首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of Ca2+ on the kinetic parameters for the hydrolysis of mixed micelles of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (diC16PC) with Triton X-100, catalyzed by a cobra (Naja naja atra) (Group I) and a Habu (Trimeresurus flavoviridis) (Group II) PLA2s, were studied and compared with the results reported for other Group I and II enzymes. The substrate bindings to Group I enzymes were independent of the Ca2+ binding, whereas the substrate bindings to Group II enzymes were facilitated more than 10 times by the Ca2+ binding to the enzymes. The result for Group II enzymes, but not Group I enzymes, seemed compatible with the hypothesis for interpreting the catalytic mechanism that an intermediate complex should be stabilized by the coordination of the bound Ca2+ with the phosphoryl group and the carbonyl oxygen atom of the ester bond at the sn-2 position of the bound substrate molecule [Verheij et al. (1980) Biochemistry 19, 743-750 and (1981) Rev. Physiol. Biochem. Pharmacol. 91, 91-203]. The pH dependence of the kinetic parameters for the hydrolysis of the mixed micellar diC16PC, catalyzed by the cobra (N. naja atra) (Group I) and Habu (T. flavoviridis) (Group II) PLA2s, was also studied. The pK values of the catalytic group, His 48, and Tyr 52 for N. naja atra PLA2, shifted from 7.25 to 7.70 and from 10.30 to 10.85, respectively, and the corresponding values for T. flavoviridis PLA2 shifted from 5.80 to 6.95 and from 10.10 to 10.76, respectively, on binding of the micellar substrates to the enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Bindings of cobra venom phospholipases A2 to micelles of n-hexadecylphosphorylcholine were studied by the tryptophyl fluorescence method at 25 degrees C and ionic strength 0.1. The data were analyzed by assuming that the micellar surface has multiple binding sites for the enzyme and these sites are identical and mutually independent. The enzyme binding site was found to accommodate a constant number of substrate (monomer) molecules, N = 10, 5 or 13 for N. naja atra apoenzyme and its Ca2+ complex, and N. naja kaouthia apoenzyme, respectively. The binding constant of the enzymes to the micelle, Kmic = 0.18-3.1 X 10(6) M-1, was 9-160 times greater than that to the monomeric substrate, Kmon = 2 X 10(4) M-1 (Teshima et al. (1981) J. Biochem. 89, 1163-1174). This was interpreted in terms of the presence of an additional substrate-binding site in the enzyme molecule. The binding constant of the enzyme-Ca2+ complex to the micelle was smaller than that for the apoenzyme over a wide range of pH. The pH dependence of the binding constant of the apoenzyme to the micelle was well interpreted in terms of pK shifts of two ionizable groups from 5.4 to 5.53 and 7.55 to 7.95. The pH dependence curve for the Ca2+ complex, which lacked the former transition, was interpreted in terms of the pK shift of only a single ionizable group from 7.25 to 7.55. The former ionizable group was assigned as Asp 49, to which Ca2+ can coordinate, and the latter as His 48 in the active site on the basis of the reported pK values of these ionizable groups in the apoenzyme and Ca2+ complex (Teshima et al. (1981) J. Biochem. 89, 13-20 and Teshima et al. (1982) J. Biochem. 91, 1777-1788). No participation of the alpha-amino group with a pK value of 8.55 was observed.  相似文献   

3.
The Ca2+-binding component of troponin (TnC) and its proteolytic fragments containing Ca2+-binding sites I-III (TH1) or sites III and IV (TR2C) have been labeled with the fluorescent probes dansylaziridine (DANZ) at methionine 25 or 5-(iodoacetamidoethyl)amino-naphthalene-1-sulfonic acid (AEDANS) at cysteine-98. These probes report binding of Ca2+ to the low and high affinity sites, respectively. Fluorescence changes as a function of [Ca2+] were measured for the free peptides, their complexes with troponin I + troponin T, and these complexes bound to actin-tropomyosin in the presence of Mg2+ and ATP with and without myosin. An apparent Hill coefficient of 1.0-1.1 has been obtained for the Ca2+-induced fluorescence changes in TnC, its fragments, and their ternary complexes regardless of the label used. When a ternary complex containing appropriately labeled TnC or its fragment is bound to the actin-tropomyosin complex, the Hill coefficient for the titration of the low affinity sites increases to 1.5-1.6 and further increases to greater than 2 in the presence of myosin. To interpret the apparent Hill coefficients, we used a model containing two binding sites and a single reporter of the conformational change. Hill coefficients between 1.0 and 1.2 can be obtained for the fluorescence change without true cooperativity in metal binding, depending on the mechanism of the fluorescence change; i.e. the contribution of the singly or doubly occupied species to the fluorescence change. A Hill coefficient between 1.2 and 2, however, always indicates cooperativity in binding independently of the mechanism. Thus, our finding that fluorescence titrations of Ca2+ binding to TnCDANZ bound to actin-tropomyosin exhibit a Hill coefficient of 1.5 in the absence of myosin and 2.4 in its presence indicates the existence of true positive cooperativity in metal binding to sites I and II. No cooperativity was observed for AEDANS-labeled complexes that reflect Ca2+-binding to the high affinity sites. Plots of the Ca2+ dependence of myosin ATPase activity activated by actin-tropomyosin in the presence of any of the troponin complexes used had apparent Hill coefficients of approximately 4. The higher value suggests cooperative interactions in the activation of ATPase beyond those involved in Ca2+-binding to the Ca2+-specific sites.  相似文献   

4.
Using phosphatidylinositol-glycan (PtdIns-glycan) anchored acetylcholinesterase from bovine erythrocytes as substrate, we found PtdIns-glycan-anchor-degrading activity in rat liver and serum [corrected]. The hepatic enzyme was only soluble in detergents, whereas the serum enzyme occurs as soluble, slightly amphiphilic protein. Using 3-trifluoromethyl-3-(m- [125I]iodophenyl)diazirine-labelled acetylcholinesterase as substrate, we showed that the hepatic anchor-degrading enzyme had a cleavage specificity of a phospholipase C, whereas the serum enzyme was a phospholipase D. Both enzyme exhibited maximal activity in slightly acidic conditions and at low ionic strength. They had a high affinity for the PtdIns-glycan anchor of the substrate (Km = 0.1 microM and 0.16 microM, respectively). Both hepatic PtdIns-glycan-specific phospholipase C and serum PtdIns-glycan-specific phospholipase D gave a large increase in activity between 0.1-10 microM Ca2+, indicating that PtdIns-glycan-specific phospholipases are only marginally active at physiological intracellular Ca2+ concentrations. The enzymes were inhibited by heavy metal chelating agents such as 1,10-phenanthroline and 2,2'-bipyridyl but not by the corresponding Fe2+ complexes or non-chelating analogues, indicating that they both require a heavy metal ion for the expression of catalytic activity in addition to Ca2+. Another interesting property of PtdIns-glycan-specific phospholipases is their inactivation by bicarbonate and cyanate. The inactivation was time- and pH-dependent and could be reversed by dialysis. These observations are in agreement with a covalent modification of the enzymes by carbamoylation.  相似文献   

5.
The electrophile Ca(2+) is an essential multifunctional co-factor in the phospholipase A(2) mediated hydrolysis of phospholipids. Crystal structures of an acidic phospholipase A(2) from the venom of Bothrops jararacussu have been determined both in the Ca(2+) free and bound states at 0.97 and 1.60 A resolutions, respectively. In the Ca(2+) bound state, the Ca(2+) ion is penta-coordinated by a distorted pyramidal cage of oxygen and nitrogen atoms that is significantly different to that observed in structures of other Group I/II phospholipases A(2). In the absence of Ca(2+), a water molecule occupies the position of the Ca(2+) ion and the side chain of Asp49 and the calcium-binding loop adopts a different conformation.  相似文献   

6.
The molecular properties of phospholipases (PLases) A2 I and A2 III from a sea snake, Laticauda semifasciata, have been characterized by gel-filtration, as well as proton NMR, CD, UV absorption, and fluorescence spectroscopic methods. PLase A2 I exists as a monomer in aqueous solution in the presence or in the absence of Ca2+. The dissociation constants of the Ca2+-enzyme complexes have been determined for the two enzymes. The 270-mHz proton NMR spectra of PLases A2 I and A2 III have been measured, and the aromatic proton resonances of His-21 and His-48 in the active site have been assigned. By analyzing the pH dependence of the chemical shifts of the histidine proton resonances, pKa values have been determined for His-21 and His-48 with and without Ca2+. The conformational transitions have been found to take place at low pH or at high temperature (at approximately 65 degrees C). Fluorescence change of PLase A2 I upon addition of substrate analogs suggests that Trp-70 in PLase A2 I is involved in the binding to micellar substrates. The lack of Trp-70 in PLase A2 III is probably related to the low enzymatic activity as compared with that of PLase A2 I.  相似文献   

7.
The analysis of the 23Na-NMR signal shape variations in the presence of vesicles of light sarcoplasmic reticulum (SR) shows the existence of sodium sites on the membranes with Kd values of about 10 mM. Other monovalent cations displace Na+ from SR fragments in a competitive manner according to the row K+ greater than Rb+ greater than Cs+ greater than Li+. Calcium ions also reduce Na+ binding, the Na+ desorption curve being of a two-stage nature, which, as suggested, indicates the existence of two types of Ca(2+)-sensitive Na+ binding sites (I and II). Sites of type I and II are modified by Ca2+ in submicromolar and millimolar concentrations, respectively. Analysis of sodium (calcium) desorption produced by calcium (sodium) allowed us to postulate the competition of these two cations for sites I and identity of these sites to high-affinity Ca(2+)-binding ones on the Ca(2+)-ATPase. Sites I weakly interact with Mg2+ (KappMg approximately 30 mM). Reciprocal effects of sodium and calcium on binding of each other to sites II cannot be described by a simple competition model, which indicates nonhomogeneity of these sites. A portion of sites I (approximately 70%) interacts with Mg2+ (KappMg = 3-4 mM). The pKa value of sites II is nearly 6.0. The number of sites II is three times greater than that of sites I. In addition, sites with intermediate affinity for Ca2+ were found with Kd values of 2-5 microM. These sites were revealed due to the reducing of the sites II affinity for Na+ upon Ca2+ binding to SR membranes. It can thus be concluded that in nonenergized SR there are binding sites for monovalent cations of at least three types: (1) sites I (which also bind Ca2+ at low concentrations), (2) magnesium-sensitive sites II and (3) magnesium-insensitive sites II.  相似文献   

8.
Characterization of Brain Calpains   总被引:2,自引:2,他引:0  
A new, simple one-step procedure [Karlsson et al. Biochem. J. 231, 201-204 (1985)] for the separation of calpains I and II was used prior to the characterization of these enzymes from rabbit brain, using alkali-denatured casein as the substrate. Enzyme activity was dependent on Ca2+ ions and free-SH groups and was maximal around pH 7.4. Incubation of calpains I and II with Ca2+ in the absence of substrate led to a rapid loss of enzyme activity. Enzyme activity was linear at room temperature and millimolar Ca2+ concentrations. However, when incubation of calpain I was performed with micromolar Ca2+ concentrations at room temperature proteolytic activity exhibited a lag period of approximately 10 min. This activation period was not as evident with calpain II.  相似文献   

9.
Previously it has been shown that the binding of porcine pancreatic phospholipase A2 to lipid-water interfaces is governed by the pK of the alpha-NH3+ group of the N-terminal alanine. Chemically modified phospholipases A2 in which the N-terminal Ala has been replaced by D-Ala or in which the polypeptide chain has been elongated with DL-Ala no longer display activity toward micellar substrate. The activity of DL-Ala-1-, [D-Ala1]-, and [Gly1]phospholipases A2 on substrate monolayers, which allow a continuous change in the packing density of the lipid molecule, was investigated. At pH 6 [Gly1]phospholipase A2 behaves like the native enzyme on lecithin monolayers. DL-Ala1- and [D-Ala1]phospholipases A2, although they are active in this system, showed a weaker lipid penetration capacity at this pH. Studies on the pH and Ca2+ ion dependency of the pre-steady-state kinetics and of the activity of these radiolabeled proteins showed that [D-Ala1]phospholipase A2 does not possess a second low-affinity site for Ca2+ ions in contrast to the native phospholipase A2. This second low-affinity Ca2+ binding site, which is also absent in [Gly1]phospholipase A2, is induced in the latter enzyme by the presence of lipid-water interfaces.  相似文献   

10.
Type II NAD(P)H:quinone oxidoreductases are single polypeptide proteins widespread in the living world. They bypass the first site of respiratory energy conservation, constituted by the type I NADH dehydrogenases. To investigate substrate specificities and Ca(2+) binding properties of seven predicted type II NAD(P)H dehydrogenases of Arabidopsis thaliana we have produced them as T7-tagged fusion proteins in Escherichia coli. The NDB1 and NDB2 enzymes were found to bind Ca(2+), and a single amino acid substitution in the EF hand motif of NDB1 abolished the Ca(2+) binding. NDB2 and NDB4 functionally complemented an E. coli mutant deficient in endogenous type I and type II NADH dehydrogenases. This demonstrates that these two plant enzymes can substitute for the NADH dehydrogenases in the bacterial respiratory chain. Three NDB-type enzymes displayed distinct catalytic profiles with substrate specificities and Ca(2+) stimulation being considerably affected by changes in pH and substrate concentrations. Under physiologically relevant conditions, the NDB1 fusion protein acted as a Ca(2+)-dependent NADPH dehydrogenase. NDB2 and NDB4 fusion proteins were NADH-specific, and NDB2 was stimulated by Ca(2+). The observed activity profiles of the NDB-type enzymes provide a fundament for understanding the mitochondrial system for direct oxidation of cytosolic NAD(P)H in plants. Our findings also suggest different modes of regulation and metabolic roles for the analyzed A. thaliana enzymes.  相似文献   

11.
7F0----5D0 excitation spectroscopy of Eu3+ has been used to study the catalytic Ca2+-binding site of pancreatic phospholipases A2. Eu3+ binds competitively with Ca2+ to the enzyme with retention of about 5% of the activity found with Ca2+. The dissociation constants for the Eu3+-enzyme complexes of bovine phospholipase A2 and porcine isophospholipase A2 are 0.22 mM and 0.16 mM, respectively. Results obtained with the porcine phospholipase A2 at neutral pH indicate aggregation of this enzyme at protein concentrations above 0.18 mM. The Eu3+ bound at the catalytic site of pancreatic phospholipase A2 is coordinated to four or five water molecules, which, in conjunction with binding constant data, suggests the involvement of two or three protein ligands. Addition of a monomeric substrate analogue to the enzyme-Eu3+ complex results in the loss of an additional water molecule from the first coordination sphere of the bound Eu3+. This result suggests an interaction between the negative charge of the polar head group of the substrate analogue and the Eu3+. Binding of the enzyme-Eu3+ complex to micelles results in a nearly complete dehydration of the Eu3+ bound to the catalytic center. In the phospholipase A2-Eu3+-micelle complex, only one H2O molecule is coordinated to Eu3+. This dehydration at the active site of phospholipase A2 in the protein-lipid complex can be an important reason for the enhanced activity of this enzyme at lipid-water interfaces.  相似文献   

12.
Certain phospholipase A2 enzymes (E.C.3.1.1.4) selectively inhibit neurotransmitter release from cholinergic nerve terminals. Both specific acceptor proteins and the physical state of nerve terminal phospholipids have been implicated in studies of the mechanism of phospholipase neurotoxin action. Here we have examined the effects of charge on a micellar phospholipid substrate by comparing the enzyme activity and binding of two neurotoxic phospholipases (beta-bungarotoxin and crotoxin) with other non-neurotoxic phospholipases. This has been achieved by altering either the phospholipid or the ionic charge of the detergent in the mixed phospholipid micelle. The neurotoxic phospholipases were only active on negatively charged micelles, whereas the non-neurotoxic enzymes were equally active in hydrolyzing neutral micelles. This distinction was also reflected in binding studies; the non-neurotoxic phospholipases bound to both types of substrate, whereas beta-bungarotoxin and crotoxin selectively bound to negatively charged micellar structures. These experiments suggest that, in addition to the existence of any specific acceptor proteins, neurotoxin binding is also governed by the charge on the lipid phase of the nerve terminal membrane.  相似文献   

13.
Ca(2+)-activated calmodulin (CaM) regulates many target enzymes by docking to an amphiphilic target helix of variable sequence. This study compares the equilibrium Ca2+ binding and Ca2+ dissociation kinetics of CaM complexed to target peptides derived from five different CaM-regulated proteins: phosphorylase kinase. CaM-dependent protein kinase II, skeletal and smooth myosin light chain kinases, and the plasma membrane Ca(2+)-ATPase. The results reveal that different target peptides can tune the Ca2+ binding affinities and kinetics of the two CaM domains over a wide range of Ca2+ concentrations and time scales. The five peptides increase the Ca2+ affinity of the N-terminal regulatory domain from 14- to 350-fold and slow its Ca2+ dissociation kinetics from 60- to 140-fold. Smaller effects are observed for the C-terminal domain, where peptides increase the apparent Ca2+ affinity 8- to 100-fold and slow dissociation kinetics 13- to 132-fold. In full-length skeletal myosin light chain kinase the inter-molecular tuning provided by the isolated target peptide is further modulated by other tuning interactions, resulting in a CaM-protein complex that has a 10-fold lower Ca2+ affinity than the analogous CaM-peptide complex. Unlike the CaM-peptide complexes, Ca2+ dissociation from the protein complex follows monoexponential kinetics in which all four Ca2+ ions dissociate at a rate comparable to the slow rate observed in the peptide complex. The two Ca2+ ions bound to the CaM N-terminal domain are substantially occluded in the CaM-protein complex. Overall, the results indicate that the cellular activation of myosin light chain kinase is likely to be triggered by the binding of free Ca2(2+)-CaM or Ca4(2+)-CaM after a Ca2+ signal has begun and that inactivation of the complex is initiated by a single rate-limiting event, which is proposed to be either the direct dissociation of Ca2+ ions from the bound C-terminal domain or the dissociation of Ca2+ loaded C-terminal domain from skMLCK. The observed target-induced variations in Ca2+ affinities and dissociation rates could serve to tune CaM activation and inactivation for different cellular pathways, and also must counterbalance the variable energetic costs of driving the activating conformational change in different target enzymes.  相似文献   

14.
R H Elder  J M Rossignol 《Biochemistry》1990,29(25):6009-6017
The differential ability of mammalian DNA ligases to use oligo(dT).poly(rA) as a substrate has been used to detect, and thereby extensively purify, two immunologically distinct forms of DNA ligase from rat liver. The activity of DNA ligase I, which is unable to use this template, is uniquely increased during liver regeneration, while that of DNA ligase II remains at a low level. Both enzymes require ATP and Mg2+ for activity and form an adenylylated intermediate which is stable and reactive. After SDS-PAGE, such radiolabeled complexes correspond to polypeptides of 130,000 and 80,000 Da for DNA ligase I and to 100,000 Da for DNA ligase II. That these labeled polypeptides do indeed correspond to active polypeptides of two different forms of DNA ligase is shown by the removal of the radiolabeled AMP, only when the intermediate is incubated with an appropriate substrate. In contrast to other eukaryotic DNA ligases, rat liver DNA ligase II has a lower Km for ATP (1.2 X 10(-5) M) than DNA ligase I (6 X 10(-5) M). Also, DNA ligase II can use ATP alpha S as a cofactor in the ligation reaction much more efficiently than DNA ligase I, further discriminating the ATP binding sites of these enzymes. Finally, antibodies raised against the 130,000-Da polypeptide of DNA ligase I specifically recognize this species in an immunoblot and inhibit only the activity of DNA ligase I.  相似文献   

15.
The mechanism of inhibition of the sarcoplamc reticulum (SR) Ca(2+)-ATPase by the fluoroaluminate complexes was investigated. First, AlF4- was shown to bind to the Ca(2+)-free conformation of the enzyme by a slow quasi-irreversible process. The rate constants of the reaction are k+ = 16 x 10(3) M-1 s-1 and k- < 1.5 10(-3) s-1. We directly measured a stoichiometry of about 4.8 nmol of AlF4- bound/mg of protein. Mg2+ was a necessary cofactor for the reaction with a dissociation constant of 3 mM. It was demonstrated (Dupont, Y., and Pougeois, R. (1983) FEBS Lett. 156, 93-98) that phosphorylation by P(i) induced a dehydration of the catalytic site. The same process has been shown here to occur upon AlF4- binding either by the use of Me2SO or by demonstration of an increase of bound 2',3'-O-(2,4,6-trinitrocyclohexadienyldene)adenosine triphosphate fluorescence. Phosphorylation by P(i) is inhibited by the binding of AlF4-. Second, a fluoroaluminate complex, presumably AlF4-, was also shown to bind to the Ca(2+)-bound conformation of the Ca(2+)-ATPase in the presence of ADP and stabilize a E1.Ca2.ADP.AlFx complex. The dissociation constant of the nucleotidic site for ADP was shifted to the micromolar range. The Ca2+ ions bound on the external high affinity sites became occluded upon binding of (ADP + AlFx). We propose that AlF4- mimics P(i) binding to the Ca(2+)-free conformation of the ATPase and stabilizes an intermediate similar to the acyl-phosphate derivative; it also acts as an analogue of the gamma-phosphate of ATP and stabilizes an E1.[Ca2].ADP.AlF4 complex where the Ca2+ ions are occluded.  相似文献   

16.
The basic phospholipase A2 from Naja nigricollis (African spitting cobra) snake venom is enzymatically less active but more toxic than the acidic phospholipase A2 from Naja naja atra (Taiwan cobra) snake venom, following injection into the right lateral ventricle of the brain of rats. When radiolabeled with 125I, these phospholipases A2 retained enzymatic activities and lethal potencies. Both enzymes bound with high affinity and specificity to brain synaptic plasma membrane preparations in vitro even in the absence of calcium, suggesting a non-catalytic binding. The acidic enzyme, in a calcium-free medium, had two binding components with Kd values of 1 X 10(-10) and 2.75 X 10(-8) M and Bmax values of 6 X 10(-13) and 3.4 X 10(-11) mol/mg, respectively. Multiple specific and nonspecific binding components were observed for each phospholipase A2; saturability for all of the binding sites was conclusively demonstrated only for the N. naja atra phospholipase A2 in a calcium-free medium (Bmax = 3.4 X 10(-11) mol/mg). The levels of specific and total binding were 150 pmol/mg and 450 pmol/mg, respectively, for the comparatively toxic enzyme and 15 pmol/mg and 35 pmol/mg, respectively, for the comparatively nontoxic enzyme at a concentration of 2.5 X 10(-8) M. These levels of binding (both total and specific) were directly correlated with the intraventricular lethal potencies of the phospholipases A2 (0.5 and 5.0 micrograms/rat for the N. nigricollis and N. naja atra phospholipases A2, respectively), suggesting a possible relationship between binding and lethal potency. Carbamylation of lysines reduced the levels of binding and the lethal potencies of both enzymes to a greater extent than their enzymatic activities. Pretreatment with high temperature, proteinases, phospholipases A2 or C suggested that radiolabeled phospholipase A2 binds to phospholipids rather than proteins. However, only the N. naja atra phospholipase A2 manifested a strict dependence on a divalent cation (Ca2+ or Sr2+) for most of its binding. The N. nigricollis enzyme demonstrated a much lower rate of dissociation from synaptic plasma membranes than did N. naja atra phospholipase A2, suggesting that hydrophobic interactions are more important in the binding of the more toxic enzyme as compared to the less toxic enzyme. It is proposed that differences in the extent of high-affinity noncatalytic binding to membrane phospholipids may be at least partly responsible for the marked difference in central toxicities of these two phospholipases A2.  相似文献   

17.
Using Ca(2+)-dependent affinity chromatography on a synthetic compound (W-77)-coupled Sepharose 4B column, we purified two different Ca(2+)-binding proteins from rabbit lung extracts. The molecular weights of these proteins were estimated to be 17 kDa (calmodulin) and 10 kDa, respectively. The partial amino acid sequence of the 10-kDa protein revealed that it has two EF-hand structures. In addition, the 10-kDa protein was highly homologous (91%) to the product of growth-regulated gene, 2A9 (calcyclin). The Ca(2+)-binding property of the 10-kDa protein was observed by a change in the uv difference spectrum. Equilibrium dialysis showed that 1 mol of the 10-kDa protein bound to 2.04 +/- 0.05 mol of Ca2+ in the presence of 10(-4) M Ca2+. However, the protein failed to activate calmodulin-dependent enzymes such as Ca2+/CaM kinase II, myosin light chain kinase, and phosphodiesterase. We found that a 50-kDa cytosolic protein of the rabbit lung, intestine, and spleen bound to the 10-kDa protein, in a Ca(2+)-dependent manner. The distribution of calcyclin and calcyclin binding proteins was unique and seems to differ from that of calmodulin and calmodulin-binding proteins. Thus, calcyclin probably plays a physiological role through its binding proteins for the Ca(2+)-dependent cellular response.  相似文献   

18.
C L Wang  P C Leavis  J Gergely 《Biochemistry》1984,23(26):6410-6415
The stepwise addition of Tb3+ to calmodulin yields a large tyrosine-sensitized Tb3+ luminescence enhancement as the third and fourth ions bind to the protein [Wang, C.-L. A., Aquaron, R. R., Leavis, P. C., & Gergely, J. (1982) Eur. J. Biochem. 124, 7-12]. Since the only tyrosine residues in calmodulin are located within binding sites III and IV, these results suggest that Tb3+ binds first to sites I and II. Recent NMR studies have provided evidence that Ca2+, on the other hand, binds preferentially to sites III and IV. Kinetic studies using a stopped-flow apparatus also show that the preferential binding of Ca2+ and lanthanide ions is different. Upon rapid mixing of 2Ca-calmodulin with two Tb3+ ions, there was a small and rapid tyrosine fluorescence change, but no Tb3+ luminescence was observed, indicating that Tb3+ binds to sites I and II but not sites III and IV. When two Tb3+ ions are mixed with 2Dy-calmodulin, Tb3+ luminescence rises rapidly as Tb3+ binds to the empty sites III and IV, followed by a more gradual decrease (k = 0.4 s-1 as the ions redistribute themselves over the four sites. These results indicate that (i) both Tb3+ and Dy3+ prefer binding to sites I and II of calmodulin and (ii) the binding of Tb3+ to calmodulin is not impeded by the presence of two Ca2+ ions initially bound to the protein. Thus, the Ca2+ and lanthanide ions must exhibit opposite preferences for the four sites of calmodulin: sites III and IV are the high-affinity sites for Ca2+, whereas Tb3+ and Dy3+ prefer sites I and II.  相似文献   

19.
Calcium binding to complexes of calmodulin and calmodulin binding proteins   总被引:12,自引:0,他引:12  
B B Olwin  D R Storm 《Biochemistry》1985,24(27):8081-8086
The free energy of coupling for binding of Ca2+ and the calmodulin-sensitive phosphodiesterase to calmodulin was determined and compared to coupling energies for two other calmodulin binding proteins, troponin I and myosin light chain kinase. Free energies of coupling were determined by quantitating binding of Ca2+ to calmodulin complexed to calmodulin binding proteins with Quin 2 to monitor free Ca2+ concentrations. The geometric means of the dissociation constants (-Kd) for Ca2+ binding to calmodulin in the presence of equimolar rabbit skeletal muscle troponin I, rabbit skeletal muscle myosin light chain kinase, and bovine heart calmodulin sensitive phosphodiesterase were 2.1, 1.1, and 0.55 microM. The free-energy couplings for the binding of four Ca2+ and these proteins to calmodulin were -4.48, -6.00, and -7.64 kcal, respectively. The Ca2+-independent Kd for binding of the phosphodiesterase to calmodulin was estimated at 80 mM, indicating that complexes between calmodulin and this enzyme would not exist within the cell under low Ca2+ conditions. The large free-energy coupling values reflect the increase in Ca2+ affinity of calmodulin when it is complexed to calmodulin binding proteins and define the apparent positive cooperativity for Ca2+ binding expected for each system. These data suggest that in vitro differences in free-energy coupling for various calmodulin-regulated enzymes may lead to differing Ca2+ sensitivities of the enzymes.  相似文献   

20.
The X-ray structure of staphylococcal nuclease suggests octahedral coordination of the essential Ca2+, with Asp-21, Asp-40, and Thr-41 of the enzyme providing three of the six ligands [Cotton, F. A., Hazen, E. E., Jr., & Legg, M. J. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 2551-2555]. The Asp-40 codon was mutated to Gly-40 on the gene that had been cloned into Escherichia coli, and the mutant (D40G) and wild-type enzymes were both purified from E. coli by a simple procedure. The D40G mutant forms a (5 +/- 2)-fold weaker binary complex with Ca2+ as found by kinetic analysis and by Ca2+ binding studies in competition with Mn2+, a linear competitive inhibitor. Similarly, as found by electron paramagnetic resonance (EPR), Mn2+ binds to the D40G mutant with a 3-fold greater KD than that found with the wild-type enzyme. These differences in KD are increased by saturation of staphylococcal nuclease with the DNA substrate such that KmCa is 10-fold greater and KIMn is 15-fold greater for the mutant than for the wild-type enzyme, although KMDNA is only 1.5-fold greater in the mutant. The six dissociation constants of the ternary enzyme-Mn2+-nucleotide complexes of 3',5'-pdTp and 5'-TMP were determined by EPR and by paramagnetic effects on 1/T1 of water protons, and the dissociation constants of the corresponding Ca2+ complexes were determined by competition with Mn2+. Only small differences between the mutant and wild-type enzymes are noted in K3, the dissociation constant of the nucleotides from their respective ternary complexes. 3',5'-pdTp raises the affinities of both wild-type and mutant enzymes for Mn2+ by factors of 47 and 31, respectively, while 5'-TMP raises the affinities of the enzymes for Mn2+ by smaller factors of 6.8 and 4.4, respectively. Conversely, Mn2+ raises the affinities of both wild-type and mutant enzymes for the nucleotides by 1-2 orders of magnitude. Analogous effects are observed in the ternary Ca2+ complexes. Dissociation constants of Ca2+ and Mn2+ from binary and ternary complexes, measured by direct binding studies, show reasonable agreement with those obtained by kinetic analysis. Structural differences in the ternary metal complexes of the D40G mutant are revealed by a 31-fold decrease in Vmax with Ca2+ and by 1.4-3.1-fold decreases in the enhancement of 1/T1 of water protons with Mn2+.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号