共查询到20条相似文献,搜索用时 15 毫秒
1.
Ndao M Dutta K Bromley KM Lakshminarayanan R Sun Z Rewari G Moradian-Oldak J Evans JS 《Protein science : a publication of the Protein Society》2011,20(4):724-734
Amelogenins are an intrinsically disordered protein family that plays a major role in the development of tooth enamel, one of the most highly mineralized materials in nature. Monomeric porcine amelogenin possesses random coil and residual secondary structures, but it is not known which sequence regions would be conformationally attractive to potential enamel matrix targets such as other amelogenins (self-assembly), other matrix proteins, cell surfaces, or biominerals. To address this further, we investigated recombinant porcine amelogenin (rP172) using "solvent engineering" techniques to simultaneously promote native-like structure and induce amelogenin oligomerization in a manner that allows identification of intermolecular contacts between amelogenin molecules. We discovered that in the presence of 2,2,2-trifluoroethanol (TFE) significant folding transitions and stabilization occurred primarily within the N- and C-termini, while the polyproline Type II central domain was largely resistant to conformational transitions. Seven Pro residues (P2, P127, P130, P139, P154, P157, P162) exhibited conformational response to TFE, and this indicates these Pro residues act as folding enhancers in rP172. The remaining Pro residues resisted TFE perturbations and thus act as conformational stabilizers. We also noted that TFE induced rP172 self-association via the formation of intermolecular contacts involving P4-H6, V19-P33, and E40-T58 regions of the N-terminus. Collectively, these results confirm that the N- and C-termini of amelogenin are conformationally responsive and represent potential interactive sites for amelogenin-target interactions during enamel matrix mineralization. Conversely, the Pro, Gln central domain is resistant to folding and this may have important functional significance for amelogenin. 相似文献
2.
Rajamani Lakshminarayanan Il Yoon Balachandra G. Hegde Daming Fan Chang Du Janet Moradian‐Oldak 《Proteins》2009,76(3):560-569
Amelogenin is a proline‐rich enamel matrix protein known to play an important role in the oriented growth of enamel crystals. Amelogenin self‐assembles to form nanospheres and higher order structures mediated by hydrophobic interactions. This study aims to obtain a better insight into the relationship between primary–secondary structure and self‐assembly of amelogenin by applying computational and biophysical methods. Variable temperature circular dichroism studies indicated that under physiological pH recombinant full‐length porcine amelogenin contains unordered structures in equilibrium with polyproline type II (PPII) structure, the latter being more populated at lower temperatures. Increasing the concentration of rP172 resulted in the promotion of folding to an ordered β‐structured assembly. Isothermal titration calorimetry dilution studies revealed that at all temperatures, self‐assembly is entropically driven due to the hydrophobic effect and the molar heat of assembly (ΔHA) decreases with temperature. Using a computational approach, a profile of domains in the amino acid sequence that have a high propensity to assemble and to have PPII structures has been identified. We conclude that the assembly properties of amelogenin are due to complementarity between the hydrophobic and PPII helix prone regions. Proteins 2009. © 2009 Wiley‐Liss, Inc. 相似文献
3.
Garry W. Buchko Barbara J. Tarasevich Jacky Roberts Malcolm L. Snead Wendy J. Shaw 《Biochimica et Biophysica Acta - Proteins and Proteomics》2010,1804(9):1768-1774
Amelogenins are the dominant proteins present in ameloblasts during the early stages of enamel biomineralization, making up > 90% of the matrix protein. Along with the full-length protein there are several splice-variant isoforms of amelogenin present including LRAP (Leucine-Rich Amelogenin Protein), a protein that consists of the first 33 and the last 26 residues of full-length amelogenin. Using solution-state NMR spectroscopy we have assigned the 1H-15N HSQC spectrum of murine LRAP (rp(H)LRAP) in 2% acetic acid at pH 3.0 by making extensive use of previous chemical shift assignments for full-length murine amelogenin (rp(H)M180). This correlation was possible because LRAP, like the full-length protein, is intrinsically disordered under these solution conditions. The major difference between the 1H-15N HSQC spectra of rp(H)M180 and rp(H)LRAP was an additional set of amide resonances for each of the seven non-proline residues between S12* and Y12 near the N-terminus of rp(H)LRAP indicating that the N-terminal region of LRAP exists in two different conformations. Analysis of the proline carbon chemical shifts suggests that the molecular basis for the two states is not a cis-trans isomerization of one or more of the proline residues in the N-terminal region. Starting from 2% acetic acid, where rp(H)LRAP was monomeric in solution, NaCl addition effected residue specific changes in molecular dynamics manifested by the reduction in intensity and disappearance of 1H-15N HSQC cross peaks. As observed for the full-length protein, these perturbations may signal early events governing supramolecular self-assembly of rp(H)LRAP into nanospheres. However, the different patterns of 1H-15N HSQC cross peak perturbation between rp(H)LRAP and rp(H)M180 in high salt suggest that the termini may behave differently in their respective nanospheres, and perhaps, these differences contribute to the cell signaling properties attributable to LRAP but not to the full-length protein. 相似文献
4.
Selection and self-assembly of organic compounds in aqueous phases must have been a primary process leading to emergent molecular
complexity and ultimately to the origin of life. Facile reactions of pyruvic acid under hydrothermal conditions produce a
complex mixture of larger organic molecules, some of which are amphiphiles that readily self-assemble into cell-sized vesicular
structures. Chemical characterization of major components of this mixture reveals similarities to the suite of organic compounds
present in the Murchison carbonaceous chondrite, some of whose molecules also self-assemble into membranous vesicles. Physical
properties of the products are thus relevant to understanding the prebiotic emergence of molecular complexity. These results
suggest that a robust family of prebiotic reaction pathways produces similar products over a range of geochemical and astrochemical
environments. 相似文献
5.
At the secretory stage of tooth enamel formation the majority of the organic matrix is composed of amelogenin proteins that are believed to provide the scaffolding for the initial carbonated hydroxyapatite crystals to grow. The primary objective of this study was to investigate the interaction between amelogenins and growing apatite crystals. Two in vitro strategies were used: first, we examined the influence of amelogenins as compared to two other macromolecules, on the kinetics of seeded growth of apatite crystals; second, using transmission electron micrographs of the crystal powders, based on a particle size distribution study, we evaluated the effect of the macromolecules on the aggregation of growing apatite crystals. Two recombinant amelogenins (rM179, rM166), the synthetic leucine-rich amelogenin polypeptide (LRAP), poly(L -proline), and phosvitin were used. It was shown that the rM179 amelogenin had some inhibitory effect on the kinetics of calcium hydroxyapatite seeded growth. The inhibitory effect, however, was not as destructive as that of other macromolecules tested. The degree of inhibition of the macromolecules was in the order of phosvitin < LRAP < poly(L -proline) < rM179 < rM166. Analysis of particle size distribution of apatite crystal aggregates indicated that the full-length amelogenin protein (rM179) caused aggregation of the growing apatite crystals more effectively than other macromolecules. We propose that during the formation of hydroxyapatite crystal clusters, the growing apatite crystals adhere to each other through the molecular self-association of interacting amelogenin molecules. The biological implications of this adherence effect with respect to enamel biomineralization are discussed. © 1998 John Wiley & Sons, Inc. Biopoly 46: 225–238, 1998 相似文献
6.
Wen-Hsiung Liu Teruhiko Beppu Kei Arima 《Bioscience, biotechnology, and biochemistry》2013,77(11):1919-1924
The cultural conditions for the production of thermostable lipase by a thermophilic fungus Humicola lanuginosa S-38 were investigated. The optimal cultural conditions to obtain the maximum yield of thermostable lipase with a 600-liter stainless steel fermentor were as follows: optimal medium- 2.0% soluble starch, 5.0% corn steep liquor, 0.2% K2HPO4, 0.1% MgSO4·7H2O, 0.5% CaCO3, 0.5% soybean oil, 0.005% deforming agent (Adecanol LG-109); optimal fermentation conditions- temperature 45°C; rate of agitation 300 rpm; initial pH 7.0; rate of aeration 1/1 volume per volume of medium per minute. The optimal pH of the crude lipase preparation for the hydrolysis of the polyvinyl alcohol-emulsified olive oil was 8.0 and the optimal temperature was 60°C. It retained 100% of activity with the heat treatment at 60°C for 2 hr, but at 70°C for 20 min only 35% activity retained. 相似文献
7.
A model approach is developed to study intermediate steps and transientstructures in a course of the membrane self-assembly. The approach isbased on investigation of mixed lipid/protein-detergent systems capable ofthe temperature induced transformation from a solubilized micellar stateto closed membrane vesicles. We performed a theoretical analysis ofself-assembling molecular structures formed in binary mixtures ofdimyristoylphosphatidylcholine (DMPC) and sodium cholate (NaC). Thetheoretical model is based on the Helfrich theory of curvature elasticity,which relates geometrical shapes of the structures to their free energy inthe Ginzburg-Landau approximation. The driving force for the shapetransformation is spontaneous curvature of amphiphilic aggregates which isnonlinearly dependent on the lipid/detergent composition. An analysis ofthe free energy in the regular solution approximation shows that theformation of mixed structures of different shapes (discoidal micelles,rod-like micelles, multilayer membrane structures and vesicles) ispossible in a certain range of detergent/lipid ratios. A transition fromthe flat discoidal micelles to the rod-like cylindrical micelles isinduced by curvature instabilities resulting from acyl chain melting andinsertion of detergent molecules into the lipid phase. Nonideal mixing ofthe NaC and DMPC molecules results in formation of nonideal cylindricalaggregates with elliptical cross section. Further dissolution of NaCmolecules in DMPC may be accompanied with a change of their orientation inthe lipid phase and leads to temperature-induced curvature instabilitiesin the highly curved cylindrical geometry. As a result the rod-likemicelles fuse into less curved bilayer structures which transformeventually to the unilamellar and multilamellar membrane vesicles. Thetheoretical analysis performed shows that a sequence of shapetransformations in the DMPC/NaC mixed systems is determined by thesynergism of four major factors: detergent/lipid ratio, temperature (acylchain melting), DMPC and NaC mixing, and reorientation of NaC molecules inmixed aggregates. 相似文献
8.
《Journal of molecular recognition : JMR》2017,30(6)
The interaction of a recently certified kinase inhibitor Tofacitinib (TFB) with bovine serum albumin (BSA) has been studied, by spectroscopic and molecular docking studies. Spectrofluorimetric measurements at 3 different temperatures (288, 298, and 310 K) showed that TFB quench the intrinsic fluorescence of BSA upon forming a nonfluorescent complex. The intrinsic fluorescence data showed that TFB binds to BSA with binding constant (K b) of approximately 104M−1, affirming a significant affinity of TFB with BSA. The decrease in Stern‐Volmer quenching constant with increasing temperature exhibited the static mechanism of quenching. Negative value of ΔG (−6.94 ± 0.32 kcal·mol−1), ΔH (−7.87 ± 0.52 kcal·mol−1), and ΔS (−3.14 ± 0.42 cal·mol−1·K−1) at all 3 temperatures declared the reaction between BSA and TFB to be spontaneous and exothermic. Far‐UV circular dichroism spectroscopy results demonstrated an increase in helical content of BSA in the presence of TFB. Moreover, dynamic light scattering measurements showed that TFB resulted into a decrease in the hydrodynamic radii (from 3.6 ± 0.053 to 2.9 ± 0.02 nm) of BSA. Molecular docking studies confirmed that TFB binds near site II on BSA, hydrogen bonding, and hydrophobic interaction were involved in the BSA‐TFB complex formation. The present study characterizing the BSA‐TFB interaction could be significant towards gaining an insight into the drug pharmacokinetics and pharmacodynamics and also in the direction of rational drug designing with better competence, against emerging immune‐mediated diseases, ie, alopecia and rheumatoid arthritis. 相似文献
9.
人体尿液中血清白蛋白急剧增加会导致肾脏病发生几率增大,利用动态光散射技术(dynamic light scattering,DLS)研究人血清白蛋白有助于推动诊断肾脏病的早期发现。分析了人血清白蛋白的物理模型;利用单模光纤搭建了动态光散射实验系统,并配制了实验所需的人血清白蛋白水溶液;最后使用该系统研究了人血清白蛋白分子的扩散系数在不同蛋白浓度和pH值条件下的扩散系数。实验和分析结果表明库仑力对蛋白质的扩散起主要作用,在等电位点下(pH=5.2)库仑力的影响消失,蛋白质的扩散系数最小;在等电位点测量出扩散系数随浓度的增加而线性减小;在浓度5 mg/mL~40 mg/mL内互扩散系数Dm=D0[1-(0.00194±0.00008)],D0=(6.74±0.01)×10-7cm2/s为外推至零浓度下23℃时蛋白质的扩散系数。这里C为蛋白质浓度,实验测得人血清白蛋白的半径为(3.44±0.01)nm。 相似文献
10.
抗ErbB2嵌合抗体chA21聚集现象的鉴定和分析 总被引:1,自引:0,他引:1
聚集现象是目前基因重组抗体面临的挑战之一.采用高效排阻色谱(HPSEC)、动态光散射(DLS)、SDS-PAGE和间接ELISA鉴定抗ErbB2嵌合抗体chA21聚集的形式和性质,并比较温度和添加剂对抗体聚集程度,抗原结合活性的影响,用圆二色谱(CD)检测不同聚集条件下蛋白构象的变化,最后将抗体酶解分离分析聚集的部位.结果表明:chA21在溶液中可形成二聚和更高形式的聚集,聚集体是通过非共价键相互作用形成,并仍保留抗原结合活性,聚集程度和活性受温度和添加剂影响,而蛋白质的构象相对稳定,抗体可变区的相互作用可能是引起聚集的主要原因之一.对抗体聚集现象的分析有助于建立稳定的抗体保存条件,并为今后抗体进一步改造提供依据. 相似文献
11.
Molecular imprinting is a powerful synthetic technique for generating template-defined binding sites in cross-linked polymers. One scientific challenge in molecular imprinting research is to understand the intermolecular interactions leading to molecular complexation and the process of binding site formation during polymerization. In this work, we present a novel method for studying the molecular imprinting process in precipitation polymerization systems. This method employs solution (1) H NMR and dynamic light scattering (DLS) to investigate the association of template molecules with colloidal particles and the dynamic process of particle growth. Under precipitation polymerization conditions, the colloidal particles formed did not interfere with NMR signals from the soluble components, allowing unreacted monomers and free template to be easily quantified. To examine the process of particle nucleation and growth, DLS was used to measure the hydrodynamic particle size at different reaction times. To corroborate the interpretation of the NMR and DLS results, imprinted nanoparticles were collected at different reaction times and their binding characteristics were evaluated using radioligand-binding analysis. Our experimental results provide new insights into the molecular imprinting process that will be useful in the development of new imprinted nanoparticles. 相似文献
12.
We have recently reported the crystallization of the reaction center of Photosystem II in the presence of detergent mixtures
[Adir N (1999) Acta Crystallogr D Biol Crystallogr D55: 891–894]. We have used high performance liquid chromatography, dynamic
light scattering, native gel electrophoresis and thermoluminescence measurements to characterize the interaction between these
detergent mixtures and RC II, to try and understand their role in the crystallization process. Size exclusion HPLC and dynamic
light scattering confirmed that the isolated RC II used for crystallization was exclusively monomeric. Dynamic light scattering
measurements show that the detergent mixtures formed single micelles within a limited range of hydrodynamic radii. Both size
exclusion HPLC and dynamic light scattering were used to follow the interaction between the detergent mixtures and monomeric
RC II. These techniques revealed a decrease in the detergent mixture treated RC II particle size (with respect with the untreated
RC II), and that RC II from solubilized crystals contained particles of the same size. Native gel electrophoresis showed that
this change in apparent size is not due to the disintegration of the internal structure of the RC II complex. Thermoluminescence
measurements of solubilized RC II crystals showed charge recombination from the S2,3QA
− state, indicating that RC II remains functionally viable following detergent mixture treatment and crystallization. The role
of the detergent mixtures in the crystallization of RC II is discussed.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
13.
Bugs MR Forato LA Bortoleto-Bugs RK Fischer H Mascarenhas YP Ward RJ Colnago LA 《European biophysics journal : EBJ》2004,33(4):335-343
Biophysical methods and structural modeling techniques have been used to characterize the prolamins from maize (Zea mays) and pearl millet (Pennisetum americanum). The alcohol-soluble prolamin from maize, called zein, was extracted using a simple protocol and purified by gel filtration in a 70% ethanol solution. Two protein fractions were purified from seed extracts of pearl millet with molecular weights of 25.5 and 7 kDa, as estimated by SDS-PAGE. The high molecular weight protein corresponds to pennisetin, which has a high -helical content both in solution and the solid state, as demonstrated by circular dichroism and Fourier transform infrared spectra. Fluorescence spectroscopy of both fractions indicated changes in the tryptophan microenvironments with increasing water content of the buffer. Low-resolution envelopes of both fractions were retrieved by ab initio procedures from small-angle X-ray scattering data, which yielded maximum molecular dimensions of about 14 nm and 1 nm for pennisetin and the low molecular weight protein, respectively, and similar values were observed by dynamic light scattering experiments. Furthermore, 1H nuclear magnetic resonance spectra of zein and pennisetin do not show any signal below 0.9 ppm, which is compatible with more extended solution structures. The molecular models for zein and pennisetin in solution suggest that both proteins have an elongated molecular structure which is approximately a prolate ellipsoid composed of ribbons of folded -helical segments with a length of about 14 nm, resulting in a structure that permits efficient packing within the seed endosperm. 相似文献
14.
Understanding the heterogeneity of the soluble oligomers and protofibrillar structures that form initially during the process of amyloid fibril formation is a critical aspect of elucidating the mechanism of amyloid fibril formation by proteins. The small protein barstar offers itself as a good model protein for understanding this aspect of amyloid fibril formation, because it forms a stable soluble oligomer, the A form, at low pH, which can transform into protofibrils. The mechanism of formation of protofibrils from soluble oligomer has been studied by multiple structural probes, including binding to the fluorescent dye thioflavin T, circular dichroism and dynamic light scattering, and at different temperatures and different protein concentrations. The kinetics of the increase in any probe signal are single exponential, and the rate measured depends on the structural probe used to monitor the reaction. Fastest is the rate of increase in the mean hydrodynamic radius, which grows from a value of 6 nm for the A form to 20 nm for the protofibril. Slower is the rate of increase in thioflavin T binding capacity, and slowest is the rate of increase in circular dichroism at 216 nm, which occurs at about the same rate as that of the increase in light scattering intensity. The dynamic light scattering measurements suggest that the A form transforms completely into larger size aggregates at an early stage during the aggregation process. It appears that structural changes within the aggregates occur at the late stages of assembly into protofibrils. For all probes, and at all temperatures, no initial lag phase in protofibril growth is observed for protein concentrations in the range of 1 microM to 50 microM. The absence of a lag phase in the increase of any probe signal suggests that aggregation of the A form to protofibrils is not nucleation dependent. In addition, the absence of a lag phase in the increase of light scattering intensity, which changes the slowest, suggests that protofibril formation occurs through more than one pathway. The rate of aggregation increases with increasing protein concentration, but saturates at high concentrations. An analysis of the dependence of the apparent rates of protofibril formation, determined by the four structural probes, indicates that the slowest step during protofibil formation is lateral association of linear aggregates. Conformational conversion occurs concurrently with lateral association, and does so in two steps leading to the creation of thioflavin T binding sites and then to an increase in beta-sheet structure. Overall, the study indicates that growth during protofibril formation occurs step-wise through progressively larger and larger aggregates, via multiple pathways, and finally through lateral association of critical aggregates. 相似文献
15.
Comparison of the structure of ribosomal 5S RNA from E. coli and from rat liver using X-ray scattering and dynamic light scattering 总被引:2,自引:0,他引:2
J. J. Müller T. N. Zalkova D. Ziwer R. Misselwitz K. Gast I. N. Serdyuk H. Welfle G. Damaschun 《European biophysics journal : EBJ》1986,13(5):301-307
The structures of eukaryotic ribosomal 5S RNA from rat liver and of prokaryotic 5S RNA from E. coli (A-conformer) have been investigated by scattering methods. For both molecules, a molar mass of 44,500±4,000 was determined from small angle X-ray scattering as well as from dynamic light scattering. The shape parameters of the two rRNAs, volume V
c, surface O
c, radius of gyration R
s, maximum dimension of the molecule L, thickness D, and cross section radius of gyration R
sq, agree within the experimental error limits. The mean values are V
c=57±3 nm3, O
c=165±10 nm2, R
s=3.37±0.05 nm, L=10.8±0.7 nm, D=1.57±0.07 nm, R
sa=0.92±0.01 nm.Identical structures for the E. coli 5S rRNA and the rat liver 5S rRNA at a resolution of 1 nm can be deduced from this agreement and from the comparison of experimental X-ray scattering curves and of experimental electron distance distribution function. The flat shape model derived for prokaryotic and eukaryotic 5S rRNA shows a compact region and two protruding arms. Double helical stems are eleven-fold helices with a mean base pair distance of 0.28 nm. Combining the shape information obtained from X-ray scattering with the information about the frictional behaviour of the molecules, deduced from the diffusion coefficients D
20,w
0
=(5.9±0.2)·10-7 cm2s-1 and (6.2±0.2)·10-7 cm2s-1 for rat liver 5S rRNA and E. coli 5S rRNA, respectively, a solvation shell of about 0.3 nm thickness around both molecules is determined. This structural similarity and the consensus secondary structure pattern derived from comparative sequence analyses suggest that all 5S rRNAs may indeed have conserved essentially the same type of folding of their polynucleotide strands during evolution, despite having very different sequences. 相似文献
16.
This study describes the hydrodynamic properties of the repetitive domain of high molecular weight (HMW) wheat proteins, which complement the small-angle scattering (SANS) experiments performed in the first paper of this series. The sedimentation coefficients, s(0), and diffusion coefficients, D(0), were obtained from the homologous HMW proteins dB1 and dB4 that were cloned from the gluten protein HMW Dx5, and expressed in Escherichia coli. Monodisperse conditions for accurate determination of s(0) and D(0), were obtained by screening a series of buffers using dynamic light scattering. For the first time, hydrodynamic parameters were obtained on monodisperse samples that enabled the determination of the monomeric size and shape. The hydrodynamic values determined on dB1 and dB4 were used to test the worm-like chain (WLC) model that was proposed in the SANS studies. The successful matching of two separately obtained hydrodynamic parameters of dB1 and dB4 using the WLC model provides further evidence for the WLC model. The small discrepancy between the hydrodynamic and scattering data, possibly coming from the excluded volume effect, was compensated by a solvation layer of 1-2 water molecules thick around the protein in the WLC model. The solvation of the central domain is much higher than those of the terminal domains of the HMW subunits. This difference emphasizes the dual role of HMW wheat gluten proteins in water-binding and aggregation. 相似文献
17.
The article presents translational and rotational diffusion coefficients of 5S rRNA determined experimentally by the method of dynamic light scattering (DLS) and its comparison with the values predicted for different models of this molecule. The tertiary structure of free 5S rRNA was proposed on the basis of the atomic structures of the 5S rRNA from E. coli and H. marismortui extracted from the ribosome. A comparison of the values of DT, tauR, and Rg predicted for different models with experimental results for the free molecule in solution suggests that free 5S rRNA is less compact than that in the complex with ribosomal proteins. In general, the molecules of 5S rRNA consist of three domains: a short one and two longer ones. As follows from a comparison of the results of our simulations with experimental values, in the molecule in solution the two closest helical fragments of the longer domains remain collinear, whereas the short domain takes a position significantly deviated from them. 相似文献
18.
Dynamic light scattering measurements have been made on 15 fractions of aeromonas (A) gum, an extracellular heteropolysaccharide produced by the strain Aeromonas nichidenii, with dimethylsulfoxide containing 0.2M lithium chloride as the solvent at 25 degrees C. Data for the translational diffusion coefficient D covering a molecular weight range from 4.5 x 10(5) to 2.1 x 10(6) and ratios of the z-average radius of gyration (z) (1/2) to the hydrodynamic radius R(H) (calculated with previous (z) data) suggest that the polymer behaves like a semiflexible chain in this solvent similar to the stiffness of cellulose derivatives. Thus the D data are analyzed on the basis of the Yamakawa-Fujii theory for the translational friction coefficient of a wormlike cylinder by coarse-graining the heteropolysaccharide molecule. Excluded-volume effects are taken into account in the quasi-two-parameter scheme, as was done previously for (z) and [eta] (the intrinsic viscosity) of A gum in the same solvent. The molecular weight dependence of R(H) is found to be explained by the perturbed wormlike chain with a persistence length of 10 nm, a linear mass density of 1350 nm(-1), an excluded-volume strength parameter of 1.3 nm, and a chain diameter of 2.8 nm. These parameters are in substantial agreement with those estimated previously from (z) and [eta] data, demonstrating that the solution properties (D, (z), and [eta]) of the heteropolysaccharide are almost quantitatively described by the current theories for wormlike chains in the molecular weight range studied. 相似文献
19.
Using a combination of static and dynamic laser light scattering, we investigated the complexation of a supercoiled plasmid DNA (pDNA, 104 bp) and a branched polyethyleneimine (bPEI, Mw = 25 kD) in semidilute and low‐salt aqueous solutions. Our results unearth some scaling laws for dynamic and structural properties of the resultant complexes (polyplexes) with different bPEI:pDNA (N:P) molar ratios. Namely, the average scattering intensity (<I>) and the average linewidth of the Rayleigh peak (<Γ>) are scaled to the scattering vector (q) as <I> ∝ q or <Γ> ∝ q, where αS and αD are two N:P dependent scaling exponents. The N:P ratio strongly affects the complexation. When N:P < 2.0, the motions of the negatively charged and extended pDNA chains and the polyplexes are highly correlated so that they behave like a transient network with a fractal dimension. As the N:P ratio increases, nearly all of pDNA chains condensed and the overall charge of the polyplexes reverses to slightly positive, resulting in a turbid dispersion of large loose aggregates made of smaller, but more compact, polyplexes. Further increase of N:P finally disrupts large loose aggregates, leading to a homogeneous transparent dispersion of the polyplexes. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 571–577, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com 相似文献
20.
Various molecular parameters, which characterize sodium hyaluronate in 0.2M NaCl solution, were obtained at 25°C by means of the static and dynamic light scattering and low shear viscometry over the molecular weight range of 5.94–627 × 104. Molecular weight distribution was obtained by using the Laplace inversion method of the autocorrelation function of the scattered light intensity and by Yamakawa theory for the wormlike chain with the stiff chain parameters for sodium hyaluronate in 0.2M NaCl (persistence length, chain diameter, molar mass per unit contour length, and the excluded‐volume strength). The molecular weight distribution thus obtained reproduced the solution properties of sodium hyaluronate well. Especially, the intrinsic viscosity showed a good agreement over four orders of molecular weight with Yamakawa theory combined with the Barrett function. Sodium hyaluronate in 0.2M NaCl solution is well expressed by the wormlike chain model affected by the excluded‐volume effect with the persistence length of 4.2 nm. © 1999 John Wiley & Sons, Inc. Biopoly 50: 87–98, 1999 相似文献