首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel lectins were isolated from roots and leaves of garlic. Characterization of the purified proteins indicated that the leaf lectin ASAL is a dimer of two identical subunits of 12 kDa, which closely resembles the leaf lectins from onion, leek and shallot with respect to its molecular structure and agglutination activity. In contrast, the root lectin ASARI, which is a dimer of subunits of 15 kDa, strongly differs from the leaf lectin with respect to its agglutination activity. cDNA cloning of the leaf and root lectins revealed that the deduced amino acid sequences of ASAL and ASARI are virtually identical. Since both lectins have identical N-terminal sequences the larger Mr of the ASARI subunits implies that the root lectin has an extra sequence at its C-terminus. These results not only demonstrate that virtually identical precursor polypeptides are differently processed at their C-terminus in roots and leaves but also indicate that differential processing yields mature lectins with strongly different biological activities. Further screening of the cDNA library for garlic roots also yielded a cDNA clone encoding a protein composed of two tandemly arrayed lectin domains. Since the presumed two-domain root lectin has not been isolated yet, its possible relationship to the previously described two-domain bulb lectin could not be studied at the protein level.  相似文献   

2.
The biosynthesis and processing of the homodimeric and heterodimeric lectins from the bulbs of garlic (Allium sativum) and ramsons (wild garlic;Allium ursinum) were studied using pulse and pulse-chase labelling experiments on developing bulbs. By combining the results of thein vivo biosynthesis studies and the cDNA cloning of the respective lectins, the sequence of events leading from the primary translation products into the mature lectin polypeptides could be reconstructed. From this it is demonstrated that garlic and ramsons use different schemes of post-translational modifications in order to synthesize apparently similar lectins from totally different precursors. Both the homomeric garlic lectin (ASAII) and its homologue in ramsons (AUAII) are synthesized on the endoplasmic reticulum (ER) as nonglycosylated 13.5 kDa precursors, which, after their transport out of the ER are converted into the mature 12.0 kDa lectin polypeptides by the cleavage of a C-terminal peptide. The heterodimeric garlic lectin ASAI is synthesized on the ER as a single glycosylated precursor of 38 kDa, which after its transport out of the ER undergoes a complex processing which gives rise to two mature lectin subunits of 11.5 and 12.5 kDa. In contrast, both subunits of the heterodimeric ramsons lectin AUAI are synthesized separately on the ER as glycosylated precursors, which after their transport out of the ER are deglycosylated and further processed into the mature lectin polypeptides by the cleavage of a C-terminal peptide.  相似文献   

3.
A new type of cereal lectin from leaves of couch grass (Agropyrum repens)   总被引:1,自引:0,他引:1  
Extracts from couch grass (Agropyrum repens) leaves contain relatively high lectin concentrations. Preliminary experiments with crude extracts indicated that the leaf lectin differs from the embryo lectin of the same species and other Gramineae embryo lectins with respect to its sugar and blood group specificity, and serological properties. A comparison of the biochemical, physicochemical and biological properties of purified lectins from couch grass leaves and embryos, and wheat germ agglutinin revealed that the leaf lectin has the same molecular structure as the embryo lectins. It is a dimer composed of two identical subunits, which, however, are slightly larger than embryo lectin subunits. Structural differences between both couch grass lectins were further inferred from in vitro subunit exchange experiments and serological analyses. Whereas the embryo lectin readily forms heterodimers with embryo lectins from other cereal species and also is serologically indistinguishable from them, the leaf lectin does not exchange subunits with the same embryo lectins and is serologically different. In addition, couch grass leaf lectin exhibits specificity for N-acetylgalactosamine and agglutinates preferentially blood-group-A erythrocytes whereas the embryo lectin is not inhibited by N-acetylgalactosamine and exhibits no blood-group specificity. It was observed also that the lectin content of couch grass leaves varies enormously during the seasons.  相似文献   

4.
Two new mannose-binding lectins were isolated from garlic (Allium sativum, ASA) and ramsons (Allium ursinum, AUA) bulbs, of the family Alliaceae, by affinity chromatography on immobilized mannose. The carbohydrate-binding specificity of these two lectins was studied by quantitative precipitation and hapten-inhibition assay. ASA reacted strongly with a synthetic linear (1----3)-alpha-D-mannan and S. cerevisiae mannan, weakly with a synthetic (1----6)-alpha-D-mannan, and failed to precipitate with galactomannans from T. gropengiesseri and T. lactis-condensi, a linear mannopentaose, and murine IgM. On the other hand, AUA gave a strong reaction of precipitation with murine IgM, and good reactions with S. cerevisiae mannan and both synthetic linear mannans, suggesting that the two lectins have somewhat different binding specificities for alpha-D-mannosyl units. Of the saccharides tested as inhibitors of precipitation, those with alpha-(1----3)-linked mannosyl units were the best inhibitors of ASA, the alpha-(1----2)-, alpha-(1----4)-, and alpha-(1----6)-linked mannobioses and biosides having less than one eighth the affinity of the alpha-(1----3)-linked compounds. The N-terminal amino acid sequence of ASA exhibits 79% homology with that of AUA, and moderately high homology (53%) with that of snowdrop bulb lectin, also an alpha-D-mannosyl-binding lectin.  相似文献   

5.
A procedure developed to separate the homodimeric and heterodimeric mannose-binding lectins from bulbs of garlic (Allium sativum L.) and ramsons (Allium ursinum L.) also enabled the isolation of stable lectin-alliinase complexes. Characterization of the individual lectins indicated that, in spite of their different molecular structure, the homomeric and heteromeric lectins resemble each other reasonably well with respect to their agglutination properties and carbohydrate-binding specificity. However, a detailed analysis of the lectin-alliinase complexes from garlic and ramsons bulbs demonstrated that only the heterodimeric lectins are capable of binding to the glycan chains of the alliinase molecules (EC 4.4.1.4). Moreover, it appears that only a subpopulation of the alliinase molecules is involved in the formation of lectin-alliinase complexes and that the complexed alliinase contains more glycan chains than the free enzyme. Finally, some arguments are given that the lectin-alliinase complexes do not occur in vivo but are formed in vitro after homogenization of the tissue. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

6.
The insecticidal activity of the leaf (ASAL) and bulb (ASAII) agglutinins from Allium sativum L. (garlic) against the cotton leafworm, Spodoptera littoralis Boisd. (Lepidoptera: Noctuidae) was studied using transgenic tobacco plants expressing the lectins under the control of the constitutive CaMV35S promoter. PCR analysis confirmed that the garlic lectin genes were integrated into the plant genome. Western blots and semi-quantitative agglutination assays revealed lectin expression at various levels in the transgenic lines. Biochemical analyses indicated that the recombinant ASAL and ASAII are indistinguishable from the native garlic lectins. Insect bioassays using detached leaves from transgenic tobacco plants demonstrated that the ectopically expressed ASAL and ASAII significantly (P < 0.05) reduced the weight gain of 4th instar larvae of S. littoralis. Further on, the lectins retarded the development of the larvae and their metamorphosis, and were detrimental to the pupal stage resulting in weight reduction and lethal abnormalities. Total mortality was scored with ASAL compared to 60% mortality with ASAII. These findings suggest that garlic lectins are suitable candidate insect resistance proteins for the control of S. littoralis through a transgenic approach.  相似文献   

7.
A study of the distribution of lectins over different vegetative tissues of barley (Hordeum vulgare L.) plants, which were grown under normal crop conditions, indicated that lectin occurs in roots, leaves, and developing ears. Isolation and characterization of both root and leaf lectins led to the conclusions (a) that they are indistinguishable from the embryo lectin and (b) that the total lectin content of these vegetative organs is many times higher than that of the embryo. Finally, in vivo labeling experiments demonstrated that the lectin is synthesized de novo in roots and leaves.  相似文献   

8.
Secretion of a cytoplasmic lectin from Xenopus laevis skin   总被引:1,自引:0,他引:1       下载免费PDF全文
The skin of Xenopus laevis contains a soluble beta-galactoside-binding lectin with a approximately 16,000-mol-wt subunit. It resembles similar lectins purified from a variety of tissues from other vertebrates, and differs from two other soluble X. laevis lectins from oocytes and serum that bind alpha-galactosides. The skin lectin is concentrated in the cytoplasm of granular gland and mucous gland cells, as demonstrated by immunohistochemistry with the electron microscope. Upon injection with epinephrine, there is massive secretion of the cytoplasmic lectin from the granular gland cells.  相似文献   

9.
The distribution of lectin activity in soybean and peanut plants has been investigated. In both plants activity is found in all tissues examined (roots, shoots and leaves) at all stages of development from seedling to maturity (7 weeks). The cellular location of the lectins differs between soybean and peanut: in soybean the lectins are generally membrane-associated, whereas in peanut plants lectin activity is present also in the soluble cytoplasmic fraction. The membrane-associated lectins appear to differ from the seed lectins of the respective plants. The function of membrane-associated lectins is discussed.Abbreviations RCA lectin of castor bean - SBA soybean agglutinin - PNA peanut agglutinin - HEPES 2-[4-(2-Hydroxyethyl)-piperazinyl-(1)]ethanesulphonic acid - MES morpholinoethane sulphonic acid - PBS phosphate-buffered saline  相似文献   

10.
A galactose-specific and a mannose-specific lectin of the family of the jacalin-related lectins have been localized by immunofluorescence microscopy. The present localization studies provide for the first time unambiguous evidence for the cytoplasmic location of the mannose-specific jacalin-related lectin from rhizomes of Calystegia sepium, which definitely differs from the vacuolar location of the galactose-specific jacalin from Artocarpus integrifolia. These observations support the hypothesis that the galactose-specific jacalin-related lectins evolved from their mannose-specific homologues through the acquisition of vacuolar targeting sequences.  相似文献   

11.
The isolation of three lectins with similar N-terminal amino acid sequences from the bulbs of the Chinese daffodil Narcissus tazetta was achieved. The isolation protocol involved ion exchange chromatography on DEAE-cellulose, affinity chromatography on mannose-agarose, and fast protein liquid chromatography-gel filtration on Superose 12. The lectins were all adsorbed on mannose-agarose and demonstrated a single band with a molecular weight of 13 kDa in SDS-polyacrylamide gel electrophoresis and a single 26 kDa peak in gel filtration, indicating that they were mannose-binding, dimeric proteins. The lectins differed in hemagglutinating activity, with the magnitude of the activity correlating with the ionic strength of the buffer required to elute the lectin from the DEAE-cellulose column. The bulb lectin did not exert potent cytotoxicity against cancer cell lines or fetal bovine lung cells but inhibited syncytium formation in, and reinstated viability of, fetal bovine lung cells infected with bovine immunodeficiency virus.  相似文献   

12.
A complete cDNA encoding a potato tuber lectin has been identified and sequenced. Based on the deduced amino acid sequence, the still enigmatic molecular structure of the classical chimeric potato lectin could eventually be determined. Basically, the potato lectin consists of two nearly identical chitin-binding modules, built up of two in-tandem arrayed hevein domains that are interconnected by an extensin-like domain of approximately 60 amino acid residues. Although this structure confirms the 'canonical' chimeric nature of the Solanaceae lectins, it differs fundamentally from all previously proposed models. The new insights in the structure are also discussed in view of the physiological role of the Solanaceae lectins.  相似文献   

13.
Leaves from mature Griffonia simplicifolia plants were examined for the presence of leaf lectins possessing sugar binding specificities similar to the four known seed lectins (GS-I, GS-II, GS-III, GS-IV). Three (GS-I, -II, -IV) of the four known G. simplicifolia seed lectins were present in the leaves. Leaf G. simplicifolia lectins I and IV were similar to the respective seed lectins. Leaf GS-II, however, was composed of two types of subunits (Mr = 33,000 and 19,000), whereas the seed lectin consists of only one type of subunit (Mr 32,500). Seed and leaf GS-II lectins also had different isoelectric points. All leaf and seed lectins were similar with respect to their hemagglutination and glycoconjugate precipitation properties and all subunits contained covalently bound carbohydrate. Leaf GS-IV appeared slightly under-glycosylated compared to seed GS-IV.

The fate of GS-I and GS-II seed lectins in aging cotyledons was investigated. GS-I isolectins usually contain isolectin subtypes associated with each main isolectin. Upon inbibition and germination, these GS-I isolectin subtypes disappeared. Over time, GS-II lectin did not change its disc gel electrophoretic properties.

  相似文献   

14.
An N-acetylgalactosamine-specific lectin has been isolated from root stocks of Bryonia dioica by affinity chromatography on fetuin-agarose. It is a dimeric protein composed of two different subunits of relative molecular masses 32,000 and 30,000, held together by intermolecular disulphide bonds. Although most abundant in root stocks, the lectin occurs in all vegetative parts of the plant but not in seeds. Bryony lectin differs from other Cucurbitaceae lectins and from all known N-acetylgalactosamine-specific lectins.Abbreviations BDA Bryonia dioica agglutinin - Mr relative molecular mass - PBS phosphate-buffered saline - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

15.
《Plant science》1987,48(2):79-88
Phaseolus vulgaris L. cv. ‘garrafal encarnada’ plants have been utilized to study the distribution of lectins accumulated in the seeds and through the life cycle of the plant.The distribution of both, total proteins and lectins was studied in aqueous and saline (1 M NaCl) extracts from different parts and organs in four distinct stages of plant development.Our results showed that lectin concentration decreases sharply during the first weeks of the plant growth, reaching the lowest value in trifoliate leaf stage and increasing during the following phases of plant development. However, the presence of lectins have been detected in all the plant tissues through every phase of the life cycle.The observed differences on lectin levels (RIA) and lectin activity (hemagglutination), suggest the presence of different molecular forms of the lectin in aqueous and saline extracts of plant tissues.These results, as well as the observation about the fixation of lectin on the bacterial surface, support the idea that the function of lectins in the plant may not be limited to storage proteins, but may be involved in specific host-parasite recognition.  相似文献   

16.
Several aspects of the interaction of various lectins with the surface of Ehrlich ascites carcinoma cells are described. The order of agglutinating activity for various lectins is Ricinus communis greater than wheat germ greater than or equal to concanavalin A greater than or equal to soybean greater than Limulus polyphemus. No agglutination was noted for Ulex europaeus. Using 125I-labeled lectins it was determined that there are 1.6 and 7 times as many Ricinus communis lectin binding sites for concanavalin A and soybean lectins. Sodium deoxycholate-solubilized plasma membrane material was subjected to lectin affinity chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The lectin receptors of the plasma membrane appeared to be heterogeneous and some qualitative differences could be discerned among the electrophoretically analyzed material, which bound to and was specifically eluted from the various lectin affinity columns. The characteristics of elution of bound material from individual lectin columns indicated secondary hydrophobic interactions between concanavalin A or wheat germ agglutinin and their respective lectin receptor molecules.  相似文献   

17.
In this paper we report on the molecular cloning, sequencing and partially characterisation of a lectin from bulb of the Chinese medicinal plant Zephyranthes grandiflora. The full-length cDNA of Z. grandiflora bulb lectin (ZGBL) consisted of 986 bp and contained a 576 bp ORF encoding a 191 amino acid protein. Bioinformatics analysis results clearly indicate that ZGBL belongs to the monocot mannose-binding lectin family, which contains 3 putative mannose-binding sites per subunit. RT-PCR analysis results indicate that ZGBL is constitutively expressed in all the tested tissue types including root, bulb, leaf and flower. Interestingly, ZGBL is more closely related to the Orchidaceae rather than the Amaryllidaceae family on molecular evolution.  相似文献   

18.
Two lectins, Leaf Lectin I and Leaf Lectin II (LLI and LLII) were purified from the leaves of Sophora japonica. Like the Sophora seed lectin, LLI and LLII are tetrameric glycoproteins containing a single subunit with respect to size. The subunits of LLI (32 kilodaltons) and LLII (34 kilodaltons) are slightly larger than those of the seed lectin (29.5 kilodaltons). The three Sophora lectins display indistinguishable specificities, amino acid compositions, specific hemagglutinin activities, and extinction coefficients. Although very closely related to the seed lectin, the leaf and seed lectins are not immunologically identical and they differ in subunit molecular weights, carbohydrate content, and in the pH sensitivity of their hemagglutinin activities. N-terminal amino acid sequence analysis shows that although they are homologous proteins, the three Sophora lectins are products of distinct genes.  相似文献   

19.
Full-length cDNA of a mannose-binding lectin or agglutinin gene was cloned from a traditional Chinese medicinal herb Crinum asiaticum var. sinicum through RACE-PCR cloning. The full-length cDNA of C. asiaticum agglutinin (caa) was 820 bp and contained a 528 bp open reading frame encoding a lectin precursor (preproprotein) of 175 amino acid residues with a 22 aa signal peptide. The coding region of the caa gene was high in G/C content. The first 20 bp of the 5' UTR had a dC content of 50%, which was a typical feature of the leader sequence. By cutting away the signal peptide, the CAA proprotein was 15.79 kDa with a pl of 9.27 and contained 3 mannose-binding sites (QDNY). Random coil and extended strand constituted interlaced domination of the main part of the secondary structure. B-lectin conserved domain existed within N24 to G130. Predicted three-dimensional structure of CAA proprotein was very similar to that of GNA (Galanthus nivalis agglutinin). It is significant that besides certain homologies to known monocot mannose-binding lectins from Amaryllidaceae, Orchidaceae, Alliaceae and Liliaceae, caa also showed high similarity to gastrodianin type antifungal proteins. No intron was detected within the region of genomic sequence corresponding to the caa full-length cDNA. Southern blot analysis indicated that the caa gene belonged to a low-copy gene family. Northern blot analysis demonstrated that caa mRNA was constitutively expressed in all the tested tissue types including the root, bulb, leaf, rachise, flower and fruit tissues.  相似文献   

20.
Previous studies have shown that the Dolichos biflorus plant contains a lectin in its stems and leaves, called DB58, that is closely related to the D. biflorus seed lectin. DB58 is a heterodimer composed of two closely related subunits. Immunoprecipitation of total translation products from D. biflorus stem and leaf mRNA suggests a single polypeptide precursor for both of these subunits. Several identical cDNA clones representing the entire coding region of the DB58 mRNA have been isolated from a D. biflorus stem and leaf cDNA library. The DB58 cDNA represents an mRNA encoding a polypeptide of Mr = 29,545. The predicted polypeptide is equal in length to the larger subunit of DB58 with the addition of a 22-amino acid amino-terminal signal sequence. The sequence of the DB58 lectin exhibits 84% homology to the D. biflorus seed lectin at the amino acid level, suggesting that these lectins are encoded by differentially expressed genes and may have evolved to carry out tissue-specific functions. Comparison of the DB58 sequence to other leguminous seed lectins indicates a high degree of structural conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号