共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
死亡谷芽胞杆菌(Bacillus vallismortis)是一种好氧、产胞的革兰氏阳性细菌,归类于枯草芽胞杆菌(Bacillus subtilis)群,对环境抗逆性强,且具有优良的生物活性,可以被广泛地应用到农业、医药及环境治理等领域。本文从死亡谷芽胞杆菌的亲缘性、抑菌活性、降解活性、生物吸附活性及产酶情况等方面做了总结,为死亡谷芽胞杆菌的进一步研究与应用提供理论依据。 相似文献
3.
笔者所在实验室前期筛选到1株产脂肪酶粘质沙雷氏菌,克隆其脂肪酶基因,构建重组枯草芽胞杆菌Bacillus subtilis 168/pMA5-lipA,成功实现了来源于粘质沙雷氏菌的脂肪酶基因在枯草芽胞杆菌中的表达。基于以上工作基础上,对B.subtilis 168/pMA5-lipA进行了摇瓶水平上的产酶发酵优化。首先通过单因素和正交试验确定了有利于产脂肪酶的最佳培养基成分,并对发酵条件进行了优化。结果表明:优化后的培养基组分为蔗糖35 g/L,玉米浆27.5 g/L,(NH4)2SO41.25 g/L,CaCl24 g/L,pH 7.0。在最优发酵培养基的条件下,37℃、160 r/min摇床培养33 h,每毫升发酵液中重组菌脂肪酶酶活可达98.6 U,是优化前的3倍。 相似文献
4.
芽胞杆菌菌株产几丁质酶发酵条件的研究 总被引:4,自引:0,他引:4
从采自大连地区24份土样中分离筛选到一株产几丁质酶活性较高的芽胞杆菌(Bacillus sp.)B-41,该菌株产几丁质酶最适的发酵条件为:碳源为胶体几丁质,氮源为酵母浸汁,pH7.2,温度42℃,振荡培养4天。 相似文献
5.
炭疽芽胞杆菌引起的炭疽病死亡率非常高 ,当前的疫苗具有效力不稳定、对吸入性炭疽的保护率低、免疫程序繁琐、存在副作用等缺点。近年来人们在改造传统疫苗的同时又有一些新的发现 ,如保护性抗原 (PA)的抗体在体内可杀死芽胞 ;通过粘膜免疫能够诱导机体分泌IgA抗体 ;抗多聚谷氨酸 (γ D PGA)抗体可以同炭疽杆菌的繁殖体作用 ,从而杀死繁殖体 ;寻找到新的免疫原。DNA疫苗、活载体疫苗的出现为新一代安全、免疫程序简单、具更高保护率的疫苗奠定了基础 相似文献
6.
芽胞杆菌属芽胞长久存活机制的研究进展 总被引:1,自引:0,他引:1
能够在不利的外界环境下长久存活是一些产芽胞菌的重要特点之一,本文就国外对在芽胞内环境,酶休的眠,芽胞与化学因子、放射线、热的关系等方面的研究状况进行了论述。 相似文献
7.
8.
9.
芽胞核心作为芽胞的原生质体,实际上是处于休眠状态的细胞,其化学组化比较复杂,核酸,蛋白质,水,无机离子以及有机小分子共同构成芽胞核心特有的“内环境”各种化学组分的含量及存在的形式均与芽胞工能特性尤其抗性密切相关,对它们的深入研究有助于进一步揭示芽胞抗生的有关机制,本文综述对需氧芽胞杆菌核心组分研究。 相似文献
10.
枯草芽胞杆菌芽胞表面展示技术是把枯草芽胞杆菌作为芽胞表面展示的宿主来展示目的蛋白的一种技术。该技术不仅具备芽胞表面展示技术可展示分子量较大的目的蛋白、目的蛋白无需跨膜及芽胞的极强抗逆性等特点外,同时由于该技术的宿主菌--枯草芽胞杆菌的分子生物学信息研究得比较清楚、安全性高而被广泛应用。介绍了枯草芽胞杆菌表面展示近10年在生产疫苗和固定化酶方面的进展,并对如何提高表面展示目的蛋白的产量做了简要概述。 相似文献
11.
12.
产酸克雷伯氏杆菌发酵产2,3-丁二醇的培养基优化 总被引:1,自引:0,他引:1
采用不同设计方法相结合的策略对耐高糖产酸克雷伯氏杆菌(Klebsiella oxytoca)ME—UD-3-4发酵产2,3-丁二醇的培养基进行优化。首先在单因素实验的基础上采用Plackett—Burrnan设计法对影响ME—UD-3-4发酵产2,3-丁二醇的相关因素进行研究,筛选到3种有显著效应的因素(P〈0.05):葡萄糖、玉米浆和MgSO4·7H2O。然后利用响应曲面法(Response Surface Methodology,RSM)对这3种因素的最佳水平范围进一步探讨;对得到的回归模型进行分析,得最佳条件(g/L):葡萄糖220、玉米浆19和MgSO4·7H2O 0.4;在最佳条件下,发酵80h,2,3-丁二醇产量从原来的57.3 g/L提高到86.1 g/L,生产强度由0.72g/(L·h)提高到1.08g/(L·h)。 相似文献
13.
Junjiao Zhang Jiaxiang Zhang Chen Zhao Yanjun Tian 《Preparative biochemistry & biotechnology》2017,47(8):761-767
The present work aims to block 2,3-butanediol synthesis in acetoin fermentation of Bacillus subtilis. First, we constructed a recombinant strain BS168D by deleting the 2,3-butanediol dehydrogenase gene bdhA of the B. subtilis168, and there was almost no 2,3-butanediol production in 20?g/L of glucose media. The acetoin yield of BS168D reached 6.61?g/L, which was about 1.5 times higher than that of the control B. subtilis168 (4.47?g/L). Then, when the glucose concentration was increased to 100?g/L, the acetoin yield reached 24.6?g/L, but 2.4?g/L of 2,3-butanediol was detected at the end of fermentation. The analysis of 2,3-butanediol chiral structure indicated that the main 2,3-butanediol production of BS168D was meso-2,3-butanediol, and the bdhA gene was only responsible for (2R,3R)-2,3-butanediol synthesis. Therefore, we speculated that there may exit another pathway relating to the meso-2,3-butanediol synthesis in the B. subtilis. In addition, the results of low oxygen condition fermentation showed that deletion of bdhA gene successfully blocked the reversible transformation between acetoin and 2,3-butanediol and eliminated the effect of dissolved oxygen on the transformation. 相似文献
14.
Ui S Takusagawa Y Sato T Ohtsuki T Mimura A Ohkuma M Kudo T 《Letters in applied microbiology》2004,39(6):533-537
AIMS: A metabolic pathway for L-2,3-butanediol (BD) as the main product has not yet been found. To rectify this situation, we attempted to produce L-BD from diacetyl (DA) by producing simultaneous expression of diacetyl reductase (DAR) and L-2,3-butanediol dehydrogenase (BDH) using transgenic bacteria, Escherichia coli JM109/pBUD-comb. METHODS AND RESULTS: The meso-BDH of Klebsiella pneumoniae was used for its DAR activity to convert DA to L-acetoin (AC) and the L-BDH of Brevibacterium saccharolyticum was used to reduce L-AC to L-BD. The respective gene coding each enzyme was connected in tandem to the MCS of pFLAG-CTC (pBUD-comb). The divided addition of DA as a source, addition of 2% glucose, and the combination of static and shaking culture was effective for the production. CONCLUSIONS: L-BD (2200 mg l(-1)) was generated from 3000 mg l(-1) added of DA, which corresponded to a 73% conversion rate. Meso-BD as a by-product was mixed by 2% at most. SIGNIFICANCE AND IMPACT OF THE STUDY: An enzyme system for converting DA to L-BD was constructed with a view to using DA-producing bacteria in the future. 相似文献
15.
2,3-丁二醇的发酵及盐析分离工艺 总被引:3,自引:0,他引:3
采用克雷伯氏菌(Klebsiella pneumoniae CICC 10011)发酵生产2,3-丁二醇,并对2,3-丁二醇的盐析分离工艺进行了考察。通过实验确定了以葡萄糖为底物微氧批式流加发酵的条件,发酵液中2,3-丁二醇和3-羟基丁酮的质量浓度分别为90.98g/L和12.40g/L,2,3-丁二醇的摩尔转化率为82.7%,生产强度达到2.1g/(L·h)。对发酵液中2,3-丁二醇的盐析分离研究表明,K2HPO4和K3PO4对2,3-丁二醇的盐析效果优于K2CO3。当发酵液浓缩70%后,加入质量分数为45%的K,HPO4,2,3-丁二醇的分配系数达到9.10,回收率为79.37%;上相中2,3-丁二醇的质量浓度达到420g/L;此时3-羟基丁酮的分配系数和回收率分别为11.9和83.48%。 相似文献
16.
S. Nilegaonkar S. B. Bhosale D. C. Kshirsagar A. H. Kapadi 《World journal of microbiology & biotechnology》1992,8(4):378-381
Bacillus licheniformis produced 2,3-butanediol from glucose with an optimum yield of 47 g/100 g glucose after 72 h of growth on a peptone/beef extract medium containing 2% (w/v) glucose at pH 6.0 and 37°C. This yield of 2,3-butanediol was higher than those previously reported forKlebsiella oxytoca (37 g/100 g glucose) andBacillus polymyxa (24 g/100 glucose). 相似文献
17.
18.
Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production 总被引:1,自引:0,他引:1
2,3-Butanediol is an important compound that can be used in many areas, especially as a platform chemical and liquid fuel. But traditional 2,3-butanediol producing microorganisms, such as Klebsiella pneumonia and K. xoytoca, are pathogens and they can only ferment sugars at 37°C. Here, we reported a newly developed Bacillus licheniformis. A protoplast transformation system was developed and optimized for this organism. With this transformation method, a marker-less gene deletion protocol was successfully used to knock out the ldh gene of B. licheniformis BL1 and BL3. BL1 was isolated earlier from soil for lactate production and it was further evolved to BL3 for xylose utilization. Combined with pH and aeration control, ldh mutant BL5 and BL8 can efficiently ferment glucose and xylose to D-(-) 2,3-butanediol at 50°C, pH 5.0. For glucose and xylose, the specific 2,3-butanediol productivities are 29.4 and 26.1 mM/h, respectively. The yield is 0.73 mol/mol for BL8 in xylose and 0.9 mol/mol for BL5 and BL8 in glucose. The D-(-) 2,3-butanediol optical purity is more than 98%. As far as we know, this is the first reported high temperature butanediol producer to match the simultaneous saccharification and fermentation conditions. Therefore, it has potential to further lower butanediol producing cost with low cost lignocellulosic biomass in the near future. 相似文献
19.
A vital goal of renewable technology is the capture and re-energizing of exhausted CO2 into usable carbon products. Cyanobacteria fix CO2 more efficiently than plants, and can be engineered to produce carbon feedstocks useful for making plastics, solvents, and medicines. However, fitness of this technology in the economy is threatened by low yields in engineered strains. Robust engineering of photosynthetic microorganisms is lagging behind model microorganisms that rely on energetic carbon, such as Escherichia coli, due in part to slower growth rates and increased metabolic complexity. In this work we show that protein expression from characterized parts is unpredictable in Synechococcus elongatus sp. strain PCC 7942, and may contribute to slow development. To overcome this, we apply a combinatorial approach and show that modulation of the 5'-untranslated region (UTR) can produce a range of protein expression sufficient to optimize chemical feedstock production from CO2. 相似文献
20.
Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects 总被引:1,自引:0,他引:1
Taowei Yang Xian Zhang Meijuan Xu Zhenghong Xu Shang-Tian Yang 《Critical reviews in biotechnology》2017,37(8):990-1005
Acetoin and 2,3-butanediol (2,3-BD) have a large number of industrial applications. The production of acetoin and 2,3-BD has traditionally relied on oil supplies. Microbial production of acetoin and 2,3-BD will alleviate the dependence on oil. Acetoin and 2,3-BD are neighboring metabolites in the 2,3-BD metabolic pathway of bacteria. This review summarizes metabolic engineering strategies for improvement of microbial acetoin and 2,3-BD production. We also propose enhancements to current acetoin and 2,3-BD production strategies, by offering a metabolic engineering approach that is guided by systems biology and synthetic biology. 相似文献