首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C H Joiner  A Dew  D L Ge 《Blood cells》1988,13(3):339-358
Deoxygenation-induced cation fluxes in sickle cells were studied by measuring net cation movements in ouabain-treated cells. These deoxy cation fluxes were highly dependent on pH, showing inhibition at pH less than 7 and greater than 8 and a maximum at 7.4-7.5. Activation occurred at oxygen tensions around 40-50 torr and fluxes rose sharply as PO2 fell lower. Deoxy K efflux paralleled deoxy Na influx at pH values between 7 and 8, and at all oxygen tensions. Sickle cells were separated by density on Percol-Stractan gradients. Dense cells had lower deoxy cation fluxes of both Na and K than did lighter cell fractions, but in none of the fractionated populations did deoxy K efflux exceed deoxy Na influx. These data demonstrate that deoxy cation fluxes are activated at physiological pH and oxygen tensions and that there are no conditions of pH and PO2 and no cell populations in which cation fluxes induced by deoxygenation contribute directly to net cation loss in sickle cells. Chloride replacement (with nitrate) did not alter deoxy cation fluxes, and deoxy K efflux did not require the presence of external Na (tetramethylammonium replacement). Thus, deoxy cation fluxes do not have the characteristics of a cation-chloride cotransport or cation countertransport system.  相似文献   

2.
An osmotic method was used to study the salt permeability induced by gramicidin A in liposomes. Sequences of cation permeation were obtained for iodide, salycilate, acetate and formate salts in liposomes below and above their transition temperature. Salycilate and formate salts, unlike acetate and iodide salts, exhibit the same sequences for cation selectivity in liposomes below and above their transition temperature. These results can be explained by assuming three mechanisms for salt permeation across gramicidin-containing liposomes: (i) the anion moves by the lipid part of the membrane whereas the cation moves by the gramicidin channel, (ii) movement of the undissociated acid species occurs through the lipid part of the membrane followed by cation-proton exchange via the gramicidin channel and (iii) the cation and anion may move simultaneously via the gramicidin channel. When the movement of the anion or undissociated acid across the lipid part of the membrane is not rate limiting the permeation process, the cation selectivity obtained agrees with the cation selectivity of the gramicidin A channel, as determined by others using independent measurements.  相似文献   

3.
Summary An osmotic method was used to study the salt permeability induced by gramicidin A in liposomes. Sequences of cation permeation were obtained for iodide, salycilate, acetate und formate salts in liposomes below and above their transition temperature. Salycilate and formate salts, unlike acetate and iodide salts, exhibit the same sequences for cation selectivity in liposomes below and above their transition temperature. These results can be explained by assuming three mechanisms for salt permeation across gramicidin-containing liposomes: (i) the anion moves by the lipid part of the membrane whereas the cation moves by the gramicidin channel, (ii) movement of the undissociated acid species occurs through the lipid part of the membrane followed by cation-proton exchange via the gramicidin channel and (iii) the cation and anion may move simultaneously via the gramicidin channel.When the movement of the anion or undissociated acid across the lipid part of the membrane is not rate limiting the permeation process, the cation selectivity obtained agrees with the cation selectivity of the gramicidin A channel, as determined by others using independent measurements.  相似文献   

4.
A new approach was applied for the measurements of ion transport through bilayer lipid membranes (BLM) induced by electrically neutral cation/H+ exchangers. This is an improved version of the method of the measurements of the cation/H+ exchange rate based on recording pH shifts in the unstirred layers near the BLM. Using this approach, the pH gradient in the unstirred layers induced by the cation/H+ exchanger was reduced by successive addition of the acetate on one side of the BLM until the pH shift reached zero. The difference in acetate concentration across the membrane is a measure of the cation/H+ exchange rate. In the second part of the work we found that the changes in cation concentration in the unstirred layers under the conditions imposed when measuring cation selectivity (according to Antonenko, Yu.N. and Yaguzhinsky, L.S., Biochim. Biophys. Acta 1988; 938, 125-130) can significantly decrease the apparent value of cation selectivity. It was shown that more accurate results can be obtained if low concentrations of the carrier are used. The values of nigericin cation selectivity for the alkali metals were measured (K+/Rb+ 19 +/- 1, Rb+/Na+ 1.9 +/- 0.2, Na+/Cs+ 8 +/- 0.5, Cs+/Li+ 1.8 +/- 0.3).  相似文献   

5.
Properties of cGMP-activated cation channels were investigated on isolated patches of the ROS plasma membrane using the "patch clamp" technique. The channels were shown to be characterized by ideal cation selectivity under physiological conditions and are nearly equally permeable for cations of alkaline metals. At the same time they are permeable for some bivalence cations (PNa approximately PCa). Other channel properties are described and their comparative analysis is given. It suggests that cGMP-activated cation channels represent a new type of cation channels.  相似文献   

6.
H M Miziorko  R C Sealy 《Biochemistry》1980,19(6):1167-1171
Ribulosebisphosphate carboxylase forms a stable quaternary complex with CO2, divalent cation, and carboxypentitol bisphosphate. Incorporation of nonexchangeable CO2 into the complex requires the presence of a divalent cation. MG2+, Mn2+, or Co2+ supports stoichiometric binding of CO2 activator. When the quaternary complex is formed in the presence of saturating CO2, stoichiometric amounts of cation are bound in a nonexchangeable fashion. Incorporation of Mn2+ into an enzyme-CO2-Mn2+-carboxypentitol bisphosphate complex permitted investigation of cation environment by electron spin resonance (ESR) techniques. Measurements at 9 and 35 GHz suggest rhombic distortion of the coordination sphere of bound Mn2+. A complex inner sphere liganding of the cation bound in the quaternary complex would account for both the ESR spectra and the marked stability of the complex with respect to cation exchange.  相似文献   

7.
In vitro assembly of an intermolecular purine*purine.pyrimidine triple helix requires the presence of a divalent cation. The relationships between cation coordination and triplex assembly were investigated, and we have obtained new evidence for at least three functionally distinct potential modes of divalent cation coordination. (i) The positive influence of the divalent cation on the affinity of the third strand for its specific target correlates with affinity of the cation for coordination to phosphate. (ii) Once assembled, the integrity of the triple helical structure remains dependent upon its divalent cation component. A mode of heterocyclic coordination/chelation is favorable to triplex formation by decreasing the relative tendency for efflux of integral cations from within the triple helical structure. (iii) There is also a detrimental mode of base coordination through which a divalent cation may actively antagonize triplex assembly, even in the presence of other supportive divalent cations. These results demonstrate the considerable impact of the cationic component, and suggest ways in which the triple helical association might be positively or negatively modulated.  相似文献   

8.
Summary The application of selectively working cation exchangers in a soil contaminated with heavy metals such as lead, copper and zinc caused a significant increase of the plant weight and the plant length of maize. The calcium and magnesium percentage of the plant has clearly been influenced by the cation exchangers, whereas the potassium content was especially influenced by an additional fertilization and not by the cation exchangers. The sodium and phosphate content varied very little, the same holds for the manganese and the iron content. Almost no significant differences have been noticed with regard to the total amount of chlorophyll.Similar treatments with cation exchangers highly influence the growth of beans, comparable after two consecutive cultures by means of the plant weight and the cumulative yields. This reaction on the input of cation exchangers in a contaminated soil is much more outspoken when compared to a monocotyledon. A significant positive correlation between the cumulative yield and the pH of the soil has also been noticed.  相似文献   

9.
The report presented here demonstrates that scavenging of chlorpromazine cation radical (an absorption maximum = 530 nm) by ascorbic acid or glutathione can be kinetically and stoichiometrically analyzed at pH 1.5 but not at pH 3.0 and 6.0 using a conventional absorption spectrophotometer. The cation radical decays spontaneously about 10 and 200 times faster at pH 3.0 and 6.0, respectively, than at pH 1.5.At pH 1.5, ascorbic acid scavenges the cation radical faster than glutathione does, and the following different scavenging mechanisms are postulated from the above kinetic and stoichiometric analysis. The reaction of the cation radical with ascorbic acid is second order. The ascorbic acid free radical, which decays mainly by dismutation, is generated by the bimolecular reaction. In the case of glutathione, on the other hand, about 70% of the scavenged cation radical disappears through free radical chain reactions that glutathione thiol anion and glutathione free radical probably initiate. The remaining (about 30%) disappears by conjugation with glutathione. It may be due to relative nonreactivity of ascorbic acid free radical that free radical chain reactions, found commonly in radical chemistry, do not occur in the scavenging reaction by ascorbic acid.Based on the above results, the physiological scavenging mechanisms of the cation radical by the two reducing substances are discussed briefly.  相似文献   

10.
Research on the mechanism of interaction between actin and membrane lipids   总被引:1,自引:0,他引:1  
Using an in vitro system involving pure actin and liposomes, we have established that actin may interact with membrane lipids without any intermediate proteins, and that the mechanism of interaction depends upon the concentration of divalent cation. In the absence of divalent cation, actin increases membrane permeability. Low concentrations (1 mM) of divalent cation potentialize this interaction. In the presence of high divalent cation concentration, actin deposits on the surface of liposomes in a crystalline organization and reduces the membrane microviscosity as shown by the polarization of fluorescence of the DPH probe. We propose that actin interacts with lipids by hydrophobic association which is facilitated by initial electrostatic binding.  相似文献   

11.
S Catarsi  P Drapeau 《Neuron》1992,8(2):275-281
Pressure-sensitive (P) neurons contacted by serotonergic Retzius (R) neurons of the leech in culture selectively reduce a protein kinase C (PKC)-dependent cation response to serotonin and are innervated by the inhibitory, Cl(-)-dependent synapse seen in vivo. We have examined whether the reduction of extrasynaptic cation channel modulation is due to changes in sensitivity of the channels to second messenger. In inside-out membrane patches from single, uncontacted P cells in culture, cation channel activity was increased by rat brain PKC and cofactors. In contrast, the activity of cation channels in patches isolated from P cells paired with R cells was unaffected by PKC. These results demonstrate the loss of extrasynaptic channel modulation by PKC during synapse formation.  相似文献   

12.
《Cell calcium》2013,53(6):445-456
In skeletal muscles from patient suffering of Duchenne Muscular Dystrophy and from mdx mice, the absence of the cytoskeleton protein dystrophin has been shown to be essential for maintaining a normal calcium influx. We showed that a TRPC store-dependent cation influx is increased by loss of dystrophin or a scaffolding protein α1-syntrophin, however the mechanisms of this calcium mishandling are incompletely understood. First of all, we confirmed that TRPC1 but also STIM1 and Orai1 are supporting the store-operated cation entry which is enhanced in dystrophin-deficient myotubes. Next, we demonstrated that inhibition of PLC or PKC in dystrophin-deficient myotubes restores elevated cation entry to normal levels similarly to enforced minidystrophin expression. In addition, silencing α1-syntrophin also increased cation influx in a PLC/PKC dependent pathway. We also showed that α1-syntrophin and PLCβ are part of a same protein complex reinforcing the idea of their inter-relation in calcium influx regulation. This elevated cation entry was decreased to normal levels by chelating intracellular free calcium with BAPTA-AM. Double treatments with BAPTA-AM and PLC or PKC inhibitors suggested that the elevation of cation influx by PLC/PKC pathway is dependent on cytosolic calcium. All these results demonstrate an involvement in dystrophin-deficient myotubes of a specific calcium/PKC/PLC pathway in elevation of store-operated cation influx supported by the STIM1/Orai1/TRPC1 proteins, which is normally regulated by the α1-syntrophin/dystrophin scaffold.  相似文献   

13.
《Free radical research》2013,47(2):229-234
Laser flash photolysis of lycopene in homogeneous chloroform solution together with tocopherol homolopes results in rapid formation of the lycopene radical cation and slower formation of tocopheroxyl radicals. Time-resolved detection by absorption spectroscopy of decay of the lycopene radical cation, of formation of the tocopheroxyl radicals, and of bleaching of lycopene has shown that a-tocopherol is able to reduce the lycopene radical cation and thereby partially regenerate lycopene on a ms timescale. In contrast, lycopene is able to reduce the δ-tocopheroxyl radical, whereas an equilibrium exists between the lycopene radical cation and β- or γ-tocopherol. The relative stability of these antioxidant radicals is hence: a-tocopheroxyl > lycopene radical cation ≈ β-tocopheroxyl - γ-tocopheroxyl > S-toco-pheroxyl.  相似文献   

14.
Trypsin digestion of photosynthetic membranes isolated from spinach (Spinacia oleracea L.) leaves eliminates the cation stimulation of chlorophyll fluorescence. High concentrations of cations protect the fluorescence yield against trypsin digestion, and the cation specificity for this protection closely resembles that required for the stimulation of fluorescence by cations. Trypsin digestion reverses cation-induced thylakoid stacking, and the time course of this effect seems to parallel that of the reversal of cation fluorescence. High concentrations of cations protect thylakoid stacking and cation-stimulated fluorescence alike. The cation stimulation of photosytem II photochemistry remains intact after trypsinization has reversed both cation-induced thylakoid stacking and fluorescence yield. It is concluded that cation-stimulated fluorescence yield, and not the cation stimulation of photosystem II photochemistry, is associated with thylakoid membrane stacking.  相似文献   

15.
The cation exchange properties of cell walls isolated from collard (Bassica oleracea var acephala D.C.) leaves were investigated. Cation sorption on cell walls was described by mass-action expressions of ion exchange, rather than by the traditional Donnan equilibrium. The mass-action expressions enable the selectivity of the wall for one cation over another to be determined unambiguously from ion exchange isotherms. We found that: (a) the cation composition of the wall varied as a function of the solution cation concentration, solution cation composition, and pH in a way predicted by mass action; (b) the affinity of the wall for divalent cations increased as the equivalent fraction of divalent cation on the wall increased, and as the concentration of divalent cations in solution increased; (c) the selectivity of the wall for any metal cation pair was not altered by the concentration of H+ in solution or on the wall; (d) H+ sorption on the wall may be treated as a cation exchange reaction making it possible to calculate the relative affinity of the wall for metal cation pairs from H+-metal (Me) titration curves; and (e) the relative affinity of the wall for the cations we studied was: H+ (K+ ≥ Ca2+) > Mg2+. A cation-exchange model including surface complexes is consistent with observed cation selectivity. We conclude that metal cations interact with the wall to minimize or eliminate long-range electrostatic interactions and suggest that this may be due to the formation of site-specific cation-wall surface complexes.  相似文献   

16.
Membrane stress increases cation permeability in red cells.   总被引:1,自引:1,他引:0       下载免费PDF全文
The human red cell is known to increase its cation permeability when deformed by mechanical forces. Light-scattering measurements were used to quantitate the cell deformation, as ellipticity under shear. Permeability to sodium and potassium was not proportional to the cell deformation. An ellipticity of 0.75 was required to increase the permeability of the membrane to cations, and flux thereafter increased rapidly as the limits of cell extension were reached. Induction of membrane curvature by chemical agents also did not increase cation permeability. These results indicate that membrane deformation per se does not increase permeability, and that membrane tension is the effector for increased cation permeability. This may be relevant to some cation permeabilities observed by patch clamping.  相似文献   

17.
Hydrolysis of D-valyl-L-leucyl-L-arginine p-nitroanilide by human tissue kallikrein (hK1) was studied in the absence and in the presence of increasing concentrations of the following chloride salts: sodium, potassium, calcium, magnesium and aluminium. The data indicate that the inhibition of hK1 by sodium, potassium, calcium and magnesium is linear competitive and that divalent cations are more potent inhibitors of hK1 than univalent cations. However the inhibition of hK1 by aluminium cation is linear mixed, with the cation being able to bind to both the free enzyme and the ES complex. This cation was the best hK1 inhibitor. Aluminium is not a physiological cation, but is a known neurotoxicant for animals and humans. The neurotoxic actions of aluminium may relate to neuro-degenerative diseases.  相似文献   

18.
Abstract

Cation—π interactions between cytosine and hexahydrated cations have been characterized using ab initio method with inclusion of electron correlation effects, assuming idealized and crystal geometries of the interacting species. Hydrated metal cations can interact with nucleobases in a cation—π manner. The stabilization energy of such complexes would be large and comparable to the one for cation—π complex with benzene. Further, polarized water molecules belonging to the hydration shell of the cation are capable to form a strong hydrogen bond interaction with the nitrogen lone electron pair of the amino groups of bases and enforce a pronounced sp3 pyramidalization of the nucleobase amino groups. However, in contrast to the benzene—cation complexes, the cation—π configurations are highly unstable for a nucleobase since the conventional in plane binding of hydrated cations to the acceptor sites on the nucleobase is strongly preferred. Thus, a cation—π interaction with a nucle-obase can occur only if the position of the cation is locked above the nucleobase plane by another strong interaction. This indeed can occur in biopolymers and may have an effect on the local DNA architecture. Nevertheless, nucleobases have no intrinsic propensity to form cation—π interactions.  相似文献   

19.
Steady-state rates of potassium ion and sodium ion absorption by excised barley roots accompanied by various anions were compared with the rates of anion absorption and the concomitant H+ and base release by the roots. The cation absorption rates were found to be independent of the identities, concentrations, and rates of absorption of the anions of the external solution, including bicarbonate. Absorption of the anion of the salt plus bicarbonate could not account for the cation absorption. H+ is released during cation absorption and base during anion absorption. The magnitude by which one or the other predominates depends on the relative rates of anion and cation absorption under various conditions of pH, cation and anion concentration, and inhibitor concentrations. The conclusion is that potassium and sodium ions are absorbed independently of the anions of the absorption solution in exchange for H+, while anions are exchanged for a base. The H+ release reflects a specificity between K+ and Na+ absorption such that it appears to be H+ exchanged in the specific rate-limiting reactions of the cation absorption.  相似文献   

20.
Depolarization of plasma membrane potential has a potent inhibitory effect on divalent cation influx catalyzed by the carboxylic ionophores ionomycin and A23187. This effect is observed in different cell models and does not depend on either inhibition of Ca2+-activated cation channels or activation of Ca2+ extrusion mechanisms as suggested previously. A dependence of divalent cation influx on the magnitude of membrane potential is observed also in artificial liposomes. The inhibition of ionophore-dependent divalent cation transport by membrane potential depolarization can be modified varying the ionophore concentration and the external pH. These findings suggest that both neutral and positively charged ionophore-cation complexes can cross the plasma membrane and that their contribution to the overall transport process can be varied according to the experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号