首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Induction of Superoxide Dismutase by Molecular Oxygen   总被引:59,自引:28,他引:31       下载免费PDF全文
Oxygen induces superoxide dismutase in Streptococcus faecalis and in Escherichia coli B. S. faecalis grown under 20 atm of O(2) had 16 times more of this enzyme than did anaerobically grown cells. In the case of E. coli, changing the conditions of growth from anaerobic to 5 atm of O(2) caused a 25-fold increase in the level of superoxide dismutase. Induction of this enzyme was a response to O(2) rather than to pressure, since 20 atm of N(2) was without effect. Induction of superoxide dismutase was a rapid process, and half of the maximal level was reached within 90 min after N(2)-grown cells of S. faecalis were exposed to 20 atm of O(2) at 37 C. S. faecalis did not contain perceptible levels of catalase under any of the growth conditions investigated by Stanier, Doudoroff, and Adelberg (23), and the concentration of catalase in E. coli was not affected by the presence of O(2) during growth. S. faecalis, which had been grown under 100% O(2) and which therefore contained an elevated level of superoxide dismutase, was more resistant of 46 atm of O(2) than were cells which had been grown under N(2). E. coli grown under N(2) contained as much superoxide dismutase as did S. faecalis grown under 1 atm of O(2). The E. coli which had been grown under N(2) was as resistant to the deleterious effects of 50 atm of O(2) as was S. faecalis which had been grown under 1 atm of O(2). These results are consistent with the proposal that the peroxide radical is an important agent of the toxicity of oxygen and that superoxide dismutase may be a component of the systems which have been evolved to deal with this potential toxicity.  相似文献   

2.
Oxygen Toxicity and the Superoxide Dismutase   总被引:43,自引:18,他引:25  
Oxygen caused an increase in the amount of superoxide dismutase in Escherichia coli B but not in Bacillus subtilis. E. coli B cells, induced by growth under 100% O(2), were much more resistant to the lethal effects of 20 atm of O(2) than were cells which contained the low uninduced level of this enzyme. In contrast, B. subtilis, which could not respond to O(2) by increasing its content of superoxide dismutase, remained equally sensitive to hyperbaric O(2) whether grown under 100% O(2) or areobically. The catalase in these organisms exhibited a reciprocal response to oxygen. Thus, the catalase of E. coli B was not induced by O(2), whereas that of B. subtilis was so induced. These results are consistent with the view that superoxide dismutase is an important component of the defenses of these organisms against the toxicity of oxygen, whereas their catalases are of secondary importance in this respect. The ability of streptonigrin to generate O(2) (-), by a cycle of reduction followed by spontaneous reoxidation, has been verified in vitro. It is further observed that E. coli B which contain the high induced level of superoxide dismutase were more resistant to the lethality of this antibiotic, in the presence of oxygen, than were E. coli B which contained the low uninduced level of this enzyme. This difference between induced and uninduced cells was eliminated by the removal of O(2). These results are consistent with the proposal that the enhanced lethality of streptonigrin under aerobic conditions may relate to its in vivo generation of O(2) (-) by a cycle of reduction and spontaneous reoxidation. In toto, these observations lend support to the hypothesis that O(2) (-) is an important agent of oxygen toxicity and that superoxide dismutase functions to blunt the threat posed by this reactive radical.  相似文献   

3.
Escherichia coli B, grown under aerobic conditions, contains at least three distinct superoxide dismutases, which can be visualized on polyacrylamide gel electropherograms of crude soluble extracts of the sonically disrupted cells. Of these, the slowest migrating and the fastest migrating, respectively, have previously been isolated and characterized as manganese-containing and iron-containing enzymes. The enzyme form with medium electrophoretic mobility has now been purified to homogeneity. Its molecular weight is approximately 37,000 and it contains 0.8 atoms of iron/molecule and only negligible amounts of manganese. Like other iron-containing superoxide dismutases and unlike the corresponding manganienzymes, it is inactivated by EDTA plus H2O2. Its specific activity is comparable to that of the other superoxide dismutases of E. coli. Two types of subunits could be distinguished upon electrophoresis in the presence of sodium dodecyl sulfate. One of these migrated identically with the subunit obtained from the manganisuperoxide dismutase, while the other similarly appeared identical with the subunit from the ferrisuperoxide dismutase. This newly isolated enzyme thus appears to be a hybrid of the other two forms. In support of this conclusion, we observed that ultrafiltration or storage of the new superoxide dismutase gave rise to the mangani- and ferrienzymes on disc gel electrophoresis or isoelectric focussing.  相似文献   

4.
The role of catalase and superoxide dismutase (SOD) in response of the yeast Saccharomyces cerevisiae to oxidative stress induced by hydrogen peroxide in the middle-exponential phase has been investigated. It was shown that cell survival is significantly decreased after yeast exposure to hydrogen peroxide in the strains defective in cytosolic or peroxisomal catalases. Treatment of the wild-type cells with 0.5 mM H2O2 for 30 min causes an increase in the activity of catalase and superoxide dismutase, but the effect was not observed in all strains investigated. It was also shown that hydrogen peroxide leads to an increase in the activities of both catalases and Cu,Zn-containing SOD. The effect was cancelled by cycloheximide, an inhibitor of protein synthesis.  相似文献   

5.
Escherichia coli B contains two superoxide dismutases which differ with respect to their localization within the cell, the nature of their prosthetic metals, their responses to changes in (p)O(2), and their functions. One of these enzymes, which was liberated from the cells by osmotic shock and which was therefore presumed to be localized in the periplasmic space, is an iron-containing superoxide dismutase. The amount of this iron enzyme did not vary in response to changes in (p)O(2) during growth. In contrast, the other superoxide dismutase was not solubilized by osmotic shock, was a mangano-protein, and was found in greater amounts in cells which had been grown at high (p)O(2). E. coli, which had low levels of the iron-enzyme and high levels of the mangano-enzyme, as a consequence of growth in iron-deficient aerated medium, was killed by exposure to an exogenous flux of O(2) (-) which was generated either photochemically or enzymatically. The addition of bovine superoxide dismutase to the suspending medium protected these cells against this stress. On the other hand, E. coli, which had high levels of the iron-enzyme and low levels of the mangano-enzyme, as a consequence of growth in iron-rich anaerobic medium, was resistant to exogeneous O(2) (-). On the basis of these and of previously reported results (4a, Yost, F. J. and I. Fridovich, J. Biol. Chem., 1973, in press), it appears that the iron superoxide dismutase, of the periplasmic space, serves as a defense against exogenous O(2) (-), whereas the mangano-superoxide dismutase, in the matrix of these cells, serves to counter the toxicity of endogenous O(2) (-).  相似文献   

6.
Superoxide dismutase-rich bacteria. Paradoxical increase in oxidant toxicity   总被引:20,自引:0,他引:20  
Superoxide dismutase is considered important in protection of aerobes against oxidant damage, and increased tolerance to oxidant stress is associated with induction of this enzyme. However, the importance of superoxide dismutase in this tolerance is not clear because conditions which promote the synthesis of superoxide dismutase likewise affect other antioxidant enzymes and substances. To clarify the role of superoxide dismutase per se in organismal defense against oxidant-generating drugs, we employed Escherichia coli transformed with multiple copies of the gene for bacterial iron superoxide dismutase. These bacteria have greater than ten times the superoxide dismutase activity of wild-type E. coli but, importantly, are normal in other oxidant defense parameters including catalase, peroxidases, glutathione, and glutathione reductase. High superoxide dismutase and control bacteria were exposed to the O2- -generating drug paraquat and to elevated pO2. We find; high superoxide dismutase E. coli are more readily killed by paraquat under aerobic, but not anaerobic, conditions. During exposure to paraquat, high superoxide dismutase E. coli accumulate more H2O2. Coincidentally, the reduced glutathione content of high superoxide dismutase E. coli declines more than in control E. coli. E. coli with high superoxide dismutase activity are also more readily killed by hyperoxia. Interestingly, the susceptibility of the parental and high superoxide dismutase E. coli to killing by exogenous H2O2 is not significantly different. Thus, under these experimental conditions, greatly enhanced superoxide dismutase activity accelerates H2O2 formation. The increased H2O2 probably accounts for the exaggerated sensitivity of high superoxide dismutase bacteria to oxidant-generating drugs. These results support the concept that the product of superoxide dismutase, H2O2, is at least as hazardous as the substrate, O2-. We conclude that effective organismal defense against reactive oxygen species may require balanced increments in antioxidant enzymes and cannot necessarily be improved by increases in the activity of single enzymes.  相似文献   

7.
A complex of physiological and biochemical indices has been compared in wild and isogenic catalase-deficient strains of Saccharomyces cerevisiae grown on the media with different iron ion concentrations is 2 times higher in cytosolic catalase deficient yeast. Superoxide dismutase activity grown in the medium with 500 microM of ferrous sulphate. Under such conditions, peroxisomal catalase deficient yeast had a 2-fold decreased activity of superoxide dismutase. There is a significant difference between TBA-reactive substances content of the wild and cytosolic catalase deficient strain. It has been suggested that the repletion of iron ions in the growth medium leads to the formation of lipid oxidation products. Catalase prevents TBA-reactive substances formation in the given conditions and plays a protective role.  相似文献   

8.
The Escherichia coli, Bacillus stearothermophilus, and human manganese-containing superoxide dismutases (MnSODs) and the E. coli iron-containing superoxide dismutase (FeSOD) are extensively inactivated by treatment with phenylglyoxal, an arginine-specific reagent. Arg-189, the only conserved arginine in the primary sequences of these four enzymes, is also conserved in the three additional FeSODs and five of the six additional MnSODs sequenced to date. The only exception is Saccharomyces cerevisiae MnSOD, in which it is conservatively replaced by lysine. Treatment of S. cerevisiae MnSOD with phenylglyoxal under the same conditions used for the other SODs gives very little inactivation. However, treatment with low levels of 2,4,6-trinitrobenzenesulfonate (TNBS) or acetic anhydride, two lysine-selective reagents that cause a maximum of 60-80% inactivation of the other four SODs, gives complete inactivation of the yeast enzyme. Total inactivation of yeast MnSOD with TNBS correlates with the modification of approximately five lysines per subunit, whereas six to seven acetyl groups per subunit are incorporated on complete inactivation with [14C]-acetic anhydride. It appears that the positive charge contributed by residue 189, lysine in yeast MnSOD and arginine in all other SODs, is critical for the catalytic function of MnSODs and FeSODs.  相似文献   

9.
Anaerobically grown Escherichia coli K-12 contain only one superoxide dismutase and that is the iron-containing isozyme found in the periplasmic space. Exposure to oxygen caused the induction of a manganese-containing superoxide dismutase and of another, previously undescribed, superoxide dismutase, as well as of catalase and peroxidase. These inductions differed in their responsiveness towards oxygen. Thus the very low levels of oxygen present in deep, static, aerobic cultures were enough for nearly maximal induction of the manganese-superoxide dismutase. In contrast, induction of the new superoxide dismutase, catalase, and peroxidase required the much higher levels of oxygen achieved in vigorously agitated aerobic cultures. Anaerobically grown cells showed a much greater oxygen enhancement of the lethality of streptonigrin than did aerobically grown cells, in accord with the proposal that streptonigrin can serve as an intracellular source of superoxide. Anaerobically grown cells in which enzyme inductions were prevented by puromycin were damaged by exposure to air. This damage was evidenced both as a decline in viable cell count and as structural abnormalities evident under an electron microscope.  相似文献   

10.
Growth of Escherichia coli B in simple media enriched with Mn(II) resulted in the elevation of the manganese-containing superoxide dismutase, whereas growth in such medium enriched with iron caused increased content of the iron-containing superoxide dismutase. Enrichment of the medium with Co(II), Cu(II), Mo(VI), Zn(II), or Ni(II) had no effect. The inductions of superoxide dismutase by Mn(II) or by Fe(II) were dioxygen dependent, but these metals did not affect the CN- -resistant respiration of E. coli B and did not influence the increase in the CN- -resistant respiration caused by paraquat. Mn(II) and paraquat acted synergistically in elevating the superoxide dismutase content, and Mn(II) reduced the growth inhibition imposed by paraquat, E. coli grown in the complex 3% Trypticase soy broth (BBL Microbiology Systems)-0.5% yeast extract-0.2% glucose medium contained more superoxide dismutase than did cells grown in the simple media and were less responsive to enrichment of the medium with Mn(II) or Fe(II). Nevertheless, in the presence of paraquat, inductions of superoxide dismutase by these metals could be seen even in the Trypticase-yeast extract-glucose medium. On the basis of these observations we propose that the apo-superoxide dismutases may act as autogenous repressors and that Mn(II) and Fe(II) increase the cell content of the corresponding enzymes by speeding the conversion of the apo- to the holoenzymes.  相似文献   

11.
All of the superoxide dismutase isozymes of Escherichia coli have been shown to occur in the cell matrix, and none have been found in the periplasm. This was the case with both E. coli B and E. coli K-12, whether grown on a low phosphate medium or on a Trypticase soy-yeast extract medium. Alkaline phosphatase was used as a marker of the periplasm; adenosine deaminase and glucose 6-phosphate dehydrogenase were used as matrix markers, and consistent results were obtained by osmotic shock, spheroplast formation, and use of a diazonium salt that penetrates the periplasm but cannot cross the plasma membrane. A previous report that the iron-containing superoxide dismutase of E. coli is a periplasmic enzyme is now seen to have been in error.  相似文献   

12.
Degradation of oxidatively denatured proteins in Escherichia coli   总被引:7,自引:0,他引:7  
When exposed to oxidative stress, by oxygen radicals or H2O2, E. coli exhibited decreased growth, decreased protein synthesis, and dose-dependent increases in protein degradation. The quinone menadione induced proteolysis when cells were incubated in air, but was not effective when cells were incubated without oxygen. Anaerobically grown cells also exhibited significantly lower proteolytic capacity than did cells that were grown aerobically. Xanthine plus xanthine oxidase (which generate O2- and H2O2) caused a stimulation of proteolysis which was inhibitable by catalase, but not by superoxide dismutase: Indicating that H2O2 was responsible for the increased protein degradation. Indeed, H2O2 alone was effective in inducing increased intracellular proteolysis. Two-dimensional polyacrylamide gel electrophoresis of [3H]leucine labeled E. coli revealed greater than 50% decreases in the concentrations of 10-15 cell proteins following H2O2 or menadione exposure, while several other proteins were less severely affected. To test for the presence of soluble proteases, we prepared cell-free extracts of E. coli and incubated them with radio-labeled protein substrates. E. coli extracts degraded casein and globin polypeptides at rapid rates but showed little activity with native proteins such as superoxide dismutase, hemoglobin, bovine serum albumin, or catalase. When these same proteins were denatured by exposure to oxygen radicals or H2O2, however, they became excellent substrates for degradation in E. coli extracts. Studies with albumin revealed correlations greater than 0.95 between the degree of oxidative denaturation and proteolytic susceptibility. Pretreatment of E. coli with menadione or H2O2 did not increase the proteolytic capacity of cell extracts; indicating that neither protease activation, nor protease induction were required.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Mutants of Saccharomyces cerevisiae, deficient in cytosolic superoxide dismutase and catalase activities were used to study the role of various oxygen species in the process of lipid peroxidation in yeast cells. Lipid peroxidation does not occur normally in yeast, because this organism is unable to form fatty acids with more than one double bond, whereas under physiological conditions, only fatty acids with at least two double bonds undergo this process. The fatty acid content of cellular lipids was modified by growing the cells in anoxia in the presence of oleic or linolenic acid. Toxic effects of oxygen were observed almost exclusively in those cells of yeast mutants deficient in superoxide dismutase, which contain linolenic acid in cellular lipids. Hypersensitivity of the mutant cells, however, results mainly from toxic effects of the products of autooxidation of extracellular fatty acids. These facts suggest that superoxide dismutases are in some way involved in preventing toxic effects of the products of lipid peroxidation and to some extent prevent the process of lipid peroxidation.  相似文献   

14.
A unique form of superoxide dismutase was isolated and characterized from Nocardia asteroides GUH-2. This enzyme contains 1 to 2 g atoms each of Fe, Mn, and Zn per mol and exhibits spectral properties suggestive of Fe- or Mn-containing superoxide dismutases. Its Mr = 100,000, and it is composed of four subunits of equal size which are not covalently joined. The amino acid composition of the enzyme was more closely related to the Mn- or Fe-containing enzymes of Mycobacterium species and was least related to the Cu-Zn enzyme of eukaryotes. Azide at 1 and 20 mM inhibits the activity 10 and 41%, respectively, and 5 mM H2O2 inhibits 40%, but 1 or 5 mM cyanide caused trivial effect. The immunofluorescent staining, which was specific for superoxide dismutase of N. asteroides, indicated the association of this enzyme to the outer cell wall of the organism. Further, the enzyme was shown to be selectively secreted into the medium.  相似文献   

15.
The ability of niacin to relieve the growth-inhibiting effect of hyperoxia on Escherichia coli can be attributed to the dioxygen sensitivity of quinolinate synthetase. The activity of this enzyme within E. coli was diminished by exposure of the cells to 4.2 atm O2, while the activity in extracts was rapidly decreased by 0.2 atm O2. Neither catalase nor superoxide dismutase afforded detectable protection against the inactivating effect of O2, indicating that H2O2 and O2- were not significant intermediates in this process. Nevertheless, H2O2 at 1.0 mM did inactivate quinolinate synthetase, even under anaerobic conditions and in the absence of catalatic activity which might have generated O2. Addition of paraquat to aerobic cultures of E. coli caused an inactivation of quinolinate synthetase, which may be explained in terms of an increase in the production of H2O2. The O2-dependent inactivation of quinolinate synthetase in extracts was gradually reversed during anaerobic incubation and this reactivation was blocked by alpha, alpha'-dipyridyl or by 1,10-phenanthroline. The sequence of the quinolinate synthetase "A" protein contains a--cys-w-x-cys-y-z-cys--sequence, which is characteristic of (Fe-S)4-containing proteins. This sequence, together with the effect of the Fe(II)-chelating agents, suggests that the O2-sensitive site of quinolinate synthetase is an iron-sulfur cluster which is essential for the dehydration reaction catalyzed by the A protein.  相似文献   

16.
The budding yeast Saccharomyces cerevisiae is a well studied unicellular eukaryotic organism the genome of which has been sequenced. The use of yeast in many commercial systems makes its investigation important not only from basic, but also from practical point of view. Yeast may be grown under both aerobic and anaerobic conditions. The investigation of the response of eukaryotes to different kinds of stresses was pioneered owing to yeast and here we focus mainly on the so-called oxidative stress. It is a result of an imbalance between the formation and decomposition of reactive oxygen species increasing their steady-state concentration. Reactive oxygen species may attack any cellular component. In the present review oxidation of proteins in S. cerevisiae is analyzed. There are two connected approaches to study oxidative protein modification - characterization of the overall process and identification of individual oxidized proteins. Because all aerobic organisms possess special systems which defend them against reactive oxygen species, the involvement of so-called antioxidant enzymes, particularly superoxide dismutase and catalase, in the protection of proteins is also analyzed.  相似文献   

17.
Methanosarcina barkeri is a methanogenic archaeon that can only grow under strictly anoxic conditions but which can survive oxidative stress. We have recently reported that the organism contains a monofunctional catalase. We describe here that it also possesses an active iron superoxide dismutase. The enzyme was purified in three steps over 130-fold in a 14% yield to a specific activity of 1500 U/mg. SDS-PAGE revealed the presence of only one band, at an apparent molecular mass of 25 kDa. The primary structure determined from the cloned and sequenced gene revealed similarity to iron- and manganese superoxide dismutases. The highest similarity was to the iron superoxide dismutase from Methanobacterium thermoautotrophicum. The enzyme from M. barkeri was found to contain, per mol, 1 mol iron, but no manganese in agreement with the general observation that anaerobically growing organisms only contain iron superoxide dismutase. The enzyme was not inhibited by cyanide (10 mM), which is a property shared by all iron- and manganese superoxide dismutases. The presence of superoxide dismutase in M. barkeri is noteworthy since a gene encoding superoxide dismutase (sod) has not been found in Archaeoglobus fulgidus, a sulfate-reducing archaeon most closely related to the Methanosarcinaceae.  相似文献   

18.
Predicted secondary structures and optical properties of four manganese-containing superoxide dismutases isolated from Saccharomyces cerevisiae, Bacillus stearothermophilus, Escherichia coli and human liver are compared. The structural predictions are further compared with the known crystal structure of the manganese-containing superoxide dismutase from Thermus thermophilus HB8. The secondary structures of the four dismutases are predicted by the methods of Chou and Fasman (Adv. Enzymol. 47 (1978) 45-148), Garnier et al. (J. Mol. Biol. 120 (1978) 97-120) and Lim (J. Mol. Biol. 88 (1974) 873-894). The three models show satisfactory agreement and predict that the enzymes have a mixed alpha-helix and beta-sheet structure, and that they have homologous structures. The former conclusion is also reached from an analysis of the hydrophobic character of the amino-acid sequences of the four proteins according to Kyte and Doolittle (J. Mol. Biol. 157 (1982) 105-132). The calculation of the secondary structure based on the 185-260 nm circular dichroism spectrum of manganese-containing superoxide dismutase from S. cerevisiae reveals that the enzyme consists of 61% alpha-helix, 13% beta-sheet, 11% turn and 8% random coil conformations, which is in good accordance with the prediction based on the amino-acid sequences. Comparison of the 400-700 nm circular dichroism spectra of manganese-containing superoxide dismutase from S. cerevisiae, E. coli and T. thermophilus demonstrates that manganese atoms have homologous coordination in the three enzymes. This investigation based on primary structures and spectral properties indicates that the four dismutases have the same overall structure. Since the structural predictions are in good agreement with the structure found for the manganese-containing superoxide dismutase from T. thermophilus HB8, it can be concluded that this structure is representative for the four enzymes and probably for manganese-containing superoxide dismutases in general.  相似文献   

19.
Catalase and superoxide dismutase in Escherichia coli   总被引:9,自引:0,他引:9  
We assessed the roles of intrabacterial catalase and superoxide dismutase in the resistance of Escherichia coli to killing by neutrophils. E. coli in which the synthesis of superoxide dismutase and catalase were induced by paraquat 10-fold and 5-fold, respectively, did not resist killing by neutrophils. When bacteria were allowed to recover from the toxicity of paraquat for 1 h on ice and for 30 min at 37 degrees C, they still failed to resist killing by neutrophils. Induction of the synthesis of catalase 9-fold by growth in the presence of phenazine methosulfate did not render E. coli resistant to killing by either neutrophils or by H2O2 itself. The lack of protection by intrabacterial catalase from killing by neutrophils could not be attributed to an impermeable bacterial membrane; the evolution of O2 from H2O2 was no less rapid in suspensions of E. coli than in lysates. The failure of intrabacterial catalase or superoxide dismutase to protect bacteria from killing by neutrophils might indicate either that the flux of O-2 and H2O2 in the phagosome is too great for the intrabacterial enzymes to alter or that the site of injury is at the bacterial surface.  相似文献   

20.
Leishmania tropica, Trypanosoma brucei, Trypanosoma cruzi, and Crithidia fasciculata have superoxide dismutases which are insensitive to cyanide and sensitive to peroxide and azide, properties characteristic of iron-containing superoxide dismutase. Studies on the superoxide dismutase of C. fasciculata have revealed that: 1) the enzyme is located in the cytosol; 2) isozymes exist; 3) the major superoxide dismutase isozyme (superoxide dismutase 2) has Mr approximately equal to 43,000 and consists of two equal-sized subunits, each of which contains 1.4 atoms of iron. Comparisons of the amino acid content of this crithidial superoxide dismutase with those of superoxide dismutases from other sources suggests that the crithidial enzyme is closely related to bacterial Fe-containing superoxide dismutases, and only distantly related to human Mn- and Cu,Zn-containing superoxide dismutases and to Euglena Fe-containing superoxide dismutase. Attempts are now underway to develop specific inhibitors of the trypanosomatid superoxide dismutase which may be of use in the treatment of leishmaniasis or trypanosomiasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号