共查询到20条相似文献,搜索用时 15 毫秒
1.
Microtubule-dependent Changes in Assembly of Microtubule Motor
Proteins and Mitotic Spindle Checkpoint Proteins at PtK1
Kinetochores 下载免费PDF全文
David B. Hoffman Chad G. Pearson Tim
J. Yen Bonnie J. Howell E.D. Salmon 《Molecular biology of the cell》2001,12(7):1995-2009
The ability of kinetochores to recruit microtubules, generate force, and activate the mitotic spindle checkpoint may all depend on microtubule- and/or tension-dependent changes in kinetochore assembly. With the use of quantitative digital imaging and immunofluorescence microscopy of PtK1 tissue cells, we find that the outer domain of the kinetochore, but not the CREST-stained inner core, exhibits three microtubule-dependent assembly states, not directly dependent on tension. First, prometaphase kinetochores with few or no kinetochore microtubules have abundant punctate or oblate fluorescence morphology when stained for outer domain motor proteins CENP-E and cytoplasmic dynein and checkpoint proteins BubR1 and Mad2. Second, microtubule depolymerization induces expansion of the kinetochore outer domain into crescent and ring morphologies around the centromere. This expansion may enhance recruitment of kinetochore microtubules, and occurs with more than a 20- to 100-fold increase in dynein and relatively little change in CENP-E, BubR1, and Mad2 in comparison to prometaphase kinetochores. Crescents disappear and dynein decreases substantially upon microtubule reassembly. Third, when kinetochores acquire their full metaphase complement of kinetochore microtubules, levels of CENP-E, dynein, and BubR1 decrease by three- to sixfold in comparison to unattached prometaphase kinetochores, but remain detectable. In contrast, Mad2 decreases by 100-fold and becomes undetectable, consistent with Mad2 being a key factor for the "wait-anaphase" signal produced by unattached kinetochores. Like previously found for Mad2, the average amounts of CENP-E, dynein, or BubR1 at metaphase kinetochores did not change with the loss of tension induced by taxol stabilization of microtubules. 相似文献
2.
3.
Milena Bandiera Daniele Armaleo Giorgio Morpurgo 《Molecular & general genetics : MGG》1973,122(2):137-148
Summary A diploid strain of Aspergillus nidulans with two heteroallelic mutations in the pabaA cistron (right arm of the first chromosome) has been studied. Part of the paba-independent colonies which have been examined was heterogeneous, i.e. they showed conidia of different colour and genotype. The genetic analysis of the various type of these heterogeneous colonies leads to the conclusion that, in Aspergillus nidulans, mitotic intragenic recombination is, in most cases, consequence of a single-strand break and exchange followed by the formation of a very long hybrid-DNA region (in our case a maximum of 22 meiotic units); the selected characteristics arise mainly by gene-conversion.Furthermore, data show a high negative interference between the selected crossing-over and a second crossing-over on the left arm and probably also on different chromosomes. The latter exchange occurs, as the former, between subchromatidic units. 相似文献
4.
Ryo Kikuchi Hirokazu Ohata Nobumichi Ohoka Atsushi Kawabata Mikihiko Naito 《The Journal of biological chemistry》2014,289(6):3457-3467
In the mammalian cell cycle, both CYCLIN A and CYCLIN B are required for entry into mitosis, and their elimination is also essential to complete the process. During mitosis, CYCLIN A and CYCLIN B are ubiquitylated by the anaphase-promoting complex/cyclosome (APC/C) and then subjected to proteasomal degradation. However, CYCLIN A, but not CYCLIN B, begins to be degraded in the prometaphase when APC/C is inactivated by the spindle assembly checkpoint (SAC). Here, we show that APOLLON (also known as BRUCE or BIRC6) plays a role in SAC-independent degradation of CYCLIN A in early mitosis. APPOLON interacts with CYCLIN A that is not associated with cyclin-dependent kinases. APPOLON also interacts with APC/C, and it facilitates CYCLIN A ubiquitylation. In APPOLON-deficient cells, mitotic degradation of CYCLIN A is delayed, and the total, but not the cyclin-dependent kinase-bound, CYCLIN A level was increased. We propose APPOLON to be a novel regulator of mitotic CYCLIN A degradation independent of SAC. 相似文献
5.
6.
The B-type cyclin Clb5 is involved primarily in control of DNA replication in Saccharomyces cerevisiae. We conducted a synthetic genetic array (SGA) analysis, testing for synthetic lethality between the clb5 deletion and a selected 87 deletions related to diverse aspects of cell cycle control based on GO annotations. Deletion of the spindle checkpoint genes BUB1 and BUB3 caused synthetic lethality with clb5. The spindle checkpoint monitors the attachment of spindles to the kinetochore or spindle tension during early mitosis. However, another spindle checkpoint gene, MAD2, could be deleted without ill effects in the absence of CLB5, suggesting that the bub1/3 clb5 synthetic lethality reflected some function other than the spindle checkpoint of Bub1 and Bub3. To characterize the lethality of bub3 clb5 cells, we constructed a temperature-sensitive clb5 allele. At nonpermissive temperature, bub3 clb5-ts cells showed defects in spindle elongation and cytokinesis. High-copy plasmid suppression of bub3 clb5 lethality identified the C-terminal fragment of BIR1, the yeast homolog of survivin; cytologically, the BIR1 fragment rescued the growth and cytokinesis defects. Bir1 interacts with IplI (Aurora B homolog), and the addition of bub3 clb5-ts significantly enhanced the lethality of the temperature-sensitive ipl1-321. Overall, we conclude that the synthetic lethality between clb5 and bub1 or bub3 is likely related to functions of Bub1/3 unrelated to their spindle checkpoint function. We tested requirements for other B-type cyclins in the absence of spindle checkpoint components. In the absence of the related CLB3 and CLB4 cyclins, the spindle integrity checkpoint becomes essential, since bub3 or mad2 deletion is lethal in a clb3 clb4 background. clb3 clb4 mad2 cells accumulated with unseparated spindle pole bodies. Thus, different B-type cyclins are required for distinct aspects of spindle morphogenesis and function, as revealed by differential genetic interactions with spindle checkpoint components.CELL cycle progression is achieved by series of activations of cyclins/cyclin-dependent kinase (CDK) complexes (Morgan 2003). CDK becomes active only when it is associated with cyclins. The process has to proceed sequentially and in a timely fashion. In Saccharomyces cerevisiae, there are six B-type cyclins, Clb1–6 (Nasmyth 1993). Clb1–4 are mitotic cyclins (Surana et al. 1991), and Clb5,6 are S-phase cyclins (Epstein and Cross 1992; Schwob and Nasmyth 1993). While different cyclins/CDK complexes promote distinct cell cycle events, these B-type cyclins also share overlapping functions. The primary role of Clb5,6 is to trigger DNA replication (Epstein and Cross 1992; Schwob and Nasmyth 1993). Mitotic cyclins Clb1–4 trigger entering into mitosis (Fitch et al. 1992; Richardson et al. 1992), and they also have functions in spindle pole body (SPB) separation (Fitch et al. 1992) and spindle elongation (Rahal and Amon 2008). Clb2 inhibits mitotic exit; therefore, degradation of Clb2 is required for mitotic exit (Wasch and Cross 2002).CLB5 is a nonessential gene, although Clb5,6 are the primary drivers of DNA replication in wild-type cells (Schwob and Nasmyth 1993). Clb-Cdk1 activity also inhibits rereplication within a single cell cycle by phosphorylation of the prereplicative complex (Labib et al. 1999; Drury et al. 2000; Nguyen et al. 2000, 2001; Liku et al. 2005). Binding of Clb5 to Orc6 also contributes to preventing DNA rereplication (Wilmes et al. 2004). The Clb5 hydrophobic patch mutant, Clb5-hpm, cannot bind to Orc6 (Wilmes et al. 2004).There are several known mitotic functions for Clb5. When clb5 was combined with cdc28-4 (CDC28 is the only CDK in S. cerevisiae), cells exhibited defects in nuclear positioning (Segal et al. 1998) and spindle polarity (Segal et al. 2000). Phosphorylation of Fin1 by Clb5-Cdk1 inhibits Fin1 association with the spindle, which affects spindle integrity (Woodbury and Morgan 2007). Consistently, Clb5 is present long after completion of replication and is degraded at the metaphase–anaphase transition by Cdc20/APC (anaphase promoting complex) (Shirayama et al. 1999).Synthetic genetic array analysis (SGA; Tong et al. 2001) can identify novel functions or pathways controlled by a nonessential protein. This analysis carried out with clb5 led to a study of the interaction of different B-type cyclins with components of the spindle assembly checkpoint. The spindle assembly checkpoint ensures the proper attachment between mitotic spindles and kinetochores. The checkpoint thus inhibits anaphase entry when spindles do not attach to the kinetochores properly. Components of the spindle checkpoint are mitotic-arrest-defective genes (MAD1, MAD2, MAD3) and the budding uninhibited by benzimidazole genes (BUB1 and BUB3) (Amon 1999). There is a functional difference between BUB and MAD genes. Deletion of BUB1 or BUB3 causes chromosome mis-segregation compared to the deletion of MAD genes (Warren et al. 2002). Bub1p and Bub3p are recruited to the kinetochore in early mitosis independently from spindle–kinetochore attachment status, whereas Mad1p and Mad2p are bound to kinetochores in response to the unattached kinetochores (Gillett et al. 2004). Thus, unlike Mad1p and Mad2p, Bub1p and Bub3p have functions that are independent and distinct from their checkpoint function in chromosome segregation. In this study, we discuss the genetic interactions between CLB5 and spindle checkpoint genes, emphasizing the difference between Mad and Bub proteins. 相似文献
7.
Yifat Eliezer Liron Argaman Maya Kornowski Maayan Roniger Michal Goldberg 《The Journal of biological chemistry》2014,289(12):8182-8193
To avoid genomic instability, cells have developed surveillance mechanisms such as the spindle assembly checkpoint (SAC) and the DNA damage response. ATM and MDC1 are central players of the cellular response to DNA double-strand breaks. Here, we identify a new role for these proteins in the regulation of mitotic progression and in SAC activation. MDC1 localizes at mitotic kinetochores following SAC activation in an ATM-dependent manner. ATM phosphorylates histone H2AX at mitotic kinetochores, and this phosphorylation is required for MDC1 localization at kinetochores. ATM and MDC1 are needed for kinetochore localization of the inhibitory mitotic checkpoint complex components, Mad2 and Cdc20, and for the maintenance of the mitotic checkpoint complex integrity. This probably relies on the interaction of MDC1 with the MCC. In this work, we have established that ATM and MDC1 maintain genomic stability not only by controlling the DNA damage response, but also by regulating SAC activation, providing an important link between these two essential biological processes. 相似文献
8.
Meera Govindaraghavan Sarah Lea Anglin Aysha H. Osmani Stephen A. Osmani 《Genetics》2014,197(4):1225-1236
Mitosis is promoted and regulated by reversible protein phosphorylation catalyzed by the essential NIMA and CDK1 kinases in the model filamentous fungus Aspergillus nidulans. Protein methylation mediated by the Set1/COMPASS methyltransferase complex has also been shown to regulate mitosis in budding yeast with the Aurora mitotic kinase. We uncover a genetic interaction between An-swd1, which encodes a subunit of the Set1 protein methyltransferase complex, with NIMA as partial inactivation of nimA is poorly tolerated in the absence of swd1. This genetic interaction is additionally seen without the Set1 methyltransferase catalytic subunit. Importantly partial inactivation of NIMT, a mitotic activator of the CDK1 kinase, also causes lethality in the absence of Set1 function, revealing a functional relationship between the Set1 complex and two pivotal mitotic kinases. The main target for Set1-mediated methylation is histone H3K4. Mutational analysis of histone H3 revealed that modifying the H3K4 target residue of Set1 methyltransferase activity phenocopied the lethality seen when either NIMA or CDK1 are partially functional. We probed the mechanistic basis of these genetic interactions and find that the Set1 complex performs functions with CDK1 for initiating mitosis and with NIMA during progression through mitosis. The studies uncover a joint requirement for the Set1 methyltransferase complex with the CDK1 and NIMA kinases for successful mitosis. The findings extend the roles of the Set1 complex to include the initiation of mitosis with CDK1 and mitotic progression with NIMA in addition to its previously identified interactions with Aurora and type 1 phosphatase in budding yeast. 相似文献
9.
10.
Guillaume Combes Helena Barysz Chantal Garand Luciano Gama Braga Ibrahim Alharbi Philippe Thebault Luc Murakami Dominic P. Bryne Stasa Stankovic Patrick A. Eyers Victor M. Bolanos-Garcia William C. Earnshaw John Maciejowski Prasad V. Jallepalli Sabine Elowe 《Current biology : CB》2018,28(6):872-883.e5
11.
12.
Flavia Scialpi David Mellis Mark Ditzel 《The Journal of biological chemistry》2015,290(20):12585-12594
In this work, we identify physical and genetic interactions that implicate E3 identified by differential display (EDD) in promoting spindle assembly checkpoint (SAC) function. During mitosis, the SAC initiates a mitotic checkpoint in response to chromosomes with kinetochores unattached to spindle pole microtubules. Similar to Budding uninhibited by benzimidazoles-related 1 (BUBR1) siRNA, a bona fide SAC component, EDD siRNA abrogated G2/M accumulation in response to the mitotic destabilizing agent nocodazole. Furthermore, EDD siRNA reduced mitotic cell viability and, in nocodazole-treated cells, increased expression of the promitotic progression protein cell division cycle 20 (CDC20). Copurification studies also identified physical interactions with CDC20, BUBR1, and other components of the SAC. Taken together, these observations highlight the potential role of EDD in regulating mitotic progression and the cellular response to perturbed mitosis. 相似文献
13.
Guikai Wu Randy Wei Eric Cheng Bryan Ngo Wen-Hwa Lee 《Molecular biology of the cell》2009,20(22):4686-4695
Previous studies have stipulated Hec1 as a conserved kinetochore component critical for mitotic control in part by directly binding to kinetochore fibers of the mitotic spindle and by recruiting spindle assembly checkpoint proteins Mad1 and Mad2. Hec1 has also been reported to localize to centrosomes, but its function there has yet to be elucidated. Here, we show that Hec1 specifically colocalizes with Hice1, a previously characterized centrosomal microtubule-binding protein, at the spindle pole region during mitosis. In addition, the C-terminal region of Hec1 directly binds to the coiled-coil domain 1 of Hice1. Depletion of Hice1 by small interfering RNA (siRNA) reduced levels of Hec1 in the cell, preferentially at centrosomes and spindle pole vicinity. Reduction of de novo microtubule nucleation from mitotic centrosomes can be observed in cells treated with Hec1 or Hice1 siRNA. Consistently, neutralization of Hec1 or Hice1 by specific antibodies impaired microtubule aster formation from purified mitotic centrosomes in vitro. Last, disruption of the Hec1/Hice1 interaction by overexpressing Hice1ΔCoil1, a mutant defective in Hec1 interaction, elicited abnormal spindle morphology often detected in Hec1 and Hice1 deficient cells. Together, the results suggest that Hec1, through cooperation with Hice1, contributes to centrosome-directed microtubule growth to facilitate establishing a proper mitotic spindle. 相似文献
14.
Checkpoint defects leading to premature mitosis also cause endoreplication of DNA in Aspergillus nidulans 下载免费PDF全文
The G2 DNA damage and slowing of S-phase checkpoints over mitosis function through tyrosine phosphorylation of NIMX(cdc2) in Aspergillus nidulans. We demonstrate that breaking these checkpoints leads to a defective premature mitosis followed by dramatic rereplication of genomic DNA. Two additional checkpoint functions, uvsB and uvsD, also cause the rereplication phenotype after their mutation allows premature mitosis in the presence of low concentrations of hydroxyurea. uvsB is shown to encode a rad3/ATR homologue, whereas uvsD displays homology to rad26, which has only previously been identified in Schizosaccharomyces pombe. uvsB(rad3) and uvsD(rad26) have G2 checkpoint functions over mitosis and another function essential for surviving DNA damage. The rereplication phenotype is accompanied by lack of NIME(cyclinB), but ectopic expression of active nondegradable NIME(cyclinB) does not arrest DNA rereplication. DNA rereplication can also be induced in cells that enter mitosis prematurely because of lack of tyrosine phosphorylation of NIMX(cdc2) and impaired anaphase-promoting complex function. The data demonstrate that lack of checkpoint control over mitosis can secondarily cause defects in the checkpoint system that prevents DNA rereplication in the absence of mitosis. This defines a new mechanism by which endoreplication of DNA can be triggered and maintained in eukaryotic cells. 相似文献
15.
Aaron R. Tipton Wenbin Ji Brianne Sturt-Gillespie Michael E. Bekier II Kexi Wang William R. Taylor Song-Tao Liu 《The Journal of biological chemistry》2013,288(49):35149-35158
MPS1 kinase is an essential component of the spindle assembly checkpoint (SAC), but its functioning mechanisms are not fully understood. We have shown recently that direct interaction between BUBR1 and MAD2 is critical for assembly and function of the human mitotic checkpoint complex (MCC), the SAC effector. Here we report that inhibition of MPS1 kinase activity by reversine disrupts BUBR1-MAD2 as well as CDC20-MAD2 interactions, causing premature activation of the anaphase-promoting complex/cyclosome. The effect of MPS1 inhibition is likely due to reduction of closed MAD2 (C-MAD2), as expressing a MAD2 mutant (MAD2L13A) that is locked in the C conformation rescued the checkpoint defects. In the presence of reversine, exogenous C-MAD2 does not localize to unattached kinetochores but is still incorporated into the MCC. Contrary to a previous report, we found that sustained MPS1 activity is required for maintaining both the MAD1·C-MAD2 complex and open MAD2 (O-MAD2) at unattached kinetochores to facilitate C-MAD2 production. Additionally, mitotic phosphorylation of BUBR1 is also affected by MPS1 inhibition but seems dispensable for MCC assembly. Our results support the notion that MPS1 kinase promotes C-MAD2 production and subsequent MCC assembly to activate the SAC. 相似文献
16.
Mitotic Spindle Poles are Organized by Structural and Motor Proteins in Addition to Centrosomes 总被引:15,自引:3,他引:15 下载免费PDF全文
The focusing of microtubules into mitotic spindle poles in vertebrate somatic cells has been assumed to be the consequence of their nucleation from centrosomes. Contrary to this simple view, in this article we show that an antibody recognizing the light intermediate chain of cytoplasmic dynein (70.1) disrupts both the focused organization of microtubule minus ends and the localization of the nuclear mitotic apparatus protein at spindle poles when injected into cultured cells during metaphase, despite the presence of centrosomes. Examination of the effects of this dynein-specific antibody both in vitro using a cell-free system for mitotic aster assembly and in vivo after injection into cultured cells reveals that in addition to its direct effect on cytoplasmic dynein this antibody reduces the efficiency with which dynactin associates with microtubules, indicating that the antibody perturbs the cooperative binding of dynein and dynactin to microtubules during spindle/aster assembly. These results indicate that microtubule minus ends are focused into spindle poles in vertebrate somatic cells through a mechanism that involves contributions from both centrosomes and structural and microtubule motor proteins. Furthermore, these findings, together with the recent observation that cytoplasmic dynein is required for the formation and maintenance of acentrosomal spindle poles in extracts prepared from Xenopus eggs (Heald, R., R. Tournebize, T. Blank, R. Sandaltzopoulos, P. Becker, A. Hyman, and E. Karsenti. 1996. Nature (Lond.). 382: 420–425) demonstrate that there is a common mechanism for focusing free microtubule minus ends in both centrosomal and acentrosomal spindles. We discuss these observations in the context of a search-capture-focus model for spindle assembly. 相似文献
17.
《Cell cycle (Georgetown, Tex.)》2013,12(14):1487-1491
The APC/C is an E3 ubiquitin ligase that, by targeting substrates for proteasomal degradation, plays a major role in cell cycle control. In complex with one of two WD40 activator proteins, Cdc20 or Cdh1, the APC/C is active from early mitosis through to late G1 and during this time targets many critical regulators of the cell cycle for degradation. However, this destruction is carefully ordered to ensure that cell cycle events are executed in a timely fashion. Recent studies have begun to shed light on how the APC/C selects different substrates at different times in the cell cycle. One particular problem is how the APC/C recognizes its first set of substrates, Nek2A and cyclin A, in early mitosis when, at this time, the spindle assembly checkpoint (SAC) inhibits most APC/C-dependent degradation. The answer may lie in how substrates are recruited to the APC/C. While checkpoint-dependent substrates appear to require Cdc20 for recruitment, experiments on the early mitotic substrate Nek2A demonstrate that it can bind the APC/C in the absence of Cdc20. The direct interaction of substrates with core subunits of the APC/C could allow their degradation to proceed unhindered even when the SAC is active. 相似文献
18.
The spindle checkpoint ensures proper chromosome segregation by delaying anaphase until all chromosomes are correctly attached to the mitotic spindle. We investigated the role of the fission yeast bub1 gene in spindle checkpoint function and in unperturbed mitoses. We find that bub1
+ is essential for the fission yeast spindle checkpoint response to spindle damage and to defects in centromere function. Activation of the checkpoint results in the recruitment of Bub1 to centromeres and a delay in the completion of mitosis. We show that Bub1 also has a crucial role in normal, unperturbed mitoses. Loss of bub1 function causes chromosomes to lag on the anaphase spindle and an increased frequency of chromosome loss. Such genomic instability is even more dramatic in Δbub1 diploids, leading to massive chromosome missegregation events and loss of the diploid state, demonstrating that bub1
+ function is essential to maintain correct ploidy through mitosis. As in larger eukaryotes, Bub1 is recruited to kinetochores during the early stages of mitosis. However, unlike its vertebrate counterpart, a pool of Bub1 remains centromere-associated at metaphase and even until telophase. We discuss the possibility of a role for the Bub1 kinase after the metaphase–anaphase transition. 相似文献
19.
20.
The Spindle Checkpoint of Budding Yeast Depends on a Tight Complex between the Mad1 and Mad2 Proteins 下载免费PDF全文
Rey-Huei Chen D. Michelle Brady Dana Smith Andrew W. Murray Kevin G. Hardwick 《Molecular biology of the cell》1999,10(8):2607-2618
The spindle checkpoint arrests the cell cycle at metaphase in the presence of defects in the mitotic spindle or in the attachment of chromosomes to the spindle. When spindle assembly is disrupted, the budding yeast mad and bub mutants fail to arrest and rapidly lose viability. We have cloned the MAD2 gene, which encodes a protein of 196 amino acids that remains at a constant level during the cell cycle. Gel filtration and co-immunoprecipitation analyses reveal that Mad2p tightly associates with another spindle checkpoint component, Mad1p. This association is independent of cell cycle stage and the presence or absence of other known checkpoint proteins. In addition, Mad2p binds to all of the different phosphorylated isoforms of Mad1p that can be resolved on SDS-PAGE. Deletion and mutational analysis of both proteins indicate that association of Mad2p with Mad1p is critical for checkpoint function and for hyperphosphorylation of Mad1p. 相似文献