首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have identified a new Dictyostelium p21-activated protein kinase, PAKc, that we demonstrate to be required for proper chemotaxis. PAKc contains a Rac-GTPase binding (CRIB) and autoinhibitory domain, a PAK-related kinase domain, an N-terminal phosphatidylinositol binding domain, and a C-terminal extension related to the Gbetagamma binding domain of Saccharomyces cerevisiae Ste20, the latter two domains being required for PAKc transient localization to the plasma membrane. In response to chemoattractant stimulation, PAKc kinase activity is rapidly and transiently activated, with activity levels peaking at approximately 10 s. pakc null cells exhibit a loss of polarity and produce multiple lateral pseudopodia when placed in a chemoattractant gradient. PAKc preferentially binds the Dictyostelium Rac protein RacB, and point mutations in the conserved CRIB that abrogate this binding result in misregulated kinase activation and chemotaxis defects. We also demonstrate that a null mutation lacking the PAK family member myosin I heavy chain kinase (MIHCK) shows mild chemotaxis defects, including the formation of lateral pseudopodia. A null strain lacking both PAKc and the PAK family member MIHCK exhibits severe loss of cell movement, suggesting that PAKc and MIHCK may cooperate to regulate a common chemotaxis pathway.  相似文献   

2.
RSK1, a downstream kinase of the MAPK pathway, has been shown to regulate multiple cellular processes and is essential for lytic replication of a variety of viruses, including Kaposi’s sarcoma-associated herpesvirus (KSHV). Besides phosphorylation, it is not known whether other post-translational modifications play an important role in regulating RSK1 function. We demonstrate that RSK1 undergoes robust SUMOylation during KSHV lytic replication at lysine residues K110, K335, and K421. SUMO modification does not alter RSK1 activation and kinase activity upon KSHV ORF45 co-expression, but affects RSK1 downstream substrate phosphorylation. Compared to wild-type RSK1, the overall phosphorylation level of RxRxxS*/T* motif is significantly declined in RSK1K110/335/421R expressing cells. Specifically, SUMOylation deficient RSK1 cannot efficiently phosphorylate eIF4B. Sequence analysis showed that eIF4B has one SUMO-interacting motif (SIM) between the amino acid position 166 and 170 (166IRVDV170), which mediates the association between eIF4B and RSK1 through SUMO-SIM interaction. These results indicate that SUMOylation regulates the phosphorylation of RSK1 downstream substrates, which is required for efficient KSHV lytic replication.  相似文献   

3.
The CXC subfamily of chemokines plays an important role in diverse processes, including inflammation, wound healing, growth regulation, angiogenesis, and tumorigenesis. The CXC chemokine CXCL1, or MGSA/GROalpha, is traditionally considered to be responsible for attracting leukocytes into sites of inflammation. To better understand the molecular mechanisms by which CXCL1 induces CXCR2-mediated chemotaxis, the signal transduction components involved in CXCL1-induced chemotaxis were examined. It is shown here that CXCL1 induces cdc42 and PAK1 activation in CXCR2-expressing HEK293 cells. Activation of the cdc42-PAK1 cascade is required for CXCL1-induced chemotaxis but not for CXCL1-induced intracellular Ca2+ mobilization. Moreover, CXCL1 activation of PAK1 is independent of ERK1/2 activation, a conclusion based on the observations that the inhibition of MEK-ERK activation by expression of dominant negative ERK or by the MEK inhibitor, PD98059, has no effect on CXCL1-induced PAK1 activation or CXCL1-induced chemotaxis.  相似文献   

4.
The Rho-like GTPase, Rac1, induces cytoskeletal rearrangements required for cell migration. Rac activation is regulated through a number of mechanisms, including control of nucleotide exchange and hydrolysis, regulation of subcellular localization or modulation of protein-expression levels. Here, we identify that the small ubiquitin-like modifier (SUMO) E3-ligase, PIAS3, interacts with Rac1 and is required for increased Rac activation and optimal cell migration in response to hepatocyte growth factor (HGF) signalling. We demonstrate that Rac1 can be conjugated to SUMO-1 in response to hepatocyte growth factor treatment and that SUMOylation is enhanced by PIAS3. Furthermore, we identify non-consensus sites within the polybasic region of Rac1 as the main location for SUMO conjugation. We demonstrate that PIAS3-mediated SUMOylation of Rac1 controls the levels of Rac1-GTP and the ability of Rac1 to stimulate lamellipodia, cell migration and invasion. The finding that a Ras superfamily member can be SUMOylated provides an insight into the regulation of these critical mediators of cell behaviour. Our data reveal a role for SUMO in the regulation of cell migration and invasion.  相似文献   

5.
H Ma  M Gamper  C Parent    R A Firtel 《The EMBO journal》1997,16(14):4317-4332
We have identified a MAP kinase kinase (DdMEK1) that is required for proper aggregation in Dictyostelium. Null mutations produce extremely small aggregate sizes, resulting in the formation of slugs and terminal fruiting bodies that are significantly smaller than those of wild-type cells. Time-lapse video microscopy and in vitro assays indicate that the cells are able to produce cAMP waves that move through the aggregation domains. However, these cells are unable to undergo chemotaxis properly during aggregation in response to the chemoattractant cAMP or activate guanylyl cyclase, a known regulator of chemotaxis in Dictyostelium. The activation of guanylyl cyclase in response to osmotic stress is, however, normal. Expression of putative constitutively active forms of DdMEK1 in a ddmek1 null background is capable, at least partially, of complementing the small aggregate size defect and the ability to activate guanylyl cyclase. However, this does not result in constitutive activation of guanylyl cyclase, suggesting that DdMEK1 activity is necessary, but not sufficient, for cAMP activation of guanylyl cyclase. Analysis of a temperature-sensitive DdMEK1 mutant suggests that DdMEK1 activity is required throughout aggregation at the time of guanylyl cyclase activation, but is not essential for proper morphogenesis during the later multicellular stages. The activation of the MAP kinase ERK2, which is essential for chemoattractant activation of adenylyl cyclase, is not affected in ddmek1 null strains, indicating that DdMEK1 does not regulate ERK2 and suggesting that at least two independent MAP kinase cascades control aggregation in Dictyostelium.  相似文献   

6.
Filamentous hemagglutinin (FHA) is a critically important virulence factor produced by Bordetella species that cause respiratory infections in humans and other animals. It is also a prototypical member of the widespread two partner secretion (TPS) pathway family of proteins. First synthesized as a ~370 kDa protein called FhaB, its C‐terminal ~1,200 amino acid ‘prodomain’ is removed during translocation to the cell surface via the outer membrane channel FhaC. Here, we identify CtpA as a periplasmic protease that is responsible for the regulated degradation of the prodomain and for creation of an intermediate polypeptide that is cleaved by the autotransporter protease SphB1 to generate FHA. We show that the central prodomain region is required to initiate degradation of the prodomain and that CtpA degrades the prodomain after a third, unidentified protease (P3) first removes the extreme C‐terminus of the prodomain. Stepwise proteolysis by P3, CtpA and SphB1 is required for maturation of FhaB, release of FHA into the extracellular milieu, and full function in vivo. These data support a substantially updated model for the mechanism of secretion, maturation and function of this model TPS protein.  相似文献   

7.
8.
Dystroglycan (DG) is a transmembrane receptor linking the extracellular matrix to the internal cytoskeleton. Its structural function has been mainly characterized in muscle fibers, but DG plays signaling and developmental roles also in different tissues and cell types. We have investigated the effects of dystroglycan depletion during eye development of Xenopus laevis. We have injected a specific morpholino (Mo) antisense oligonucleotide in the animal pole of one dorsal blastomere of embryos at four cells stage. Mo-mediated loss of DG function caused disruption of the basal lamina layers, increased apoptosis and reduction of the expression domains of specific retinal markers, at early stages. Later in development, morphants displayed unilateral ocular malformations, such as microphtalmia and retinal delayering with photoreceptors and ganglion cells scattered throughout the retina or aggregated in rosette-like structures. These results recall the phenotypes observed in specific human diseases and suggest that DG presence is crucial at early stages for the organization of retinal architecture.  相似文献   

9.
10.
11.
NuMA is required for the proper completion of mitosis   总被引:16,自引:6,他引:16       下载免费PDF全文
NuMA is a 236-kD intranuclear protein that during mitosis is distributed into each daughter cell by association with the pericentrosomal domain of the spindle apparatus. The NuMA polypeptide consists of globular head and tail domains separated by a discontinuous 1500 amino acid coiled-coil spacer. Expression of human NuMA lacking its globular head domain results in cells that fail to undergo cytokinesis and assemble multiple small nuclei (micronuclei) in the subsequent interphase despite the appropriate localization of the truncated NuMA to both the nucleus and spindle poles. This dominant phenotype is morphologically identical to that of the tsBN2 cell line that carries a temperature-sensitive mutation in the chromatin-binding protein RCC1. At the restrictive temperature, these cells end mitosis without completing cytokinesis followed by micronucleation in the subsequent interphase. We demonstrate that the wild-type NuMA is degraded in the latest mitotic stages in these mutant cells and that NuMA is excluded from the micronuclei that assemble post-mitotically. Elevation of NuMA levels in these mutant cells by forcing the expression of wild-type NuMA is sufficient to restore post-mitotic assembly of a single normal-sized nucleus. Expression of human NuMA lacking its globular tail domain results in NuMA that fails both to target to interphase nuclei and to bind to the mitotic spindle. In the presence of this mutant, cells transit through mitosis normally, but assemble micronuclei in each daughter cell. The sum of these findings demonstrate that NuMA function is required during mitosis for the terminal phases of chromosome separation and/or nuclear reassembly.  相似文献   

12.
The functions of Beclin‐1 in macroautophagy, tumorigenesis and cytokinesis are thought to be mediated by its association with the PI3K‐III complex. Here, we describe a new role for Beclin‐1 in mitotic chromosome congression that is independent of the PI3K‐III complex and its role in autophagy. Beclin‐1 depletion in HeLa cells leads to a significant reduction of the outer kinetochore proteins CENP‐E, CENP‐F and ZW10, and, consequently, the cells present severe problems in chromosome congression. Beclin‐1 associates with kinetochore microtubules and forms discrete foci near the kinetochores of attached chromosomes. We show that Beclin‐1 interacts directly with Zwint‐1—a component of the KMN (KNL‐1/Mis12/Ndc80) complex—which is essential for kinetochore–microtubule interactions. This suggests that Beclin‐1 acts downstream of the KMN complex to influence the recruitment of outer kinetochore proteins and promotes accurate kinetochore anchoring to the spindle during mitosis.  相似文献   

13.
《The Journal of cell biology》1995,131(6):1561-1572
To assess whether connexin (Cx) expression contributes to insulin secretion, we have investigated normal and tumoral insulin-producing cells for connexins, gap junctions, and coupling. We have found that the glucose-sensitive cells of pancreatic islets and of a rat insulinoma are functionally coupled by gap junctions made of Cx43. In contrast, cells of several lines secreting insulin abnormally do not express Cx43, gap junctions, and coupling. After correction of these defects by stable transfection of Cx43 cDNA, cells expressing modest levels of Cx43 and coupling, as observed in native beta-cells, showed an expression of the insulin gene and an insulin content that were markedly elevated, compared with those observed in both wild-type (uncoupled) cells and in transfected cells overexpressing Cx43. These findings indicate that adequate levels of Cx-mediated coupling are required for proper insulin production and storage.  相似文献   

14.
Monocyte chemoattractant protein 1 (MCP-1) is important in attracting monocytes to sites of inflammation. Using predominantly pharmacological approaches, prior studies have indicated that serine/threonine kinases are involved in the MCP-1-induced signaling pathways. We report here that there is substantial inhibition of MCP-1-stimulated chemotaxis of human monocytes treated with inhibitors selective for the subset of serine/threonine kinases, protein kinase C (PKC). Selective inhibitors of PKC such as GF109203X and Calphostin C both caused approximately 80% inhibition of chemotaxis. Because these pharmacological inhibitors do not specifically inhibit individual PKC isoforms, we chose to use antisense oligodeoxyribonucleotides (ODN) to specifically reduce PKC isoform expression, first by inhibiting expression of the conventional PKC family, and next by using specific antisense ODN for PKCalpha and PKCbeta. Conventional PKC-antisense ODN treatment completely and significantly inhibited monocyte chemotaxis to MCP-1, whereas sense-control ODN caused no significant inhibition. PKCbeta-antisense ODN caused 89.2% inhibition of chemotaxis at its highest dose. In contrast, PKCbeta-sense ODN and PKCalpha-antisense and -sense ODN were without effect. Further studies evaluating the calcium response that is triggered upon MCP-1 interaction with its receptor, CCR2, indicate that this response is not altered by antisense or sense ODN treatment, thus supporting our hypothesis that PKCbeta is critical for post-receptor signal transduction downstream of the immediate calcium signal. These data contribute to our developing understanding of the signal transduction pathways involved in the chemotactic response of human monocytes to MCP-1 and uniquely identify the requirement for the PKCbeta isoform in this important process.  相似文献   

15.
EB1 proteins are ubiquitous microtubule-associated proteins involved in microtubule search and capture, regulation of microtubule dynamics, cell polarity, and chromosome stability. We have cloned a complete cDNA of Dictyostelium EB1 (DdEB1), the largest known EB1 homolog (57 kDa). Immunofluorescence analysis and expression of a green fluorescent protein-DdEB1 fusion protein revealed that DdEB1 localizes along microtubules, at microtubule tips, centrosomes, and protruding pseudopods. During mitosis, it was found at the spindle, spindle poles, and kinetochores. DdEB1 is the first EB1-homolog that is also a genuine centrosomal component, because it was localized at isolated centrosomes that are free of microtubules. Furthermore, centrosomal DdEB1 distribution was unaffected by nocodazole treatment. DdEB1 colocalized with DdCP224, the XMAP215 homolog, at microtubule tips, the centrosome, and kinetochores. Furthermore, both proteins were part of the same cytosolic protein complex, suggesting that they may act together in their functions. DdEB1 deletion mutants expressed as green fluorescent protein or maltose-binding fusion proteins indicated that microtubule binding requires homo-oligomerization, which is mediated by a coiled-coil domain. A DdEB1 null mutant was viable but retarded in prometaphase progression due to a defect in spindle formation. Because spindle elongation was normal, DdEB1 seems to be required for the initiation of the outgrowth of spindle microtubules.  相似文献   

16.
REV1 is a Y-family polymerase specialized for replicating across DNA lesions at the stalled replication folk. Due to the high error rate of REV1-dependent translesion DNA synthesis (TLS), tight regulation of REV1 activity is essential. Here, we show that human REV1 undergoes proteosomal degradation mediated by the E3 ubiquitin ligase known as anaphase-promoting complex (APC). REV1 associates with APC. Overexpression of APC coactivator CDH1 or CDC20 promotes polyubiquitination and proteosomal degradation of REV1. Surprisingly, polyubiquitination of REV1 also requires REV7, a TLS accessory protein that interacts with REV1 and other TLS polymerases. The N-terminal region of REV1 contains both the APC degron and an additional REV7-binding domain. Depletion of REV7 by RNA interference stabilizes REV1 by preventing polyubiquitination, whereas overexpression of REV7 augments REV1 degradation. Taken together, our findings suggest a role of REV7 in governing REV1 stability and interplay between TLS and APC-dependent proteolysis.  相似文献   

17.
Tang Z  Shu H  Qi W  Mahmood NA  Mumby MC  Yu H 《Developmental cell》2006,10(5):575-585
Loss of sister-chromatid cohesion triggers chromosome segregation in mitosis and occurs through two mechanisms in vertebrate cells: (1) phosphorylation and removal of cohesin from chromosome arms by mitotic kinases, including Plk1, during prophase, and (2) cleavage of centromeric cohesin by separase at the metaphase-anaphase transition. Bub1 and the MEI-S332/Shugoshin (Sgo1) family of proteins protect centromeric cohesin from mitotic kinases during prophase. We show that human Sgo1 binds to protein phosphatase 2A (PP2A). PP2A localizes to centromeres in a Bub1-dependent manner. The Sgo1-PP2A interaction is required for centromeric localization of Sgo1 and proper chromosome segregation in human cells. Depletion of Plk1 by RNA interference (RNAi) restores centromeric localization of Sgo1 and prevents chromosome missegregation in cells depleted of PP2A_Aalpha. Our findings suggest that Bub1 targets PP2A to centromeres, which in turn maintains Sgo1 at centromeres by counteracting Plk1-mediated chromosome removal of Sgo1.  相似文献   

18.
Human T-cell leukemia virus type 1 (HTLV-1) is the retrovirus responsible for adult T-cell leukemia and HTLV-1-associated myelopathy. Adult T-cell leukemia development is mainly due to the ability of the viral oncoprotein Tax to promote T-cell proliferation, whereas the appearance of HTLV-1-associated myelopathy involves the antigenic properties of Tax. Understanding the events regulating the intracellular level of Tax is therefore an important issue. How Tax is degraded has not been determined, but it is known that Tax binds to proteasomes, the major sites for degradation of intracellular proteins, generally tagged through polyubiquitin conjugation. In this study, we investigated the relationship between Tax, ubiquitin, and proteasomes. We report that mono- and polyubiquitinated Tax proteins can be recovered from both transfected 293T cells and T lymphocytes. We also show that lysine residues located in the carboxy-terminal domain of Tax are the principal targets of this process. Remarkably, we further demonstrate that mutation of lysine residues in the C-terminal part of Tax, which massively reduces Tax ubiquitination, impairs proteasome binding, and conversely, that a Tax mutant that binds poorly to this particle (M22) is faintly ubiquitinated, suggesting that Tax ubiquitination is required for association with cellular proteasomes. Finally, we document that comparable amounts of ubiquitinated species were found whether proteasome activities were inhibited or not, providing evidence that they are not directly addressed to proteasomes for degradation. These findings indicate that although it is ubiquitinated and binds to proteasomes, Tax is not massively degraded via the ubiquitin-proteasome pathway and therefore reveal that Tax conjugation to ubiquitin mediates a nonproteolytic function.  相似文献   

19.
Nijmegen breakage syndrome (NBS) is a chromosomal-instability syndrome associated with cancer predisposition, radiosensitivity, microcephaly, and growth retardation. The NBS gene product, NBS1, is a component of the MRE11-RAD50-NBS1 (MRN) complex, a central player associated with double strand break (DSB) repair. In response to radiation, NBS1 is phosphorylated by ATM, and the MRN complex relocalizes to form punctate nuclear foci for DNA repair. NBS1 controls both the nuclear localization of the MRN complexes and radiation-induced focus formation. We report here that the KPNA2 (importin alpha1) is important for the normal nuclear localization of the MRN complex and its proper formation of the nuclear foci. KPNA2 is the only member of the importin alpha family that physically interacts with NBS1, and the KPNA2-mediated nucleus localization sequence (NLS) is mapped to amino acid residues 461-467 of NBS1 that is sufficient for both the interaction with KPNA2 and the proper nuclear localization. Inhibition of KPNA2 or blockage of the KPNA2 interaction with NBS1 results in a reduction of radiation-induced nuclear focus accumulation, DSB repair, and cell cycle checkpoint signaling of NBS1. Collectively, our results strongly suggest that an interaction with KPNA2 contributes to nuclear localization and multiple tumor suppression functions of the NBS1 complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号