首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new expression system for Lactococcus lactis was developed. The system is based on a phosphate starvation inducible pstF promoter of L. lactis MG1363. Intracellular beta-galactosidase and secreted alpha-amylase were produced using this tightly regulated system. No evidence of regulatory sites in regions of the 5'-end of the pstF coding sequence was found. High expression levels of the beta-galactosidase gene were obtained using the original pstF RBS in a phosphate-depleted medium. The results suggested that with the phosphate starvation inducible system, it is possible to achieve expression levels comparable to the ones obtained with the widely used nisin-controlled gene expression system (NICE). A specific beta-galactosidase activity of 670 microkat g(-1) using a phosphate-depleted medium and an alpha-amylase activity of 3.6 microkat l(-1) in a bioreactor cultivation were produced. The advantages of the current expression system include that no prior removal of phosphate from the medium in bioreactor scale is required, and no additions of inducing agents are needed. Furthermore, the system can be operated in L. lactis without introduction of regulatory genes into the host.  相似文献   

2.
Comparative genome analyses contribute significantly to our understanding of bacterial evolution and indicate that bacterial genomes are constantly evolving structures. The gene content and organisation of chromosomes of lactic acid bacteria probably result from a strong evolutionary pressure toward optimal growth of these microorganisms in milk. The genome plasticity of Lactococcus lactis was evaluated at inter- and intrasubspecies levels by different experimental approaches. Comparative genomics showed that the lactococcal genomes are not highly plastic although large rearrangements (a.o. deletions, inversions) can occur. Experimental genome shuffling using a new genetic strategy based on the Cre-loxP recombination system revealed that two domains are under strong constraints acting to maintain the original chromosome organisation: a large region around the replication origin, and a smaller one around the putative terminus of replication. Future knowledge of the rules leading to an optimal genome organisation could facilitate the definition of new strategies for industrial strain improvement.  相似文献   

3.
The regulation of the synthesis of bacteriocin produced by the recombinant strain Lactococcus lactis subsp. lactis F-116 has been studied. The synthesis is regulated by the components of the fermentation medium, the content of inorganic phosphate (KH2PO4), yeast autolysate (source of amine nitrogen), and changes in carbohydrates and amino acids. The strain was obtained by fusion of protoplasts derived from two related L. lactis subsp. lactis strains, both exhibiting a weak ability to synthesize the bacteriocin nisin. Decreasing the content of KH2PO4 from 2.0 to 1.0 or 0.5% caused bacteriocin production to go down from 4100 to 2800 or 1150 IU/ml, respectively; the base fermentation medium contained 1.0% glucose, 0.2% NaCl, 0.02% MgSO4, and yeast autolysate (an amount corresponding to 35 mg % ammonium nitrogen). The substitution of sucrose for glucose (as the source of carbon) increased the antibiotic activity by 26%, and the addition of isoleucine, by 28.5%. Elevation of the concentration of yeast autolysate in the low-phosphate fermentation medium stimulated both the growth of the lactococci and the synthesis of bacteriocin. Introduction of 1% KH2PO4, yeast autolysate (an amount corresponding to 70 mg % ammonium nitrogen), 2.0% sucrose, and 0.1% isoleucine increased the bacteriocin-producing activity of the strain by 2.4 times.  相似文献   

4.
In situ delivery of cytokines by genetically engineered Lactococcus lactis   总被引:3,自引:0,他引:3  
The development of novel approaches that allow for accurate targeting of therapeutics to the bowel mucosa is a priority in the research on inflammatory bowel disease. We have engineered Lactococcus lactis to secrete soluble, fully active, correctly processed cytokines. We have used these live, recombinant strains for the in situ delivery of mouse interleukin (mIL)-2, -6 and -10 at airway mucosa or mucosa of the colon. Strains that secrete mIL-2 or mIL-6 and produce TTFC intracellular show a higher level of anti-TTFC induction in mice following intranasal inoculation. We showed that mIL-10 producing L. lactis can prevent and cure enterocolitis in mice. The daily ingestion of this strain leads to the prevention of colitis in IL-10 –/– 129 Sv/Ev mice. The repeated addition of DSS to the drinking water of Balb/c mice leads to the induction of chronic colitis with a typical mean histological score of five points. Subsequent daily treatment with 108 IL-10 producing L. lactis reduced the inflammation to a score of approximately 1 in 40% of the treated mice, which is a status equal to that of healthy control mice. Most other animals from the treated group only showed minor patchy remnants of the inflammation. Killing of the IL-10 producing bacteria by UV irradiation immediately prior to inoculation abrogates this therapeutic effect. Therefore it can be attributed to the active in vivo delivery of IL-10. We have further documented this by demonstrating in situ de novo synthesis of IL-10 in the colon of IL-10 –/– mice.  相似文献   

5.
Two tandem promoters to increase gene expression in Lactococcus lactis   总被引:1,自引:0,他引:1  
Two plasmids, pPAH and pAH, containing a staphylokinase variant gene (sakXH) under the control of two tandem promoters (P32-PlacA) or promoter PlacA alone were constructed and introduced into Lactococcus lactis MG5267. The expression of sakXH in the strain MG5267(pPAH) was approximately twice as high as that in the strain MG5267(pAH), according to the formation of fibrinolytic halos on fibrinolytic plates detected at the same conditions, indicating that the two tandem promoters were stronger than one alone. Difference between the expressions of sakXH under the inducible and non-inducible conditions suggested that PlacA retained its feature as an inducible promoter when fused to promoter P32.  相似文献   

6.
When Lactococcus lactis strains were exposed directly to the lethal temperature of 50 C for 30 ;min, 0.1–31% of the cells survived. However, when pre-exposed to 40 °C, prior to exposure at 50 °C, 4–61% of the cells survived. A plasmid carrying a unique heat shock gene from the thermophile Streptococcus thermophilus was cloned into L. ;lactis. When the transformed cells were cultivated at 30 °C the introduction of the plasmid had no obvious effect on the growth of L. ;lactis. However, when the temperature was abruptly shifted from 30 °C to 42 °C at mid-growth phase the growth decreased by 50%.  相似文献   

7.
Lactococcus lactis species can survive periods of carbohydrate starvation for relatively long periods of time. In the first hours of starvation, however, the maximal glycolytic and arginine deiminase (ADI) pathway activities decline rapidly. The rate of decrease of the pathway activities diminishes as soon as the cells become depleted of energy-rich intermediates. Loss of glycolytic activity is associated with loss of glyceraldehyde 3-phosphate dehydrogenase, phosphoglycerate mutase and pyruvate kinase activities. Upon addition of sugar to starved cultures these enzymatic, and thus the glycolytic, activities can be restored to 100% values. The recovery of enzymatic activities is inhibited by chloramphenicol, indicating that protein synthesis is involved. In contrast, restoration of ADI pathway activity does not require de novo synthesis of proteins. General protein degradation and synthesis have been studied in growing and starving cells using [35S]methionine-labeling of proteins and two-dimensional gel analysis. The breakdown of bulk proteins in exponentially growing cells shows first-order rate kinetics (t1/2 of approximately 5 h). Following an initial breakdown of proteins with a t1/2 of 5 h during the first hour(s) of starvation, bulk proteins are degraded very slowly in starving energy-depleted cells. The breakdown of proteins during starvation appears to be (largely) nonspecific. The rate of synthesis of proteins decreases rapidly in the first hour(s) of starvation. From the onset of starvation on at least 45 proteins are no longer synthesized. During starvation relative induction of fourteen to fifteen proteins can be observed.Abbreviations ADI Arginine deiminase - ATP adenosine triphosphate - PEP phosphoenolpyruvate - membrane potential - pH pH gradient - PTS sugar phosphotransferase system - CDM chemically defined medium - TCA trichloro-acetic acid  相似文献   

8.
When lactate was removed from sucrose fermentation in situ, using the anionic-exchange resin Amberlite IRA-67, by Lactococcus lactis growing in batch culture, nisin production increased by two-fold when compared to the alkali pH-controlled fermentation. In comparison to sucrose, lactate removal increased nisin production 1.5-fold and 0.3-fold when galactose and glucose were used as carbon sources respectively.  相似文献   

9.
The bacteriocin, lacticin 3147, increased isoleucine transamination by Lactococcus lactis IFPL359 in a cheese model system. The formation of -keto--methyl-n-valeric acid and 2-hydroxy-3-methyl-valeric acid increased by three times in cheese slurries at 12 °C and cheese aroma intensity increased as well, which corresponded with a higher 2-methylbutanal formation.  相似文献   

10.
Bacillus cereus is a food pathogen that can attach on most of the surfaces and form biofilms, which facilitate the persistence and resistance toward antimicrobials. The aims of this study were (i) to characterize the structural dynamics of B. cereus sessile growth in two nutritional environments (with or without a nutrient flow), and (ii) to evaluate the impact of bio adhesion of Lactococcus lactis on B. cereus biofilm. Significantly greater biofilm volume and thickness were observed under dynamic conditions than under static conditions after 48 h and B. cereus biofilm was highly organized. The variation of physico-chemical characteristics of silicone by B. cereus bio adhesion favours the adhesion of hydrophilic Lc. lactis on the surface adhered by biofilm. Lc. lactis was able to adhere to silicone surface and produce biofilm obviously exhibited a significant reduction of B. cereus adhered cells up to nine orders of magnitude after 48 h of contact with competitive activity for nutrient and oxygen. This study constitutes a step ahead in developing strategies to prevent microbial colonization of silicone with lactococcal protective biofilm.  相似文献   

11.
Permeabilization induced by lacticin 3147, lactococcins A, B and M, enterocin AS-48 and nisin, bacteriocins described as cell membrane-pore forming and lytic agents, enhanced in all cases aldehyde formation by Lactococcus lactis IFPL730. Nevertheless, the conversion of isoleucine into 2-methylbutyraldehyde depended not only on the degree of permeabilization but also on the bacteriocin that caused the cell membrane damage. The highest values of 2-methylbutyraldehyde corresponded to cell suspensions containing lacticin 3147 and lactococcins, treatments that provoked further lysis in addition to induced permeabilization.  相似文献   

12.
13.
Both the secretion and the cell surface display of Bacillus subtilis lipase A (Lip A) in Saccharomyces cerevisiae was investigated using different domains of the cell wall protein Pir4 as translational fusion partners. LipA gene minus its leader peptide was fused inframe in two places of PIR4 to achieve cell wall targeting, or substituting most of the PIR4 sequence, after the signal peptide and the Kex2 processed subunit I of Pir4 to achieve secretion to the growth medium. Expression of the recombinant fusion proteins was investigated in a standard and a glycosylation-deficient strain of S. cerevisiae, grown in selective or rich medium. Fusion proteins intended to be retained at the cell wall were secreted to the growth medium, most likely as result of the degradation of the Pir4 moiety containing the cell wall retention domain, giving low levels of lipase activity. However, the fusion intended for secretion was efficiently secreted in a percentage of close to 90% and remained stable even in rich medium at high cell density cultures, yielding values of over 400 IU of lipase activity per milliliter of cell supernatant. This is, to our knowledge, the first report of the efficient production, as a secreted protein, of lipase A of B. subtilis in baker's yeast.  相似文献   

14.
Glucose addition and subsequent run-out experiments were compared to simulations with a detailed glycolytic model of Lactococcus lactis. The model was constructed largely on bases of enzyme kinetic data taken from literature and not adjusted for the specific simulations shown here. Upon glucose depletion a rapid increase in PEP, inorganic phosphate and a gradual decrease in fructose 1,6-bisphosphate (FBP) were measured and predicted by simulation. The dynamic changes in these and other intermediate concentrations as measured in the experiments were well predicted by the kinetic model.  相似文献   

15.
Cytidine 5(')-triphosphate (CTP) synthase (EC 6.4.3.2) catalyzes the transfer of an amino group to the 4 position of uridine 5(')-triphosphate (UTP) to yield CTP. The reaction proceeds by activation of the base moiety of UTP by adenosine 5(')-triphosphate (ATP)-dependent phosphorylation. The activated intermediate reacts with NH(3) in the solution or is obtained by hydrolysis of glutamine. The Lactococcus lactis CTP synthase shows significant differences from the enzymes from Escherichia coli, yeast, and mammals. One is the apparent stability of the L. lactis CTP synthase tetramer in the absence of the nucleotides ATP and UTP. This condition causes the E. coli, yeast, and mammal enzymes to dissociate into dimers. However, the L. lactis CTP synthase shows substrate inhibition by NH(4)Cl that coincides with the range of NH(4)Cl concentrations that apparently dissociates tetrameric enzyme into dimers. Even though regular substrate inhibition was observed with NH(4)Cl when the ionic strength was held constant, a significant part of the inhibition could be shown to be due to the increase in ionic strength with increasing substrate concentration. Since the substrate inhibition by NH(4)Cl was relieved by increasing the equimolar ATP and UTP concentrations, it appeared that the substrate nucleotides stabilized the tetramer in a manner similar to that found in the absence of salt for other CTP synthases. In contrast to the suggested hydrophobic nature of the tetramer interactions in E. coli CTP synthase, the dissociation of the L. lactis CTP synthase tetramer in response to an increase in ionic strength suggests that the tetramer is stabilized by ionic interactions.  相似文献   

16.
Surfactin productivity by Bacillus subtilis was increased from 0.33 g l–1 to 2.6 g l–1 by adding 0.01 mM Mn2+ to a defined glucose medium. The final yield exceeded that of most reported values for genetically improved strains.  相似文献   

17.
Summary The illegitimate recombination between Staphylococcus aureus plasmids pE194 (or pGG20, the hybrid between pE194 and Escherichia coli plasmid pBR322) and pBD17 (plasmid pUB110 without HpaII C-fragment) was studied in Bacillus subtilis. Cointegrates were generated with the frequency of 1–3x10-8. Among 22 hybrids analysed 9 types of recombinants were found. Nucleotide sequences of all three parental plasmids were involved in intermolecular recombination. Nucleotide sequencing of recombinant DNA junctions revealed that in 8 cases recombination occurred between short homologous regions (9–15 bp). One recombinant was formed using nonhomologous sites. The similarity was demonstrated between nucleotide sequences of the recombination sites of two types of cointegrates and those used for pE194 integration into the B. subtilis chromosome. Possible mechanisms of illegitimate recombination are discussed.  相似文献   

18.
Expression of sfp gene and hydrocarbon degradation by Bacillus subtilis   总被引:5,自引:0,他引:5  
Bacillus subtilis C9 produces a lipopeptide-type biosurfactant, surfactin, and rapidly degrades alkanes up to a chain length of C19. The nucleotide sequence of the sfp gene cloned from B. subtilis C9 was determined and its deduced amino acid sequence showed 100% homology with the sfp gene reported before [Nakano et al. (1992) Mol. Gen. Genet. 232: 313–321]. To transform a non-surfactin producer, B. subtilis 168, to a surfactin producer, the sfp gene cloned from B. subtilis C9 was expressed in B. subtilis 168. The transformed B. subtilis SB103 derivative of the strain 168 was shown to produce surfactin measured by its decrease in surface tension, emulsification activity, and TLC analysis of the surface active compound isolated from the culture broth. Like B. subtilis C9, B. subtilis SB103 containing sfp gene readily degraded aliphatic hydrocarbons (C10–19), though its original strain did not. The addition of surfactin (0.5%, w/v) to the culture of B. subtilis 168 significantly stimulated the biodegradation of hydrocarbons of the chain lengths of 10–19; over 98% of the hydrocarbons tested were degraded within 24 h of incubation. These results indicate that the lipopeptide-type biosurfactant, surfactin produced from B. subtilis enhances the bioavailability of hydrophobic hydrocarbons.  相似文献   

19.
Activation kinetics of a Bacillus subtilis menaquinone biosynthetic gene promoter (the menCD promoter) were measured during growth and sporulation, with the aid of a menCD-lacZ translational gene fusion. Transient maximal activation was seen shortly after the end of exponential growth in unbuffered complex medium containing a low glucose concentration. These activation kinetics were correlated with transient acidification of the medium under conditions permitting TCA cycle function during the post-exponential period, while mutations that blocked TCA cycle function (cit mutants) were associated with sustained acidification and promoter activation during this period. In cit + strains, buffering of the medium to pH 5.7 caused sustained maximal activation, while buffering to pH 7.2 prevented enhancement of activation. The menCD promoter appears to be responsive to extracellular acidic pH.  相似文献   

20.
The question was investigated as to whether the bacterial menaquinone (MK) is a component of the electron transport chain catalyzing succinate respiration in Bacillus subtilis. Three different methods were applied, and the following consistent results were obtained. (i) Solvent extraction of MK from the bacterial membrane caused total inhibition of the respiratory activities with succinate and NADH, while the activity of succinate dehydrogenase remained unaffected. The respiratory activities were restored onincorporation of vitamin K1 into the membrane preparation. (ii) The membrane fraction of a B. subtilis mutant containing 15% of the wild-type amount of MK, respired succinate and NADH at reduced activities. Wild-type activities were restored on fusion of the preparation to liposomes containing vitamin K1. (iii) The membrane fraction of B. subtilis catalyzed succinate oxidation by various water-soluble naphtho- or benzoquinones at specific activities exceeding to that of succinate respiration. The results suggest that MK is involved in succinate respiration, although its redox potential is unfavorable.Abbreviations MK menaquinone - MKH2 reduced menaquinone - E0' standard redox potential at pH 7 - PMS phenazine methosulfate - DCPIP 2,6-Dichlorophenol-indophenol - Q ubiquinone - Q0 2,3-dimethoxy-5-methyl-1,4-bezoquinone - DMN, 2,3 dimethyl-1,4-naphthoquinone - DMK demethylmenaquinone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号