is likely central to degradation of these compounds. The wide substrate range of UG30 could render this strain useful in bioremediation of some chemically contaminated soils.  相似文献   

13.
A p-nitrophenol (PNP)- and phenol-mineralizing bacterium (strain NSP41) was isolated from an industrial wastewater and identified as a member of the genus Nocardioides. PNP was degraded via a hydroquinone pathway, and phenol was degraded through a catechol pathway in strain NSP41. Both enzyme systems for the degradation of PNP and phenol were induced simultaneously in the presence of both compounds. Although both enzyme systems were induced at the same time, PNP and phenol were degraded by the hydroquinone and catechol pathway, respectively. However, during the simultaneous degradation in the low phenol concentration, after the exhaustion of phenol, some PNP was transformed by the catechol pathway and 4-nitrocatechol was transiently accumulated. Kinetically, the addition of phenol greatly enhanced the apparent PNP degradation rate, which may be due to the increased cell mass by the assimilation of phenol.  相似文献   

14.
Smith AR  Beadle CA 《Biodegradation》2008,19(5):669-681
Burkholderia cepacia 2a inducibly degraded 2,4-dichlorophenoxyacetate (2,4-D) sequentially via 2,4-dichlorophenol, 3,5-dichlorocatechol, 2,4-dichloromuconate, 2-chloromuconolactone and 2-chloromaleylacetate. Cells grown on nutrient agar or broth grew on 2,4-D-salts only if first passaged on 4-hydroxybenzoate- or succinate-salts agar. Buffered suspensions of 4-hydroxybenzoate-grown cells did not adapt to 2,4-D or 3,5-dichlorocatechol, but responded to 2,4-dichlorophenol at concentrations <0.4 mM. Uptake of 2,4-dichlorophenol by non-induced cells displayed a type S (cooperative uptake) uptake isotherm in which the accelerated uptake of the phenol began before the equivalent of a surface monolayer had been adsorbed, and growth inhibition corresponded with the acquisition of 2.2-fold excess of phenol required for the establishment of the monolayer. No evidence of saturation was seen even at 2 mM 2,4-dichlorophenol, possibly due to absorption by intracellular poly-beta-hydroxybutyrate inclusions. With increasing concentration, 2,4-dichlorophenol caused progressive cell membrane damage and, sequentially, leakage of intracellular K(+), P(i), ribose and material absorbing light at 260 nm (presumed nucleotide cofactors), until at 0.4 mM, protein synthesis and enzyme induction were forestalled. Growth of non-adapted cells was inhibited by 0.35 mM 2,4-dichlorophenol and 0.25 mM 3,5-dichlorocatechol; the corresponding minimum bacteriocidal concentrations were 0.45 and 0.35 mM. Strain 2a grew in chemostat culture on carbon-limited media containing 2,4-D, with an apparent growth yield coefficient of 0.23, and on 2,4-dichlorophenol. Growth on 3,5-dichlorocatechol did not occur without a supplement of succinate, probably due to accumulation of toxic quantities of quinonoid and polymerisation products. Cells grown on these compounds were active towards all three, but not when grown on other substrates. The enzymes of the pathway therefore appeared to be induced by 3,5-dichlorocatechol or some later metabolite. A possible reason is offered for the environmental persistence of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T).  相似文献   

15.
Hu X  Li A  Fan J  Deng C  Zhang Q 《Bioresource technology》2008,99(10):4529-4533
This work combined selective adsorption and bioaugmentation to treat mixed wastewater of nitrobenzene and p-nitrophenol. The mixed wastewater of nitrobenzene (217 mg/L) and p-nitrophenol (500 mg/L) was adjusted its pH to 8 and then passed through the adsorption column at 100 mL/h. In effluent the nitrobenzene concentration was less than 4 mg/L. Without the toxic inhibition of nitrobenzene, p-nitrophenol in effluent could be degraded within 60 h through bioaugmentation. About 23 mg/g of nitrobenzene adsorbed the dry resin HU-05 could be desorbed and degraded through bioaugmentation. During this process the adsorption capacity of the resin HU-05 was recovered partly. The recovered extent was limited by nitrobenzene bioavailability. The performance of the resin HU-05 kept stably in the recycle experiments of 60 days.  相似文献   

16.
Biodegradation of p-nitrophenol and 4-chlorophenol by Stenotrophomonas sp   总被引:1,自引:0,他引:1  
A bacterium named LZ-1 capable of utilizing high concentrations of p-nitrophenol (PNP) (up to 500 mg L(-1)) as the sole source of carbon, nitrogen and energy was isolated from an activated sludge. Based on the results of phenotypic features and phylogenetic similarity of 16S rRNA gene sequences, strain LZ-1 was identified as a Stenotrophomonas sp. Other p-substituted phenols such as 4-chlorophenol (4-CP) were also degraded by strain LZ-1, and both PNP and 4-CP were degraded via the hydroquinone pathway exclusively. Strain LZ-1 could degrade PNP and 4-CP simultaneously and the degradation of PNP was greatly accelerated due to the increased biomass supported by 4-CP. An indigenous plasmid was found to be responsible for phenols degradation. In soil samples, 100 mg kg(-1) of PNP and 4-CP in mixtures were removed by strain LZ-1 (10(6) cells g(-1)) within 14 and 16 days respectively, and degradation activity was maintained over a wide range of temperatures (4-35 degrees C). Therefore, strain LZ-1 can potentially be used in bioremediation of phenolic compounds either individually or as a mixture in the environment.  相似文献   

17.
A Pseudomonas cepacia, designated strain BRI6001, was isolated from peat by enrichment culture using 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole carbon source. BRI6001 grew at up to 13 mM 2,4-D, and degraded 1 mM 2,4-D at an average starting population density as low as 1.5 cells/ml. Degradation was optimal at acidic pH, but could also be inhibited at low pH, associated with chloride release from the substrate, and the limited buffering capacity of the growth medium. The only metabolite detected during growth on 2,4-D was 2,4-dichlorophenol (2,4-DCP), and degradation of the aromatic nucleus was by intradiol cleavage. Growth lag times prior to the on-set of degradation, and the total time required for degradation, were linearly related to the starting population density and the initial 2,4-D concentration. BRI6001, grown on 2,4-D, oxidized a variety of structurally similar chlorinated aromatic compounds accompanied by stoichiometric chloride release.  相似文献   

18.
Chong NM  Wang CH  Ho CH  Hwu CS 《Bioresource technology》2011,102(5):4069-4075
The biomass yield of a continuous flow activated sludge system varied when the system treated influent containing different compositions of biogenic and xenobiotic substrates. Both the biogenic substrate and a test xenobiotic 2,4-dichlorophenoxyacetic acid (2,4-D) were degraded at steady-state activated sludge operations. The true yields, determined from steady-state activated sludge treatment performances, were at the maximum and the minimum when the activated sludge treated the influent of sole biogenic substrate and sole 2,4-D, respectively. The minimum yield was 56% of the maximum. Yield reduction between the maximum and the minimum was proportional to the concentration of 2,4-D in the influent. This trend of yield reduction suited a model that describes the metabolic uncoupling effect of 2,4-D on the sludge's degradation of the substrates. The model function variable was defined as the ratio of 2,4-D to biogenic COD concentrations in the influent.  相似文献   

19.
Microorganisms indigenous to surface soils and aquifer materials collected at a munitions-contaminated site transformed 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), and 2,6-dinitrotoluene (2,6-DNT) to amino-nitro intermediates within 20 to 70 days. Carbon mineralization studies with both unlabeled (TNT, 2,4-DNT, and 2,6-DNT) and radiolabeled ([14C]TNT) substrates indicated that a significant fraction of these source compounds was degraded to CO2.  相似文献   

20.
Novel pyrazolyl-2,4-thiazolidinediones were prepared via the reaction of appropriate pyrazolecarboxaldehydes with 2,4-thiazolidinediones and substituted benzyl-2,4-thiazolidinediones. The resultant compounds were first evaluated for their anti-inflammatory and neuroprotective properties in vitro. The active compounds were further studied in vivo by using the formalin-induced paw edema and the turpentine oil-induced granuloma pouch bioassays. We identified four novel compounds that showed protective effects in vitro at non-toxic concentrations, and were also effective in the animal models of acute and sub-acute inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号