首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L929, a murine fibrosarcoma cell line highly sensitive to the anti-proliferative and cytotoxic action of tumour necrosis factor (TNF), was used as a target cell in our studies. We [Suffys et al. (1987) Biochem. Biophys. Res. Commun. 149, 735-743], as well as others, have previously provided evidence that a phospholipase (PL), most probably a PL-A2-type enzyme, is likely to be involved in TNF-mediated cell killing. We now further document this conclusion and provide suggestive evidence that the enzyme activity specifically involved in TNF cytotoxicity differs from activities associated with the eventual cell death process itself or with non-toxic serum treatment. We also show that the 5,8,11,14-icosatetraenoic acid (arachidonic acid, delta 4 Ach) released by PL, and possibly metabolized, is unlikely to be a key mediator of the TNF-mediated cytotoxicity. These conclusions are based on the following experimental findings. 1. TNF treatment of cells, prelabelled for 24 h with [3H] delta 4Ach or [14C] delta 3Ach (delta 3Ach identical to 5,8,11-icosatrienoic acid) resulted in an early, time-dependent and concentration-dependent release of radioactivity in the supernatant preceding actual cell death. The extent of this response was moderate, albeit reproducible and significant. Analysis of the total lipid fraction from cells plus supernatant revealed that only release of arachidonic acid from phospholipids, but not its metabolization was induced by TNF. However, the release of less unsaturated fatty acids, such as linoleic acid (Lin) or palmitic acid (Pam), was not affected during the first hours after TNF addition. 2. An L929 subclone, selected for resistance to TNF toxicity, was found to be defective in TNF-induced delta 4Ach libration. 3. Interleukin-1 (IL1) was not cytotoxic for L929 and did not induce release of delta 4Ach. 4. Release of delta 4Ach was not restricted to TNF; the addition of serum to the cells also induced release of fatty acids into the medium. In this case, however, there was no specificity, as all fatty acids tested, including Lin and Pam, were released. 5. Inhibition of PL-A2 activity by appropriate drugs markedly diminished TNF-induced delta 4Ach release and resulted also in a strong decrease in TNF-induced cytotoxicity. 6. Other drugs, including serine protease inhibitors, which strongly inhibit TNF-induced cytotoxicity, also decreased the TNF-induced delta 4Ach release, whereas LiCl potentiated both TNF-mediated effects. 7. Protection of cells against TNF toxicity by means of various inhibitors was not counteracted by addition of exogenous fatty acids, including delta 4Ach.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Tumor necrosis factor (TNF) is a monokine that induces pleiotropic events in both transformed and normal cells. These effects are initiated by the binding of TNF to high affinity cell surface receptors. The post-receptor events and signaling mechanisms induced by TNF, however, have remained unknown. The present studies demonstrate the presence of a single class of high affinity receptors on membranes prepared from HL-60 promyelocytic leukemic cells. The interaction of TNF with these membrane receptors was associated with a 3.8-fold increase in specific binding of the GTP analogue, GTP gamma S. Scatchard analysis of GTP gamma S binding data demonstrated that TNF stimulates GTP binding by increasing the affinity of available sites. The TNF-induced stimulation of GTP binding was also associated with an increase in GTPase activity. Moreover, the increase in GTPase activity induced by TNF was sensitive to pertussis toxin. The results also demonstrate that TNF similarly increased GTP binding and pertussis toxin-sensitive GTPase activity in membranes from mouse L929 fibroblasts, thus indicating that these effects are not limited to hematopoietic cells. Analysis of HL-60 membranes after treatment with pertussis toxin in the presence of [32P]NAD revealed three substrates with relative molecular masses of approximately Mr 41,000, 40,000, and 30,000. In contrast, L929 cell membranes had only two detectable pertussis toxin substrates of approximately Mr 41,000 and 40,000. Although the Mr 41,000 pertussis toxin substrate represents the guanine nucleotide-binding inhibitory protein Gi, the identities of the Mr 40,000 and Mr 30,000 substrates remain unclear. In any event, inhibition of the TNF-induced increase in GTPase activity and ADP-ribosylation of Gi by pertussis toxin suggested that TNF might act by increasing GTPase activity of the Gi protein. However, the results further indicate that TNF has no detectable effect on basal or prostaglandin E2-stimulated cAMP levels in HL-60 cells. Taken together, these findings indicate that a pertussis toxin-sensitive GTP-binding protein other than Gi, and possibly the Mr 40,000 substrate, is involved in the action of TNF. Finally, the demonstration that pertussis toxin inhibited TNF-induced cytotoxicity in L929 cells supports the presence of a GTP-binding protein which couples TNF-induced signaling to a biologic effect.  相似文献   

3.
Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis   总被引:47,自引:0,他引:47  
TNF is a protein toxin which is secreted by activated macrophages and monocytes. Although the cytotoxic activity of TNF has been well documented, the mechanism of TNF-induced lysis is not well understood. The goal of this investigation was to determine whether TNF caused one of the classic forms of cell death, i.e., apoptosis, which is characterized by nuclear disintegration and cytoplasmic "boiling," or necrosis, which is characterized by the formation of a "balloon-like" plasma membrane and a lack of nuclear disintegration. Therefore, to distinguish apoptosis from necrosis, we have used time-lapse video microscopy to observe the death of several TNF-sensitive target cell lines while measuring the release of Na2(51)CrO4 and [3H]TdR from cytoplasmic and nuclear compartments, respectively. As targets we selected two spontaneously sensitive cell lines, F17 and L-M, and one resistant cell line, C3HA, which was sensitized by treatment with cycloheximide or by infection with the adeno-SV40 hybrid virus Ad2+ND2. We find that the type of cell death observed depends on the cell being tested. For example, in F17 cells we found that TNF treatment induced a classical form of apoptosis. In contrast, TNF induced a necrotic form of cell death in L-M cells, similar to the lysis induced by antibody and C. Finally, we found that sensitized C3HA cells displayed a novel cytolytic phenotype which resembled apoptosis but did not include DNA fragmentation. These results emphasize the complex nature of the TNF-induced cytotoxic response.  相似文献   

4.
Exposure of HL-60 cells to 1,25-dihydroxyvitamin D(3) (calcitriol) induces their differentiation into monocytes. This terminal differentiation is associated with acquired resistance to many proapoptotic stimuli. Here we show that differentiated HL-60 cells undergo apoptosis upon curcumin treatment although they retain resistance to apoptosis induced by a topoisomerase poison - etoposide. Curcumin induced changes of nuclear morphology, DNA fragmentation, release of cytochrome c as well as caspase activation in both differentiated and undifferentiated cells. Experiments performed in other laboratories suggested that curcumin initiates apoptosis by DNA damage that results from topoisomerase II poisoning. We measured gammaH2AX expression, a marker of DNA double strand breaks, in both undifferentiated and differentiated HL-60 cells treated with curcumin or etoposide. In etoposide-treated undifferentiated cells early gammaH2AX expression correlated with initiation phase of apoptosis. In contrast, in curcumin-treated cells gammaH2AX expression correlated with apoptotic DNA fragmentation, which is characteristic for the execution phase of apoptosis. Our experiments show that curcumin overcomes the resistance of calcitriol-differentiated HL-60 cells to DNA-damage-induced apoptosis by activating other cell signaling pathways leading to cell death of HL-60.  相似文献   

5.
6.
Using the arachidonic acid release as a probe of phospholipase A2 activity, we tested the involvement of this enzyme in the TNF-triggered apoptotic cell death in the bovine aortic endothelial cells. We observed that TNF induced a liberation of arachidonic acid from these cells which was comparable to that obtained from the L929 cells. An augmentation of the amount of released arachidonic acid or the reduction of the TNF-stimulated phospholipase A2 activity did not modify the TNF-induced DNA fragmentation in the endothelial cells. We suggest that these events are not required for TNF apoptotic cytotoxicity in the endothelial cells.  相似文献   

7.
Apoptosis and DNA fragmentation precede TNF-induced cytolysis in U937 cells.   总被引:10,自引:0,他引:10  
The hypothesis that activation of apoptosis and DNA fragmentation is involved in TNF-mediated cytolysis of U937 tumor cells was investigated. Morphological, biochemical, and kinetic criteria established that TNF activates apoptosis as opposed to necrosis. Within 2-3 h of exposure to TNF, U937 underwent the morphological alterations characteristic of apoptosis. This was accompanied by cleavage of DNA into multiples of nucleosome size fragments. Both of these events occurred 1-2 h prior to cell death as defined by trypan blue exclusion or 51Cr release. DNA fragmentation was not a non-specific result of cell death since U937 cells lysed under hypotonic conditions did not release DNA fragments. The percentage of cells undergoing apoptosis depended on the concentration of TNF and was augmented by the addition of cycloheximide. A TNF-resistant variant derived from U937 did not undergo apoptosis in response to TNF, even in the presence of cycloheximide. Furthermore, TNF could still activate NFkB in this variant, suggesting that this pathway is not involved in TNF-mediated cytotoxicity. Two agents known to inhibit TNF-mediated cytotoxicity, ZnSO4 and 3-aminobenzamide, were shown to inhibit TNF-induced apoptosis. Taken altogether, these data support the hypothesis that activation of apoptosis is at least one essential step in the TNF lytic pathway in the U937 model system.  相似文献   

8.
Incorporation of radiolabeled thymidine is commonly used to investigate DNA damage. Using a filter-binding assay, we observed that the addition of various doses of [methyl-3H]thymidine (0.2 and 2 microCi/ml) or [2-14C]thymidine (0.02 and 0.2 microCi/ml) in the culture medium for 2 days, a standard method for cell-labeling, induces DNA fragmentation in HL-60 human promyelocytic cells. This effect was dose- and time-dependent and the DNA fragments were not protein-linked since the levels of DNA fragmentation were identical in the presence and in the absence of proteinase K (0.5 mg/ml). Radiolabeled thymidine-induced DNA fragmentation was associated with an inhibition of cell growth, but cells remained able to exclude trypan blue, suggesting that plasma membrane integrity was conserved, except at very high doses of [methyl-3H]thymidine (2 microCi/ml). By agarose-gel electrophoresis, the DNA-fragmentation was demonstrated to be internucleosomal with a typical ladder pattern. Addition of unlabeled thymidine to the culture medium prevented DNA fragmentation in a dose-dependent manner, indicating that radiolabeled thymidine incorporation in DNA was directly responsible for DNA fragmentation. We conclude that radiolabeling of DNA using thymidine incorporation can induce DNA fragmentation in some cell lines such as HL-60. This observation must be taken into account in methods using radiolabeling to study DNA damage in these cells.  相似文献   

9.
A protein complex (PC) composed of the MRP8 and MRP14 proteins has previously been shown to be a specific inhibitor of casein kinase I and II. This PC is expressed during the late stages of terminal differentiation induced in human promyelocytic HL-60 leukemia cells by 1 alpha,25-dihydroxyvitamin D3 and in human monocytic THP-1 leukemia cells by phorbol 12-myristate 13-acetate. This expression is associated with terminal cell differentiation because incubation of HL-60 cells with an agent or condition that causes suppression of growth but not induction of differentiation does not result in expression of the PC. At concentrations of 5-15 nM, the purified PC inhibited the growth of HL-60 cells and THP-1 cells, as well as other cell types belonging to different cell lineages. This growth inhibition was preceded by a reduction in [32P]phosphate incorporation and, at the higher PC concentrations, was associated with a reduction in [3H]thymidine, [3H]uridine, and [32S]methionine incorporation. The specific expression pattern and growth-inhibitory character of the PC suggests that the complex may have a role in suppressing cell growth during monomyelocytic terminal differentiation induced by specific chemical stimuli and during physiological and pathological events associated with monomyelocytic cell functions.  相似文献   

10.
A human promyelocytic leukemia cell line (undifferentiated HL-60 cells) as well as a granulocyte form of HL-60 cells induced in vitro by exposure to dimethyl sulfoxide were examined for binding, metabolism, and biological responses to platelet-activating factor (PAF). Undifferentiated and differentiated HL-60 cells each exhibit a high capacity to incorporate and metabolize [3H]PAF at 37 degrees C; however, the amount of [3H]PAF that is assimilated by both cell populations is greatly reduced and its metabolism abolished at less than or equal to 4 degrees C. At 0 degrees C HL-60 granulocytes bind more [3H]PAF than their undifferentiated counterparts. Binding to differentiated cells reaches equilibrium within 80 min and is saturable, reversible and specific; PAF receptor antagonists WEB 2086, L-659,989, BN 52021, and kadsurenone abolish this specific [3H]PAF binding. In contrast, [3H]PAF uptake by undifferentiated HL-60 cells is neither saturable nor sensitive to specific receptor antagonists. Scatchard analyses reveal 5850 +/- 850 binding sites per differentiated HL-60 cell with a dissociation constant of 0.66 +/- 0.15 nM. In the presence of cytochalasin B, PAF (200 nM) induces degranulation only in differentiated cells and this response also is blocked by PAF receptor antagonists. Our results demonstrate that HL-60 cells develop specific and functionally active PAF receptors only after chemically induced differentiation into granulocytes.  相似文献   

11.
R F Huang  S M Huang  B S Lin  J S Wei  T Z Liu 《Life sciences》2001,68(25):2799-2811
The cytotoxicity of homocysteine derivatives on chromosomal damage in somatic cells is not well established. The present study used reactive homocysteine derivative of homocysteine thiolactone (Hcy) to investigate its causal effect on apoptotic DNA injury in human promyeloid HL-60 cells. Our results demonstrated that Hcy induced cell death and features of apoptosis including increased phosphotidylserine exposure on the membrane surface, increased apoptotic cells with hypoploid DNA contents, and internucleosomal DNA fragmentation, all of which occurred in a time- and concentration-dependent manner. Hcy treatment also significantly increased intracellular reactive oxygen species H2O2, which coincided with the elimination of caspase 3 proenzyme levels and increased caspase 3 activity at the time of the appearance of apoptotic DNA fragmentation. Preincubation of Hcy-treated HL-60 cells with catalase completely scavenged intracellular H2O2, thus inhibiting caspase 3 activity and protecting cells from apoptotic DNA damage. In contrast, superoxide dismutase failed to inhibit Hcy-induced DNA damage. Taken together, these results demonstrate that Hcy exerted its genotoxic effects on HL-60 cells through an apoptotic pathway, which is mediated by the activation of caspase 3 activity induced by an increase in intracellular hydrogen peroxide.  相似文献   

12.
The synthesis and biological activity of a series of hybrids 1-5 prepared combining a benzo[4,5]imidazo[1,2-d][1,2,4]thiadiazole and different benzoheterocyclic alpha-bromoacryloyl amides have been described and their structure-activity relationships discussed. All these hetero-bifunctional compounds were highly cytotoxic against the human myeloid leukaemia cell lines HL-60 and U937 (IC(50) 0.24-1.72microM), significantly superior to that of both alkylating units alone. In human myeloid leukaemia HL-60 cells we observed that these compounds suppress survival and proliferation by triggering morphological changes and internucleosomal DNA fragmentation characteristic of apoptotic cell death. The apoptosis induced by these compounds is mediated by caspase-3 activation and is also associated to an early release of cytochrome c from the mitochondria.  相似文献   

13.
As part of our continuing search for potential anticancer drug candidates in YC-1 analogs, several 1-benzyl-3-(substituted aryl)-5-methylfuro[3,2-c]pyrazoles were synthesized and evaluated for their cytotoxicity against HL-60 cell line. Among these compounds, 1-benzyl-3-(5-hydroxymethyl-2-furyl)-5-methylfuro[3,2-c]pyrazole (1) showed more potency than YC-1. Through investigation of action mechanism, it was found that compound 1 induced terminal differentiation of HL-60 cells toward granulocyte lineage and promoted HL-60 cell differentiation by regulation of Bcl-2 and c-Myc proteins. Meanwhile, compound 1 also demonstrated apoptosis inducing effect. Such anti-leukemia mechanism of action is apparently different from that of YC-1 which mainly works by inducing apoptosis, but not cell differentiation. Therefore, compound 1 is identified here as a new lead compound of cell differentiating agent and apoptosis inducer for further development of new anti-leukemia agents.  相似文献   

14.
Wei CW  Hu CC  Tang CH  Lee MC  Wang JJ 《FEBS letters》2002,531(3):421-426
Rana catesbeiana ribonuclease (RC-RNase) exerted strong anti-tumor activity and its cytotoxicity was shown to correlate with differentiation stages of three different hepatoma cell lines. In this study, we demonstrate different RC-RNase cytotoxicity in undifferentiated HL-60 cells and in those that had been induced to differentiate by retinoic acid or dimethylsulfoxide. RC-RNase showed cytotoxicity in undifferentiated HL-60 cells, but not in HL-60 cells undergoing terminal differentiation. Furthermore, the caspase-9/caspase-3 pathway was activated when RC-RNase induced death in undifferentiated HL-60 cells and induction of differentiation led to a reversal of the caspase activation pathway.  相似文献   

15.
It has been reported that inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase suppress cell proliferation and induce apoptosis. One inhibitor which induces apoptosis is mevastatin. However, the molecular mechanism of apoptosis induction is not well understood so the effects of mevastatin on various functions of HL-60 cells were investigated. We confirmed that mevastatin activated caspase-3 by release of cytochrome c (Cyt. c) from mitochondria through a membrane permeability transition mechanism and also induced typical fragmentation and ladder formation of DNA in HL-60 cells. These effects were inhibited by mevalonate, a metabolic intermediate of cholesterol biosynthesis. Mevalonate and geranylgeraniol (GGOH) inhibited DNA fragmentation whereas farnesol (FOH) did not. Mevastatin also induced cell differentiation to monocytic cells via a mevalonate inhibitable mechanism. Furthermore, mevastatin decreased the amount of an isoprenylated membrane bound Rap1 small GTPase concomitant with an increase in cytosolic Rap1 which occurred before apoptosis and differentiation. On the contrary, both mevastatin and geranylgeranylacetone (GGA), which competes with geranylgeranyl pyrophosphate, induced membrane depolarization of isolated mitochondria without swelling and Cyt. c release. These results suggest that mevastatin-induced apoptosis of HL-60 cells might be caused indirectly by activation of the caspase cascade through the modulation of mitochondrial functions and that some relationship between a certain small GTPase molecule, such as Rap1, and mevastatin-induced apoptosis may exist.  相似文献   

16.
The appearance of the arachidonic acid metabolic pathway in human promyelocytic leukemia (HL-60) cells was investigated during 1 alpha,25-dihydroxyvitamin D-3-induced monocytic differentiation. 1 alpha,25-Dihydroxyvitamin D-3-treated HL-60 cells acquired the ability to convert [1-14C]arachidonic acid to thromboxane B2 and prostaglandin E2 during monocytic differentiation. The major cyclooxygenase product synthesized by the HL-60 cells after 3-4 days exposure to 1 alpha,25- dihydroxyvitamin D-3 (48 nM) was thromboxane B2 and its production was about 19-25-times higher than that of untreated HL-60 cells. The percent conversion of thromboxane B2 from [1-14C]arachidonic acid in the 1 alpha,25-dihydroxyvitamin D-3 (48 nM, 3 day exposure)-treated HL-60 cells was about 4.4% as compared to that (about 0.3%) of the untreated cells, whereas the percent conversion of thromboxane B2 from [1-14C]prostaglandin H2 in the 1 alpha,25-dihydroxyvitamin D-3-treated cell homogenate was about 22.4% as compared to that (about 13.6%) of the untreated cell homogenate. The stimulatory effect of 1 alpha,25-dihydroxyvitamin D-3 on thromboxane B2 production from [1-14C]arachidonic acid and from [1-14C]prostaglandin H2 in HL-60 cells was inhibited by the addition of cycloheximide (1 microgram/ml). However, 1 alpha,25-dihydroxyvitamin D-3 (48 nM) did not significantly stimulate the arachidonic acid release either in HL-60 cells or in 1 alpha,25-dihydroxyvitamin D-3-induced cells. These results suggest that the stimulatory effect of 1 alpha,25-dihydroxyvitamin D-3 on the thromboxane production in HL-60 cells was not due to the activation of phospholipase A2 but due to the induction of fatty acid cyclooxygenase and thromboxane synthetase activities. Thromboxane A2 actively produced during the monocytic differentiation of HL-60 cells could influence the cell adhesiveness of the monocyte-macrophage-differentiated cells.  相似文献   

17.
The tumor necrosis factor (TNF) exhibits a multitude of activities depending on the type of target cells. We characterized the cytostatic and cytotoxic effects of recombinant TNF, alone and in combination with actinomycin D (AMD), on the human leukemic cell line HL-60. Because HL-60 cells, when triggered to monocytic differentiation by phorbol esters, are known to produce and secrete TNF, their sensitivity to the factor could indicate an autocrine function of TNF in this cell system. Indeed, HL-60 cells were affected by TNF; their doubling time was increased by about 50% and progression through the cell cycle was perturbed. Initially, (up to 8 h) TNF induced a temporary arrest in G2 while later (24-48 h) it delayed progression through the G1 phase. Also, a transient increase in RNA content peaking at 6-8 h was apparent. The cytotoxicity of TNF alone was low. Thus, TNF may be involved in the regulation of the cell cycle of HL-60 cells during early stages of their differentiation. The cytotoxicity of TNF was markedly potentiated in the presence of AMD; the effect was AMD but not TNF concentration-dependent. Whereas at 20 and 50 ng/ml of AMD alone nonviable cells did not exceed 20% during the first 24 h of treatment, their proportion increased to 80 and 90%, respectively, in the presence of TNF. The most sensitive were cells in the S phase of the cell cycle. The observed synergistic effect of TNF and AMD does not appear to be caused by the action of TNF increasing the permeability of the cell membrane to AMD. The results indicate that HL-60 cells, ordinarily resistant to the cytotoxic action of TNF, can be rendered sensitive by treatment with AMD. This implies that a combination of TNF and AMD may be considered in oncology for treatment of tumors otherwise nonresponding to TNF alone.  相似文献   

18.
A culture system of isolated mesophyll cells of Zinnia eleganswas used to examine the action of gibberellic acid (GA) on celldivision. Isolated Zinnia mesophyll cells cultured in a mediumcontaining auxin and cytokinin reinitiated cell division ina partly synchronized manner. When mesophyll cells isolatedfrom 21-day-old seedlings were used, GA added to the culturemedium at concentrations of 1 x 10–6 M or higher suppressedthe initial rise in the number of divided cells. Tracer experimentswith [3H]-dThd revealed that GA treatment inhibited the incorporationof [3H]-dThd into DNA in the nucleus without inhibiting theuptake of [3H]-dThd into the cells, indicating that GA inhibitedDNA synthesis. GA applied at 48 h inhibited the incorporationof [3H]-dThd into DNA during the following 24 h, but GA appliedat 72 h did not inhibit the incorporation during the subsequent24 h. This suggests that GA affects the process of reinitiationof DNA synthesis, but does not affect DNA synthesis once cellshave become proliferative. (Received January 14, 1986; Accepted March 31, 1986)  相似文献   

19.
We have studied protein acylation using [3H]myristate in the two leukemia cell lines HL-60 and HL-60 Blast II. The latter is a variant which does not differentiate after treatment with 12-O-tetradecanoyl phorbol 13-acetate (TPA). The acylation profiles of the two cell lines as examined by SDS-PAGE differed. TPA induced the myristylation of an approximately 82 kDa protein in the sensitive cells, but not in the resistant cells. Myristic acid was shown to be covalently linked to these proteins. Analysis of the cell lipids labelled with [3H]myristate showed that in contrast to observations with the proteins, the changes induced by TPA were observed in both TPA-sensitive and TPA-resistant cells. We conclude that the induction of myristylation may be an important step in the mechanism of differentiation.  相似文献   

20.
The effect of insulin-like growth factor (IGF) on tumor necrosis factor (TNF)-induced cell killing was determined for mouse BALB/c3T3 fibroblasts in vitro. Cells maintained in 0.5% fetal bovine serum (FBS) were killed by TNF within 6 h in a concentration-dependent manner, an effect that was prevented by IGF-I. TNF-induced cytotoxicity of 3T3 cells that overexpress the human IGF-I receptor (p6 cells) was prevented by IGF-I alone in the absence of serum. TNF-induced cell death was associated with the morphologic features of apoptosis and the release of low-molecular-weight DNA, both of which were prevented by IGF-I. Neither epidermal growth factor (EGF) nor platelet-derived growth factor (PDGF) protected p6 cells from TNF-induced apoptosis. The specific protective action of the IGF-I receptor was demonstrated further by the marked sensitivity to TNF of embryo fibroblasts derived from mice with targeted disruption of the IGF-I receptor (R cells) but not of fibroblasts derived from wild-type littermates or R cells transfected with the cDNA for the human IGF-I receptor. Cycloheximide or actinomycin D markedly reduced the protection offered by IGF-I. IGF-I protection of BALB/c3T3 cells persisted for up to 5 days in the presence of PDGF and EGF, whereas IGF-I lost its effectiveness after 2 days in the absence of growth factors. IGF-I did not prevent TNF-induced release of arachidonic acid. The results demonstrate a specific role for the IGF-I receptor in the protection against TNF cytotoxicity. This action of the IGF-I receptor is mediated by protective cytosolic proteins that exhibit a high rate of turnover and whose levels are regulated principally by factors within serum other than IGF-I. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号