首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Association of gp10 and gp11 (gp=gene product) is the first step in the assembly pathway of the wedge part of the baseplate of bacteriophage T4. The gp10-gp11 complex constitutes the six tail pins at the corners of the baseplate hexagon on the distal side. The stoichiometry of the subunits, gp10 and gp11, of this complex was determined in combination with sedimentation equilibrium, Edman degradation of the complex and sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). From the results of Edman degradation and SDS-PAGE, the molar ratio of gp10 and gp11 was approximately 1. On the other hand, the molecular weight of the purified gp10-gp11 complex was determined by sedimentation equilibrium to be 284000+/-7000, which is in good agreement with the expected value of 269840 if the stoichiometry is 3:3. Furthermore, comparison of the results in the presence and in the absence of reducing reagent, 2-mercaptoethanol (2-ME), in SDS-PAGE revealed that two molecules of gp10 in the complex formed a disulfide bond, while the third gp10 molecule does not participate in the disulfide bond formation.  相似文献   

2.
Two bacteriophage T4 proteins which are precursors to the phage baseplate have been purified to homogeneity. These proteins, P10 and P11, are components of the P(10/11) complex, which is the first intermediate in the assembly of T4 baseplate 1/6th arms. Each protein was isolated from cells infected with a T4 amber mutant defective in the production of the other protein. Thus these purified proteins have never been assembled into the P(10/11) complex in vivo. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis and the ability of these proteins to block the phage killing activity of specific antisera were used to monitor the purification steps. Sedimentation equilibrium experiments reveal a molecular weight of 188,000 g/mol for P10 and 60,000 g/mol for P11. These data together with the previously determined molecular weights of the gene 10 and gene 11 polypeptide chains (King & Mykolajewycz, 1973) and the in vivo assembled P(10/11) complex (Berget & King, 1978b) are consistent with P10 being a dimer of the product of gene 10, P11 being a dimer of the product of gene 11, and P(10/11) being a tetramer containing one of each of these dimers. Purified P10 and P11 are active in assembly because they complement 10- and 11- defective extracts, respectively, to form viable bacteriophage in vitro. Furthermore, these proteins assemble in vitro to form a protein structure identical to the P(10/11) complex formed in vivo as determined by non-denaturing gel electrophoresis. This P(10/11) complex formed in vitro complements 10-/11- defective extracts to form viable phage. The overall extent of this in vitro assembly reaction is not affected by NaCl to 1.5 M or 2% Triton X-100. The reaction is, however, prevented by the denaturing effects of urea and sodium dodecyl sulfate.  相似文献   

3.
Bacteriophage T4 late gene product 11 (gp11), the three-dimensional structure of which has been solved by us to 2.0 A resolution, is a part of the virus' baseplate. The gp11 polypeptide chain consists of 219 amino acid residues and the functionally active protein is a three-domain homotrimer. In this work, we have studied the role of gp11 N-terminal domain in the formation of a functionally active trimer. Deletion variants of gp11 and monoclonal antibodies recognizing the native conformation of gp11 trimer have been selected. Long deletions up to a complete removal of the N-terminal domain, containing 64 residues, do not affect the gp11 trimerization, but considerably change the protein structure and lead to the loss of its ability to incorporate into the baseplate. However, the deletion of the first 17 N-terminal residues results in functionally active protein that can complete the 11(-)-defective phage particles in in vitro complementation assay. This region of the polypeptide chain is probably essential for gp11-gp10 stable complex formation at the early stages of phage baseplate assembly in vivo. A study of the gp10 deletion variants suggests that the central domain of gp10 trimer is responsible for the interaction with gp11.  相似文献   

4.
Two bacteriophage T4 proteins, P7 and P8, which are components of the phage baseplate have been purified to apparent homogeneity. P7 and P8 are the protein products of T4 genes 7 and 8. A plasmid has been constructed which contains approximately 5 kilobases of T4 DNA, including genes 7 and 8, under the control of the tac promoter. Induction of Escherichia coli W3110iQ cells containing this plasmid resulted in the production of functional P7 and P8. Standard protein isolation procedures were used to purify both P7 and P8 from extracts of induced cells. In T4-infected cells, these two proteins and P10 interact in a strictly ordered sequential manner (P10 + P7----P10/P7,P10/P7 + P8----P10/P7/P8) to form an intermediate in the baseplate assembly pathway. The three purified proteins assembled in vitro to form a limited number of oligomeric species, as determined by nondenaturing gel electrophoresis. P10 and P7 interacted in vitro to form two assemblies with distinct electrophoretic mobilities, both containing P10 and P7. Addition of P8 to this mixture resulted in the disappearance of both P10/P7 species and the appearance of a single new assembly with a different electrophoretic mobility. These interactions occurred without the addition of any catalyst or cofactors. Isolated P11 appeared to add as predicted to the in vitro-formed complexes without affecting the formation of the two P10/P7 or the single P10/P7/P8 intermediates. Interactions between P7 and P8 in the absence of P10 or interactions between P10 and P8 in the absence of P7 could not be detected. These data indicate that purified P10, P7, and P8 interact in vitro in a manner completely in accord with the published assembly pathway and thus establish a system for further study of the regulation of the formation of this assembly intermediate in vitro.  相似文献   

5.
The Arabidopsis genome encodes four mitochondrially localized adenosine 5'-triphosphate-dependent metalloproteases called FtsH or AAA proteases. All of them span the inner mitochondrial membrane but the catalytic site of two of them (AtFtsH4 and AtFtsH11) faces the intermembrane space, while AtFtsH3 and AtFtsH10 face the matrix. We used a combination of blue-native polyacrylamide gel electrophoresis and histochemical staining to reveal the consequences of the loss of one of mitochondrial FtsHs on the efficiency of the oxidative phosphorylation system in Arabidopsis mitochondria. To address this issue, we have selected homozygous lines of respective transferred DNA (T-DNA) insertional mutants. A decrease in the activity of complexes I and V but not complex IV was observed in the ftsh mutants, except for the mutant lacking functional FtsH11. The reduced activity of complexes I and V was well correlated with a decreased protein level of these complexes. Western blots experiments using specific antibodies against complex V subunits showed a significant reduction of these subunits only in the ftsh4 mutant. Taken together, our results reveal a role of FtsH3, FtsH4 and FtsH10 proteases in the biogenesis of a plant oxidative phosphorylation system.  相似文献   

6.
Protein interactions in the assembly of the baseplate have been investigated. The baseplate of the phage T4 tail consists of a hub and six wedges which surround the former. Both reversible and irreversible interactions were found. Reversible association includes gp5 and gp27 (gp: gene product) which form a complex in a pH-dependent manner and gp18 polymerization, i.e. the tail sheath formation depends on the ionic strength. These reversible interactions were followed by irreversible or tight binding which pulls the whole association reaction to complete the assembly. The wedge assembly is strictly ordered which means that if one of the seven wedge proteins is missing, the assembly proceeds to that point and the remaining molecules stay non-associated. The strictly sequential assembly pathway is suggested to be materialized by successive conformational change upon binding, which can be shown by proteolytic probe.  相似文献   

7.
The success of tailed bacteriophages to infect cells far exceeds that of most other viruses on account of their specialized tail and associated baseplate structures. The baseplate protein gene product (gp) 10 of bacteriophage T4, whose structure was determined to 1.2 A resolution, was fitted into the cryo-electron microscopy structures of the pre and post-infection conformations of the virus. gp10 functions as a molecular lever that rotates and extends the hinged short tail fibers to facilitate cell attachment. The central folding motif of the gp10 trimer is similar to that of the baseplate protein gp11 and to the receptor-binding domain of the short tail fiber, gp12. The three proteins comprise the periphery of the baseplate and interact with each other. The structural and functional similarities of gp10, gp11, and gp12 and their sequential order in the T4 genome suggest that they evolved separately, subsequent to gene triplication from a common ancestor. Such events are usual in the evolution of complex organelles from a common primordial molecule.  相似文献   

8.
Bacteriophage P22, a podovirus infecting strains of Salmonella typhimurium, packages a 42-kbp genome using a headful mechanism. DNA translocation is accomplished by the phage terminase, a powerful molecular motor consisting of large and small subunits. Although many of the structural proteins of the P22 virion have been well characterized, little is known about the terminase subunits and their molecular mechanism of DNA translocation. We report here structural and assembly properties of ectopically expressed and highly purified terminase large and small subunits. The large subunit (gp2), which contains the nuclease and ATPase activities of terminase, exists as a stable monomer with an α/β fold. The small subunit (gp3), which recognizes DNA for packaging and may regulate gp2 activity, exhibits a highly α-helical secondary structure and self-associates to form a stable oligomeric ring in solution. For wild-type gp3, the ring contains nine subunits, as demonstrated by hydrodynamic measurements, electron microscopy, and native mass spectrometry. We have also characterized a gp3 mutant (Ala 112 → Thr) that forms a 10-subunit ring, despite a subunit fold indistinguishable from wild type. Both the nonameric and decameric gp3 rings exhibit nonspecific DNA-binding activity, and gp2 is able to bind strongly to the DNA/gp3 complex but not to DNA alone. We propose a scheme for the roles of P22 terminase large and small subunits in the recruitment and packaging of viral DNA and discuss the model in relation to proposals for terminase-driven DNA translocation in other phages.  相似文献   

9.
The gene product of gene 44 of Mu phage (gp44) is an essential protein for baseplate assembly and has been designated as gpP, a traditional genetic assignment. The function of gp44 during the assembly or infection process is not known. In the present study, we purified the recombinant gp44 and characterized it by analytical ultracentrifugation and differential scanning microcalorimetry. The results indicate that gp44 forms a trimer comprising a complex consisting of the 42 kDa and 40 kDa subunits that had been cleaved in the C-terminal region. Thermodynamic analysis also suggested that the C-terminal region forms a flexible domain.  相似文献   

10.
Many bacteriophages, such as T4, T7, RB49, and phi29, have complex, sometimes multilayered, tails that facilitate an almost 100% success rate for the viral particles to infect host cells. In bacteriophage T4, there is a baseplate, which is a multiprotein assembly, at the distal end of the contractile tail. The baseplate communicates to the tail that the phage fibers have attached to the host cell, thereby initiating the infection process. Gene product 8 (gp8), whose amino acid sequence consists of 334 residues, is one of at least 16 different structural proteins that constitute the T4 baseplate and is the sixth baseplate protein whose structure has been determined. A 2.0A resolution X-ray structure of gp8 shows that the two-domain protein forms a dimer, in which each monomer consists of a three-layered beta-sandwich with two loops, each containing an alpha-helix at the opposite sides of the sandwich. The crystals of gp8 were produced in the presence of concentrated chloride and bromide ions, resulting in at least 11 halide-binding sites per monomer. Five halide sites, situated at the N termini of alpha-helices, have a protein environment observed in other halide-containing protein crystal structures. The computer programs EMfit and SITUS were used to determine the positions of six gp8 dimers within the 12A resolution cryo-electron microscopy image reconstruction of the baseplate-tail tube complex. The gp8 dimers were found to be located in the upper part of the baseplate outer rim. About 20% of the gp8 surface is involved in contacts with other baseplate proteins, presumed to be gp6, gp7, and gp10. With the structure determination of gp8, a total of 53% of the volume of the baseplate has now been interpreted in terms of its atomic structure.  相似文献   

11.
A carboxypeptidase which cleaves basic C-terminal amino acids from peptides was purified from concentrated human urine by a three-step procedure: chromatography on Affi-Gel Blue, arginine-Sepharose affinity chromatography, and gel filtration by HPLC on a TSK-G3000SW column. Urinary carboxypeptidase was purified 406-fold with an 11% yield and a specific activity of 49 mumol/min/mg with benzoylglycylargininic acid as substrate. It migrated as a single band of Mr 75,700 in polyacrylamide gel electrophoresis with sodium dodecyl sulfate. It cleaved benzoylglycylarginine, benzoylglycyllysine, benzoylglycylargininic acid, benzoylalanyllysine, and benzoylphenylalanyllysine at different relative rates than human plasma carboxypeptidase N, the Mr 48,000 active subunit of carboxypeptidase N or human pancreatic carboxypeptidase B. Urinary carboxypeptidase did not hydrolyze benzoylglycylphenylalanine, a substrate of carboxypeptidase A, but readily cleaved bradykinin with a Km of 46 microM and a Kcat of 32 min-1. Its activity was enhanced by CoCl2 and inhibited by cadmium acetate, o-phenanthroline, or DL-2-mercaptomethyl-3-guanidinoethylthiopropanoic acid. The enzyme had a pH optimum of 7.0 and its activity dropped at pH 6.0 by 60%. It was stable for at least 2 h at 37 degrees C (pH 8.0) but was unstable at room temperature below pH 4.5. The molecular weight, electrophoretic mobility, and activity of urinary carboxypeptidase was not affected by trypsin. The effect of pH and stability further distinguished the urinary carboxypeptidase from other human carboxypeptidases. Urinary carboxypeptidase was immunologically distinct from carboxypeptidase N when analyzed by the "Western blot" technique. Thus, human urine contains a basic carboxypeptidase, different from known carboxypeptidases, which may be released into the urine by the kidney. Here it could inactivate kinins and other peptides containing a basic C-terminal amino acid.  相似文献   

12.
We describe the cooperativity in the biotin binding of streptavidin. We have developed an electrophoretic method which can separate streptavidin molecules with bound biotin from those without biotin. In 6 M urea, the electrophoretic mobility of streptavidin in polyacrylamide gels becomes significantly faster upon biotin binding. When streptavidin was titrated with biotin, only two major bands were observed on the gel, consisting of streptavidin molecules without bound biotin and those saturated with biotin. The change in mobility is due partly to the negative charge of the bound biotin, but it must reflect conformational changes of the protein molecule associated with biotin binding. Gel filtration chromatography showed that the streptavidin molecule dissociates into two subunit dimers in the presence of 6 M urea. These results suggest that the biotin binding by the streptavidin subunit dimer is cooperative and that some communication must exist between the two subunits.  相似文献   

13.
The first multi-protein precursor in the assembly of the radial arms of the T4 baseplate has been purified to homogeneity. The complex was isolated from cells infected with a mutant blocked in the subsequent step in baseplate arm assembly. The assay for this precursor exploited the fact that the complex contains the target antigen of the neutralizing antibodies found in antibaseplate serum (Berget & King, 1978).The complex is composed of gene 10 protein (Mr, 88,000) and gene 11 protein (Mr, 24,000). Analytical ultracentrifugation experiments revealed a molecular weight of 258,000 and a sedimentation coefficient of 9.3 S for the complex. The overall and single polypeptide chain molecular weights are consistent with the complex containing two gene 10 polypeptides and four gene 11 polypeptides. Visualization of the complex in the electron microscope revealed an asymmetric angular structure. The shape, together with the previous identification of gene 11 product as the tail-spike protein (Crowther et al., 1977), indicates that the complex forms the body of the spikes and vertices of the hexagonal baseplate.Using an in vitro baseplate assembly assay, it was possible to demonstrate that the complex contains both the assembly-active gene 10 and gene 11 products. Gene 11 product (from 10? extracts) can convert 11? particles to viable phage. However, the complex lacked this activity, indicating that it does not readily dissociate. The precursor complex could be dissociated with denaturing solvents. Upon returning to physiological conditions, both the antigenic and biological activities of the gene 11 product could be recovered. The biological activity of the gene 10 product was not regained.  相似文献   

14.
Although bacteriophage T4 baseplate morphogenesis has been analyzed in some detail, there is little information available on the spatial arrangement and associations of its 150 subunits. We have therefore carried out the first analysis of its near-neighbor interactions by using the cleavable chemical cross-linker ethylene glycolbis(succinimidylsuccinate). In this report, we describe the cross-linked complexes that have been identified in the one-sixth arms or wedges and also in baseplatelike structures called rings consisting of six wedges but lacking the central hub, both of which are purified from T4 gene 5- -infected cells. Thirty different complexes were identified, of which about half contain multimers of a single species and half contain two different species. In general, the complexes reflect and support the assembly pathway derived by Kikuchi and King (Y. Kikuchi and J. King, J. Mol. Biol. 99:695-716, 1975) but broaden its scope to include such complexes as gp25-gp53, gp25-gp48, and gp48-gp53, which locate the gp48 binding site over the inner edge of the ring but outside the central hub. The data also supports the view that wedges are assembled from the outer edge inward toward the central hub. Wedge-wedge contact in rings was mediated primarily by gp12 and gp9, the absence of which dramatically destabilized the ring----wedge equilibrium in favor of wedges. Although no heterologous complexes containing gp9 were identified, gp12 contacts unique to rings were observed with both gp10 and gp11.  相似文献   

15.
To infect and replicate, bacteriophage P22 injects its 43 kbp genome across the cell wall of Salmonella enterica serovar Typhimurium. The attachment of phage P22 to the host cell as well as the injection of the viral DNA into the host is mediated by the virion's tail complex. This 2.8 MDa molecular machine is formed by five proteins, which include the portal protein gp1, the adhesion tailspike protein gp9, and three tail accessory factors: gp4, gp10, gp26. We have isolated the tail accessory factor gp4 and characterized its structure and binding interactions with portal protein. Interestingly, gp4 exists in solution as a monomer, which displays an exceedingly low structural stability (Tm 34 degrees C). Unfolded gp4 is prone to aggregation within a narrow range of temperatures both in vitro and in Salmonella extracts. In the virion the thermal unfolding of gp4 is prevented by the interaction with the dodecameric portal protein, which stabilizes the structure of gp4 and suppresses unfolded gp4 from irreversibly aggregating in the Salmonella milieu. The structural stabilization of gp4 is accompanied by the concomitant oligomerization of the protein to form a ring of 12 subunits bound to the lower end of the portal ring. The interaction of gp4 with portal protein is complex and likely involves the distinct binding of two non-equivalent sets of six gp4 proteins. Binding of the first set of six gp4 equivalents to dodecameric portal protein yields a gp(1)12:gp(4)6 assembly intermediate, which is stably populated at 30 degrees C and can be resolved by native gel electrophoresis. The final product of the assembly reaction is a bi-dodecameric gp(1)12:gp(4)12 complex, which appears hollow by electron microscopy, suggesting that gp4 does not physically plug the DNA entry/exit channel, but acts as a structural adaptor for the other tail accessory factors: gp10 and gp26.  相似文献   

16.
Interleukin-11 (IL-11) is a member of the gp130 family of cytokines. These cytokines drive the assembly of multisubunit receptor complexes, all of which contain at least one molecule of the transmembrane signaling receptor gp130. IL-11 has been shown to induce gp130-dependent signaling through the formation of a high affinity complex with the IL-11 receptor (IL-11R) and gp130. Site-directed mutagenesis studies have identified three distinct receptor binding sites of IL-11, which enable it to form this high affinity receptor complex. Here we present data from immunoprecipitation experiments, using differentially tagged forms of ligand and soluble receptor components, which show that multiple copies of IL-11, IL-11R, and gp130 are present in the receptor complex. Furthermore, it is demonstrated that sites II and III of IL-11 are independent gp130 binding epitopes and that both are essential for gp130 dimerization. We also show that a stable high affinity complex of IL-11, IL-11R, and gp130 can be resolved by nondenaturing polyacrylamide gel electrophoresis, and its composition verified by second dimension denaturing polyacrylamide gel electrophoresis. Results indicate that the three receptor binding sites of IL-11 and the Ig-like domain of gp130 are all essential for this stable receptor complex to be formed. We therefore propose that IL-11 forms a hexameric receptor complex composed of two molecules each of IL-11, IL-11R, and gp130.  相似文献   

17.
D-beta-Hydroxybutyrate dehydrogenase is a lipid-requiring enzyme which is localized on the inner face of the mitochondrial inner membrane. The apodehydrogenase, i.e. the purified enzyme devoid of lipid, has been purified from beef heart mitochondria and as such is inactive. It can be reactivated by insertion into phospholipid vesicles containing lecithin. Proteolytic digestion with different proteases has been carried out to obtain insight into the orientation of the enzyme in the membrane and to assess the extent of immersion of the protein into the phospholipid bilayer. Digestion of the apodehydrogenase with either trypsin, chymotrypsin, Staphylococcus aureus protease, thermolysin, carboxypeptidases A and Y, or Pronase (from Streptomyces griseus) leads to loss of activity, as assayed with phospholipid. Limited digestion with carboxypeptidase results in complete inactivation. Of the proteases tested, only Pronase and chymotrypsin cleave and inactivate the enzyme inserted into phospholipid vesicles (enzyme-phospholipid complex). For the enzyme-phospholipid complex, the loss of activity with Pronase digestion follows a single exponential decay to less than 10% of the initial activity. With chymotrypsin digestion, the staining intensity of the original approximately 31,500-dalton polypeptide decreases more rapidly than the loss of enzymic activity. The enzyme-phospholipid complex, after limited cleavage with chymotrypsin, retains enzymic activity and resonance energy transfer from protein to bound NADH and an approximately 26,000-dalton polypeptide is observed. Phospholipid alters the cleavage pattern with both chymotrypsin and Pronase, and the rate of inactivation of the enzyme-phospholipid complex is slowed in the presence of NAD(H). Moreover, the rate of inactivation of the apodehydrogenase with chymotrypsin is diminished approximately 3-fold in the presence of NAD+. Digestion of submitochondrial vesicles with either trypsin, chymotrypsin, or Pronase rapidly inactivates D-beta-hydroxybutyrate dehydrogenase; the addition of NAD+ or NADH, together with dithiothreitol and increased salt (to 50 mM), decreases the rate of inactivation, and with trypsin, virtually eliminates inactivation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The interaction of horse alpha 2-macroglobulin with methylamine, trypsin and cathepsin D was studied by circular dichroism in the far and near UV region, by polyacrylamide gel electrophoresis and by determination of its inhibitory activity. The CD spectra of horse alpha 2-macroglobulin resemble those of bovine und human alpha 2-macroglobulin. The CD spectra were changed in a different manner after the interaction of alpha 2-macroglobulin with methylamine, trypsin and inactive or active cathepsin D, indicating that more than one conformational change occurs. Cathepsin D activity was not affected by complex formation with horse alpha 2-macroglobulin. In contrast to the action of trypsin, treatment with methylamine did not increase the electrophoretic mobility of alpha 2-macroglobulin.  相似文献   

19.
Z H Yang  S Bobin    J S Krakow 《Nucleic acids research》1991,19(15):4253-4257
CRP is resistant to attack by carboxypeptidase Y at 37 degrees C, whereas cAMP-CRP is digested yielding a core terminating at Thr-202 and lacking the seven carboxyl-terminal amino acid residues. A similar core (CRPCY) is formed when CRP is incubated with carboxypeptidase Y at 47 degrees C in the absence of cAMP. CRPCY has a more open conformation than CRP at 37 degrees C. While unliganded CRP is resistant to trypsin, CRPCY is sensitive to tryptic attack. Dithionitrobenzoic acid-mediated intersubunit disulfide crosslinking of CRP requires cAMP, CRPCY subunits are crosslinked in the absence of cAMP. The carboxyl-terminal region of unliganded CRP is conformationally restricted at 37 degrees C. The CRPCY retains cAMP binding activity. The CRPCY which terminates at Thr-202, no longer binds lac P+ DNA nor stimulates abortive initiation by RNA polymerase from the lac P+ promoter. The results indicate that the C-terminal region of CRP participates in the conformational stability of the closed form of CRP and indirectly in DNA binding by the open cAMP-CRP conformer.  相似文献   

20.
Murine L5178Y cell ribosomes were dissociated into subunits either with potassium chloride in the presence of puromycin or with the chelating agent EDTA. The proteins of ribosomal subunits obtained by these different methods were compared by means of bidimensional polyacrylamide gel electrophoresis. KCl-derived 60S and 40S subunits were shown to contain 38 and 31 proteins respectively, 3 of them having identical electrophoretic mobilities. Preparations of EDTA-dissociated ribosomal subparticles contained different proportions of these proteins, and 11 major spots were shared between the EDTA-derived large and small ribosomal subunits. Furthermore, 10 proteins absent from subunits treated by high concentrations of KCl were reproducibly found in EDTA-treated ribosomal subparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号