首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relative biological effectiveness of neutrons vs. X-rays in inducing crossing-over in males of D. melanogaster was investigated using 812 and 834 rad of neutrons and the same dose of X-rays. Crossing-over was induced in spermatocytes and spermatogonia of adults and pupae. Neutrons were 4 times more effective in spermatocytes of adults and their effectiveness in pupal spermatocytes was even more. Neutrons also induced more exchanges in spermatogonial cells including predefinitive spermatogonia. Higher effectiveness of neutrons can be attributed to their high linear energy transfer.  相似文献   

2.
Inbred CBA male mice were irradiated with 14.5-MeV neutrons. Three acute doses, 75, 150 and 250 rad, and one chronic dose, 250 rad, were given. The percentages of affected spermatocytes as counted from reciprocal translocations which had been induced in spermatogonia were 0.7, 0.8 and 1.6 respectively for the acute series and 2.2 after chronic exposure. The data could be fitted to a linear or concave curvilinear regression line. There seemed to be a slight increase of damage with dose, even if the percentages were generally lower than those reported earlier for fast neutrons with energies around 1 MeV. The existence of dose-rate effects is discussed, and the conclusion drawn so far is that there seems to be no such effect either for 1-MeV fast neutrons or 14.5-MeV high energy neutrons. The term “reversed dose-rate effect”, as used earlier, relates to another phenomenon. The difference between the point estimates for the chronic and acute 250 rad series is not significant. The effectiveness of neutrons with energies around 14 MeV versus neutrons with energies around 1 MeV is discussed.  相似文献   

3.
The incidence of reciprocal translocations induced in mouse spermatogonia has been studied in CBA mice given X-ray or neutron exposure. Analysis of dividing spermatocytes at diakinesis-first metaphase stage of meiosis shows that in X-irradiated mice there is a linear dose-response relationship. After exposure to fast neutrons the yield of translocations follows a humped curve with a maximum of chromosome exchanges after exposure to 100 rad.  相似文献   

4.
The relative biological effectiveness (RBE) of 239Pu alpha particles, fission neutrons (0.85 MeV), and 60Co gamma rays has been evaluated for the induction of reciprocal chromosome translocations in spermatogonia and of chromosome/chromatid fragments and chromatid rearrangements in the primary spermatocyte of adult male B6CF1 mice. Age concurrency was maintained for both internal and external radiations which were delivered at about 1 rad/week for 239Pu (single intravenous dose of 10 microCi/kg), 0.67, 1.67, and 2.67 rad/week for neutrons, and 6.95, 17.4, and 32 rad/week for gamma rays for at least 60 weeks. In terms of frequency of translocations, the response to the alpha emitter was nonlinear (concave downward) with little dose-response predictability; to cumulative neutron exposures the response was linear, without evidence of a dose-rate effect; and to gamma radiation the responses were linear, and a significant dose-rate effect was seen. RBE estimates are variable. For translocations, the n/gamma ratio is between 10 and 24, depending upon weekly dose level, and the ratio is 1 or less for the alpha particle relative to the neutron. For fragments, the n/gamma ratio is 18 to 22, depending upon age factors, and alpha/n is 1.5. For chromatid rearrangements, n/gamma is 7 and alpha/n is essentially indeterminate, but much below one. The overall response to the alpha emitter is interpreted to be a complex function of (a) microdosimetric heterogeneity, (b) a nearly invariant deposition pattern in the gonad, (c) the high sensitivity of differentiating spermatogonia to cell killing, and (d) the capacity of stem cells in relatively radiation-free areas to progressively assume the major spermatogenic role.  相似文献   

5.
The yields of translocations in spermatocytes after irradiation of spermatogonia of Rhesus monkeys with doses of 100, 200 or 300 rad X-rays were low, and consistent with a humped dose-response curve with a peak at about 200 rad. Such a curve would agree well with earlier results on the marmoset and man, but the yields at any dose in the Rhesus monkey were lower.  相似文献   

6.
Analysis of dose-response relationship was carried out for chromosome aberrations produced in human peripheral lymphocytes by fission neutrons at doses of 25, 50, 100 or 200 rad.Statistical treatment showed experimental data to be fitted by a regression curve described by the mathematical model Y = a+bD. A linear relation to dose characterized both one-break and two-break aberration yields. Numerical values of coefficients are reported for yields of dicentrics, chromosome fragments, minutes, aberrant cells, total number of aberrations, and total breakage.Based on chromosome fragments and aberrant cells, relative biological efficiency (RBE) value derived for fission neutrons relative to 180 kV X-rays for chromosome fragments was 2.53, and for aberrant cells it was 2.80.  相似文献   

7.
Cytogenetic effects of X-rays and fission neutrons in female mice   总被引:6,自引:0,他引:6  
The induction by X-rays of chromosomal damage in oocytes was studied, while the genetic consequences of X- and neutron-induced damage in female mice were looked for by testing offspring for dominant lethality and semi-sterility. None out of 386 sons of hybrid females given 300 rad X-rays showed evidence of semi-sterility or translocation heterozygosity, but 9 out of 294 daughters were diagnosed as semi-sterile. At least 3 and probably 4 of these (1.4%) carried reciprocal translocations, 2 of which caused male sterility. Complete or partial loss of the X-chromosome may have been responsible for some of the other sermi-steriles. Examination of oocytes at metaphase-I during the first and third weeks after X-irradiation with 100 or 400 rad revealed both multivalents (some of the ring quadrivalent type) and fragments (mainly double). These were thought to arise mainly from chromatid intercchanges (both symmetrical and asymmetrical) and isochromatid intrachanges respectively. Since neither the proportion of asymmetrical interchanges nor the amount of hidden damage was known it was not thought possible to predict the magnitude of F1 effects from metaphase-I findings. The aberration frequency in oocytes rose with dose and (at the 400 rad level only) with time after irradiation, reaching a maximum of 10% multivalents and 22% fragments in the third week after 400 rad. The frequency of univalents showed no consistent trend, but chiasma counts decreased in the first week after 400 rad. The increase in levels of chromosomal damage with dose and time after irradiation was reflected in dominant lethal frequencies after the same radiation-conception intervals and doses of 0–400 rad. Induced post-implantation lethality was over twice as high in the third week after 200–400 rad than in the first. Pre-implantation loss also greatly increased in the third week after 300 or 400 rad; this was associated with increased non-fertilization of ova. No evidence for the induction of translocations in oogonia or resting oocytes by fast neutron irradiation was obtained, although there was evidence for X-chromosomal loss after 200 rad to oocytes. The relative biological effectiveness (RBE) for fission neutrons vs. X-rays with respect to dominant lethal induction in oocytes was found to vary with dose, but seamed to be around 1 at lower levels.  相似文献   

8.
Microtus males were exposed to different doses of 250 kV X-rays or fast fission neutrons of 1 MeV mean energy. Early (= round) spermatids were analyzed for the presence of extra sex chromosomes, diploidy and micronuclei at different time intervals corresponding with treated differentiating spermatogonia and spermatocytes. Induction of nondisjunction of sex chromosomes could not be detected. In contrast, induction of diploids by both types of radiation was statistically significant at all sampling times. Dose-effect relationships for most of the sampling times were linear and sometimes linear-quadratic concave upward or downward. There were pronounced stage-specific differences in sensitivity as reflected by differences in doubling doses that ranged from 4 to 22 cGy for X-rays and from 0.4 to 4 cGy for neutrons. Spermatocytes at pachytene were the most sensitive cells and proliferating spermatogonia the least sensitive ones. The relative biological effectiveness (RBE) of neutrons depended on the cell stage treated and fluctuated between 1.4 and 9.2. Evidence for radiation-induced chromosomal breakage events was obtained via detection of micronuclei. Induction of micronuclei by X-rays or neutrons was statistically significant at all spermatocyte stages tested. There was no effect in spermatogonia. With a few exceptions dose-effect relationships were linear. Differences in stage sensitivity were clearly present as evidenced by doubling dose which ranged from 5 to 29 cGy for X-rays and from 1 to 3 cGy for neutrons. RBE values varied from 5.2 to 12.7. Maximum sensitivity was detected in spermatocytes at diakinesis, MI and MII. Resting primary spermatocytes (G1 and S phase) were somewhat less sensitive and actively proliferating spermatogonia were the least sensitive cells. The pattern of stage sensitivity for induction of diploids was distinctly different from that for induction of chromosomal breakage.  相似文献   

9.
When female mice were given a dose of 20 × 10 rad X-rays, the specific locus mutation rate among offspring conceived up to 7 weeks after the end of treatment was 1/39887 or 0.18·10−7/rad/locus, whereas when the same total dose of 200 rad was given in a single exposure the mutation rate was 9/34813 or 1.85·1010−7/rad/locus. The lower mutation rate after the 20 × 10 rad dose was obtained whether the total of 200 rad was given over a period of 5 days or 4 weeks, and if only young conceived in the first 20 days, rather than 7 weeks, were considered. It is suggested that each 10 rad fraction had the same small effect, and hence that these results confirm and extend Russell's previous finding that the dose-response relationship for specific locus mutations in females is curved.  相似文献   

10.
The yield of translocations induced by acute gamma-irradiation at low doses (0.25 and 0.50 Gy) in the crab-eating monkey's (Macaca fascicularis) spermatogonia was examined. The frequencies of translocations per cell were 0.53% at 0.25 Gy and 1.07% at 0.50 Gy. Over the low dose range from 0 to 1 Gy, the dose-response relationship for translocation yield was a linear one with a regression coefficient of 1.79 X 10(-2). To estimate the sensitivity to the induction of translocations in the crab-eating monkey's spermatogonia, the slope of the regression line was compared with those in other mammalian species. Consequently, over the low dose range below 1 Gy, the sensitivity of the crab-eating monkey's spermatogonia to translocation induction was similar to several mammalian species, the mouse. Chinese hamster, and the rabbit, but significantly higher than that of the rhesus monkey and lower than that of the marmoset.  相似文献   

11.
Dose-fractionation studies on translocation induction in stem-cell spermatogonia of mice, as measured by spermatocyte analysis many cell generations after irradiation, revealed that a small conditioning dose of X-rays sensitizes the stem cells to the induction of translocations by a second dose 24 h later (Van Buul and Léonard, 1974, 1980). To find out whether such sensitization effects also occur at other spermatogonial stages, a comparison was made of the effects of single (50, 100 and 150 rad) and fractionated (100 + 50 rad, with 24 h in between) doses of X-rays on the induction of chromosomal aberrations in spermatogonia by analysing spermatogonial metaphases shortly after irradiation at multiple sampling times (0–48 h; every 4 h). In addition, the kinetics of spermatogonial proliferation was studied by using, in vivo, a BrdU chromosome-labelling procedure. The recorded frequencies of chromosomal aberrations did not indicate any sensitization effect of dose fractionation. It is concluded that the sensitization effects, as observed for chromosomal aberrations in male premeiotic germ cells, are characteristic for the stem-cell spermatogonia and do not occur in the more differentiated spermatogonia.  相似文献   

12.
A modified mouse splenocyte culture system was standardized after testing different mitogens (i.e., phytohemagglutinin (PHA), concanavalin A (Con A)). The mitotic index was determined for comparison between different mitogens. Following selection of appropriate mitogen (PHA 16, Flow), a series of experiments were conducted to evaluate the application of a cytokinesis-block for scoring micronuclei and assays for chromosomal aberrations produced by treatment in G0 and G2 for the purposes of biological dosimetry following in vivo and/or in vitro exposure to X-rays, fission neutrons and bleomycin. In the X-irradiation studies, the frequencies of micronuclei and chromosomal aberrations (i.e., dicentrics and rings) increased in a dose-dependent manner. These data could be fitted to a linear-quadratic model. No difference was observed between irradiation in vivo and in vitro, suggesting that measurement of dicentrics and micronuclei in vitro after X-irradiation can be used as an in vivo dosimeter. Following in vivo irradiation with 1 MeV fission neutrons and in vitro culturing of mouse splenocytes, linear dose-response curves were obtained for induction of micronuclei and chromosomal aberrations. The lethal effects of neutrons were shown to be significantly greater than for a similar dose of X-rays. The relative biological effectiveness (RBE) was 6-8 in a dose range of 0.25-3 Gy for radiation-induced asymmetrical exchanges (dicentrics and rings), and about 8 for micronuclei in a dose range of 0.25-2 Gy. Furthermore, the induction of chromosomal aberrations by bleomycin was investigated in mouse G0 splenocytes (in vitro) and compared with X-ray data. Following bleomycin treatment (2 h) a similar pattern of dose-response curve was obtained as with X-rays. In this context a bleomycin rad equivalent of 20 micrograms/ml = 0.50 Gy was estimated.  相似文献   

13.
Frequencies of radiation-induced chromosome aberrations in spermatogonia, peripheral blood lymphocytes and bone-marrow cells of the rhesus monkey (Macaca mulatta) and in human blood lymphocytes, were determined at different exposures of X-rays. The dose-response curve for the induction of reciprocal translocations in spermatogonia suggested a “hump” at about 200 rad. The absolute frequencies of chromosome aberrations in somatic and germ cells of the rhesus monkey were low in comparison with most other mammalian species and the ratio between aberrations in the two tissues was 25 to 1 at the 100 rad level. Although the numbers of “effective chromosome arms” in man and rhesus monkey are similar (81 vs. 83), the rhesus monkey showed a lower rate of induction of dicentrics in blood lymphocytes than man at all doses, reaching statistical significance at the 300 rad level.  相似文献   

14.
Following whole-body irradiation of ICR mice with various doses of fission neutrons or X-rays, the frequency of micronuclei (MNs) in peripheral blood reticulocytes was measured at 12 h intervals beginning immediately after irradiation and ending at 72 h after irradiation. The resulting time-course curve of MN frequency had a clear peak 36 h after irradiation, irrespective of the type of radiation applied and the dose used. The MN frequency, averaged as the unweighted mean over the experimental time course, showed a linear increase with increasing dose of either fission neutrons or X-rays. The linear response to X-rays supports reported conclusion that induction of MN formation in reticulocytes is a dose-rate independent phenomenon. The relative biological effectiveness (RBE) of fission neutrons to X-rays for MN induction was estimated to be 1.9 +/- 0.3. This value is considerably lower than the RBE value of 4.6 +/- 0.5 reported for the same fission neutrons for induction of lymphocyte apoptosis in the thymus of ICR mice that represents dose-rate independent, one-track event. Based on these results, we propose that MNs increased in reticulocytes after irradiation mostly represent acentric fragments caused by single chromosome breaks, and that some confounding factor is operating in erythroblasts for the formation of aberrations from non-rejoining DNA double-strand breaks more severely after high-LET radiation than after low-LET radiation.  相似文献   

15.
Adult male C57BL mice were exposed to 75, 150, 300 or 450 R X-rays with or without pre-treatment with Adeturon (S-2-aminoethyl-isothiuronium bromide hydrobromide (AET) adenosine triphosphate, 500 mg/kg b.w.). Twelve weeks later, primary spermatocytes were examined cytologically at diakinesis-metaphase I for persisting chromosomal translocations, namely multivalents in the form of rings or chains.For the dose range studied, regression analysis indicated that the data were best fitted to the equation Y = aD + bD2 with coefficients for translocated-cell and translocations-per-cell yields, respectively, a = 1.57·10?2 and 1.59·10?2 and b = ?2.29·10?5 and ?2.09·10?5, for Adeturon protected irradiated animals vs.a = 1.80·10?2 and 2.05·10?2, and b = ?0.94·10?5 and ?1.19·10?5, in non-protected irradiated animals.Adeturon protection of heritable structures in mouse germ cells showed a dose reduction factor of about 2.  相似文献   

16.
The induction by X-rays of translocations in spermatogonia was studied by cytological means in spermatocytes derived from them. In the rabbit and guinea-pig hump shaped dose-response curves were obtained, with a linear relationship at the low doses. The shapes of the curves were similar to those reported for the mouse, except that the maximum occurred at 600-700 rad in the mouse as opposed to 300 rad in the guinea-pig and rabbit. Unlike the guinea-pig and rabbit, the golden hamster showed a hump dose-response curve without a definite peak value and with little decrease in yield at high radiation doses. Over the low dose range 100-300 rad, the slopes of the curves of translocation yield were in the order:mouse (highest), rabbit, guinea-pig and hamster. Data on sterile periods suggested that the amount of spermatogonial killing in the rabbit and guinea-pig was as great or greater than in the mouse, and that in the golden hamster it was most severe. It is suggested that the differing shapes of the dose-response curves can be explained by a lower sensitivity to translocation induction in the test species and, also especially in the golden hamster, a greater sensitivity to cell killing. The possibility of extrapolating from these data to other species is discussed.  相似文献   

17.
Human peripherial lymphocytes were irradiated with different doses of 15.0-MeV neutrons. The frequency of different aberration types was determined and the dose-response relation was calculated. The data were fitted by least-squared regression analysis to different models. The dicetric, dicentric+centric ring, and different acentric data gave the best fit to the linear quadratic model. The RBE of 15.0-MeV neutrons versus 220 kV X-rays decreased significantly with increasing dose.  相似文献   

18.
Data are presented on the mean after survival of female B6CF1 mice exposed to single doses of neutrons (1 to 40 rad) or gamma rays (22.5, 45, and 90 rad). For gamma-ray exposures and for neutron exposures up to 10 rad, the dose-response curves are indistinguishable from linear; higher neutron doses produce significant departures and linearity. Consequently, in these data, an upper limit of the relative biological effectiveness (RBE) exists for life shortening from all causes of death after single neutron exposures; this value is 15.0 +/- 5.1. The RBE depends on the cause of death, ranging from 2 to 5 for lymphoreticular tumors to 23-24 for lung tumors.  相似文献   

19.
The rate of induction of reciprocal translocations by 56–816 R exposures of mouse spermatogonia to acute γ-irradiation (95 R/min) was determined by cytological examination of descendant spermatocytes. The dose-response relationship did not differ significantly from linearity and had a regression coefficient of 1.8·10−4 per R with respect to translocations per spermatocyte. Further analysis at exposures below 816 R (considered less likely to produce distortion) showed that the quadratic regression of best fit had too small a square-law component to account for the very low frequency of translocations obtained after chronic γ-exposures in a previous experiment. The possibility is discussed that there is some extra factor, besides the diminution of the square-law component, which operates to reduce the yield after protracted exposures.  相似文献   

20.
T Nomura 《Mutation research》1988,198(2):309-320
A large and significant increase of phenotypical anomalies was observed in the progeny of ICR parent mice treated before mating with X-rays, urethane, 7,12-dimethylbenz[a]anthracene, ethylnitrosourea (ENU), and 4-nitroquinoline 1-oxide, but the increase was not significant with furylfuramide. Major types of induced anomalies were cleft palate, dwarf, open eyelid, tail anomalies, and exencephalus. Dwarf, open eyelid and tail anomalies were predominant types of viable anomalies and were inherited as if they were dominant mutations with varying expressivity or penetrance. Incidence of prenatal anomalies increased with treated doses of X-rays, urethan, or ENU for both spermatozoa and spermatogonia. Spermatogonia were less sensitive to X-rays and urethane than spermatozoa, while ENU induced a very high incidence of prenatal anomalies by the spermatogonial treatment. In contrast to the previous works with X-rays, there was a clear, almost linear increase of anomalies in the dose range from 0 to 216 rad after spermatogonial exposure. For treatment of oocytes, there was also a clear increase with doses of X-rays and urethane. Doubling doses of X-rays for prenatal anomalies were 12 rad for spermatozoa, 27 rad for spermatogonia, and 19 rad for mature oocytes. These values are similar to those for ordinary mouse mutations. However, the mean rate of prenatal anomalies per rad (1.2 X 10(-4), 6.6 X 10(-5) and 9.1 X 10(-5) for spermatozoa, spermatogonia and mature oocytes, respectively) and that for 1 micrograms/g of ENU (3.4 X 10(-4) for spermatogonia) were 4-40 times higher than that of ordinary mutation in mice, because overall phenotypical abnormalities were scored in this study. Information obtained from the work on phenotypical anomalies is valuable to assess genetic risk of radiation and chemicals, because a majority of human genetic diseases show this kind of irregular and uncertain inheritance and most of the induced anomalies are similar to those found in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号