首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The effects of guanine nucleotides, NaCl, and solubilization on the interaction of antagonists and agonists with the A1 adenosine receptor of bovine brain membranes were studied using the high-affinity antagonist radioligand [3H]xanthine amine congener ([3H]XAC). In membranes, guanine nucleotides and NaCl had no effect on [3H]XAC saturation curves. Using agonist (R)-phenylisopropyladenosine (R-PIA) competition curves versus [3H]XAC, it was demonstrated that agonists could differentiate two affinity states having high and low affinity for agonist and that guanine nucleotides shifted the equilibrium to an all-low-affinity state that was indistinguishable from the low-affinity state in the absence of guanine nucleotides. In contrast, NaCl decreased agonist affinity by a distinctly different mechanism characterized by a parallel rightward shifted agonist curve such that R-PIA still recognized two affinity states albeit of lower affinity than in the absence of salt. R-PIA competition curves in the presence of both guanine nucleotides and salt were still shallow but were shifted far to the right, and two very low affinity states were discerned. On solubilization, guanine nucleotides in a reversible, concentration-dependent manner increased antagonist ([3H]XAC) but not agonist (R-N6-[3H]phenylisopropyladenosine) binding. This was consequent to a change in maximal binding capacity. R-PIA competition curves (versus [3H]XAC) in solubilized preparations demonstrated that agonist could still differentiate two agonist specific affinity states which were modulated by guanine nucleotides. In the presence of guanine nucleotides all the receptors were shifted to a uniform low-affinity state. In contrast, NaCl had no effect on agonist affinity as determined by agonist competition curves in a solubilized receptor preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A1 adenosine receptors from rat brain membranes were solubilized with the zwitterionic detergent 3-[3-(cholamidopropyl)dimethylammonio]-1-propanesulfonate. The solubilized receptors retained all the characteristics of membrane-bound A1 adenosine receptors. A high and a low agonist affinity state for the radiolabelled agonist (R)-N6-[3H]phenylisopropyladenosine([3H]PIA) with KD values of 0.3 and 12 nM, respectively, were detected. High-affinity agonist binding was regulated by guanine nucleotides. In addition agonist binding was still modulated by divalent cations. The solubilized A1 adenosine receptors could be labelled not only with the agonist [3H]PIA but also with the antagonist 1,3-diethyl-8-[3H]phenylxanthine. Guanine nucleotides did not affect antagonist binding as reported for membrane-bound receptors. These results suggest that the solubilized receptors are still coupled to the guanine nucleotide binding protein Ni and that all regulatory functions are retained on solubilization.  相似文献   

3.
The effects of guanine nucleotides on binding of 8-cyclopentyl-1,3-[3H]dipropylxanthine ([3H]DPCPX), a highly selective A1 adenosine receptor antagonist, have been investigated in rat brain membranes and solubilized A1 receptors. GTP, which induces uncoupling of receptors from guanine nucleotide binding proteins, increased binding of [3H]DPCPX in a concentration-dependent manner. The rank order of potency for different guanine nucleotides for increasing [3H]DPCPX binding was the same as for guanine nucleotide-induced inhibition of agonist binding. Therefore, a role for a guanine nucleotide binding protein, e.g., Gi, in the regulation of antagonist binding is suggested. This was confirmed by inactivation of Gi by N-ethylmaleimide (NEM) treatment of membranes, which resulted in an increase in [3H]DPCPX binding similar to that seen with addition of GTP. Kinetic and equilibrium binding studies showed that the GTP- or NEM-induced increase in antagonist binding was not caused by an affinity change of A1 receptors for [3H]DPCPX but by an increased Bmax value. Guanine nucleotides had similar effects on membrane-bound and solubilized receptors, with the effects in the solubilized system being more pronounced. In the absence of GTP, when most receptors are in a high-affinity state for agonists, only a few receptors are labeled by [3H]DPCPX. It is suggested that [3H]DPCPX binding is inhibited when receptors are coupled to Gi. Therefore, uncoupling of A1 receptors from Gi by guanine nucleotides or by inactivation of Gi with NEM results in an increased antagonist binding.  相似文献   

4.
Abstract: Chronic treatment with the adenosine receptor antagonist caffeine evokes an up-regulation of A1 adenosine receptors and increased coupling of the receptor to G proteins in rat brain membranes. However, chronic agonist exposure has not been explored. Primary cultures of cerebellar granule cells were exposed chronically to A1 adenosine receptor agonists and antagonists. Exposure to the A1 adenosine receptor agonist N 6-cyclopentyladenosine resulted in (1) a time- and concentration-dependent reduction in the density of receptors labeled by 1,3-[3H]dipropyl-8-cyclopentylxanthine, (2) an enhanced ability of guanyl nucleotides to decrease the fraction of A1 adenosine receptor sites displaying high affinity for 2-chloroadenosine, and (3) a functional uncoupling of receptors from adenylyl cyclase (EC 4.6.1.1). The adenosine antagonists caffeine and 8- p -sulfophenyltheophylline produced alterations in A1 adenosine receptor homeostasis that were antipodal to those associated with agonist treatment. Antagonist exposure (1) increased the density of A1 adenosine receptors in cerebellar granule cell membranes, (2) blunted the effect of guanyl nucleotides on receptor coupling to G proteins, and (3) increased the functional coupling of receptors to adenylyl cyclase inhibition. Forskolin treatment of cerebellar granule cells did not affect receptor density, suggesting that cyclic AMP is not involved in the regulation of A1 adenosine receptor expression.  相似文献   

5.
A1 adenosine receptor-binding subunits can be visualized using high affinity antagonist and agonist photoaffinity radioligands. In the present study, we examined whether agonists and antagonists bind to the same receptor-binding subunit and if agonists and antagonists induce different conformational states of the receptor in intact membranes. It was demonstrated that several agonist and antagonist photoaffinity receptor-binding subunit. When the agonist and antagonist photoaffinity labeled peptides were denatured and subjected to partial peptide map analysis using a two-dimensional gel electrophoresis system similar peptide fragments were generated from each specifically labeled protein. This suggests that both classes of ligand label and incorporate into the same binding subunit. Proteolytic digestions of agonist- and antagonist-occupied receptors in native intact membranes revealed distinct and different peptide fragments depending on whether the ligand was an agonist or an antagonist. Manipulation of incubation conditions to perturb ligand-receptor interactions alter the pattern of peptide fragments generated with each specific protease. These data suggest that agonist and antagonist photoaffinity probes interact with an incorporate into the same binding subunit but that agonist binding is associated with a unique and detectable receptor conformation.  相似文献   

6.
Adenosine acting through membrane-bound A1 receptors is capable of inhibiting the enzyme adenylate cyclase. A1 adenosine receptors from rat cerebral cortex have been solubilized in high yield and in an active form with the detergent digitonin. The solubilized receptors bind the agonist radioligand (-)-N6-3-[125I] iodo-4-hydroxyphenylisopropyl)adenosine (HPIA) with the same high affinity, demonstrate the same agonist and antagonist potency series and stereo-specificity as the membrane-bound A1 receptor. In addition to maintaining high affinity agonist binding, soluble A1 receptors' affinity for agonists is still modulated by guanine nucleotides. This result contrasts with other adenylate cyclase coupled receptors (beta 2, alpha 2, D2) wherein high affinity agonist binding is lost subsequent to solubilization. To investigate the molecular basis for this difference, solubilized A1 receptors which were labeled with [125I]HPIA either prior to or subsequent to solubilization, were compared by sucrose density gradient centrifugation. Both labeled species demonstrated exactly the same sedimentation properties and display guanine nucleotide sensitivity. This suggests that the same guanine nucleotide-sensitive receptor complex formed in membranes in stable to solubilization and can form a high affinity agonist complex in soluble preparation. The molecular mechanism responsible for the stable receptor complex in this system compared to the beta 2, alpha 2, and D2 systems remains to be determined.  相似文献   

7.
Dopamine receptors, solubilized from bovine anterior pituitary membranes with the detergent digitonin, retained a typical dopaminergic specificity for the binding of both agonists and antagonists. The affinities of antagonists for binding to the soluble receptors are virtually identical with those observed with the membrane-bound receptors. The affinities of agonists however, correspond to those for the form of the receptors in the membranes having low affinity for those agonists (De Lean, A., Kilpatrick, B. F., and Caron, M. G. (1982) Mol. Pharmacol. 22, 290-297). Thus, after solubilization, agonist high affinity interactions with the receptor and their sensitivity to modulation by guanine nucleotides are lost. However, high affinity agonist binding and its sensitivity to guanine nucleotides can be preserved if the membrane-bound receptors are prelabeled with the agonist [3H]n-propylapomorphine prior to solubilization. In order to investigate the molecular basis for these changes in the properties of agonist binding, the solubilized receptors were characterized by chromatographic procedures. Using molecular exclusion high pressure liquid chromatography, [3H]n-propylapomorphine-prelabeled receptors elute as an apparent larger molecular species than either unlabeled or antagonist [( 3H]spiroperidol)-pre-labeled receptors. Moreover, incubation of the pooled agonist-prelabeled receptor peak with guanine nucleotides effects a decrease in the apparent size of the receptors such that upon rechromatography they elute in a position coincidental with the 3H-antagonist-pre-labeled receptor peak. Thus, occupancy of the receptors by agonists promotes the formation of a guanine nucleotide-sensitive agonist high affinity form of the receptor which is of larger apparent size presumably due to the association of the receptor with a guanine nucleotide regulatory protein.  相似文献   

8.
Pretreatment of striatal membranes with N-ethylmaleimide in the presence of a D1-specific agonist inactivated endogenous guanine nucleotide binding proteins (G proteins), but not D1 dopamine receptors, resulting in a loss of high-affinity agonist binding sites. Such D1 receptors were solubilized, mixed with exogenous G proteins from cells not containing D1 receptors, and reconstituted into phospholipid vesicles. These reconstituted receptors were able to couple to the exogenous G proteins, and the proportion of agonist high-affinity sites of the receptor (40-57%) was similar to levels obtained with naive receptors coupling to endogenous G proteins (40%) upon solubilization and reconstitution. These hybrid high-affinity sites were fully modulated by guanine nucleotides. Pretreatment of cells with pertussis toxin prior to extraction of G proteins resulted in a 50% decrease in the proportion of high-affinity sites; these sites remained sensitive to guanine nucleotides. When D1 receptors were reconstituted with extracts of cyc- cells, which lack stimulatory G proteins, the proportion of high-affinity sites was reduced to 31% of the total. Pertussis toxin treatment of the cyc- cells completely abolished the formation of high-affinity sites. These results demonstrate that D1-dopaminergic receptors are able to couple to not only stimulatory G proteins (Gs), but also to inhibitory G proteins (Gi).  相似文献   

9.
D2 dopamine receptor from bovine striatum was solubilized in a form sensitive to guanine nucleotides, by means of a zwitterionic detergent, 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate (CHAPS). The presence of sodium ion markedly increased the solubilization yield. Treatment of the membranes with 10 mM CHAPS and 0.72 M NaCl solubilized 26% of the stereospecific [3H]spiperone binding sites in the original membrane preparations. The solubilized [3H]spiperone binding sites possessed characteristics of the D2 dopamine receptor: (a) localization of the site in the striatum but not in the cerebellum; (b) high affinity to nanomolar concentrations of [3H]spiperone; (c) displacement of [3H]spiperone binding by nanomolar concentrations of neuroleptics, but only by micromolar concentrations of dopamine and apomorphine; (d) equal activity of various dopamine agonists and antagonists in the soluble and membrane preparations. Guanine nucleotides decreased the affinity of the solubilized D2 dopamine receptor for dopamine agonists, but not for antagonists. The solubilized receptor complex was eluted in Sepharose CL-4B column chromatography as a large molecule, with a Stokes radius of approximately 90 A. These results indicate that the complex between the D2 dopamine receptor and GTP binding protein remains intact throughout the solubilization procedure.  相似文献   

10.
Dopamine D1 receptors were solubilized from canine and bovine striatal membranes with the detergent digitonin. The receptors retained the pharmacological characteristics of membrane-bound D1 receptors, as assessed by the binding of the selective antagonist [3H]SCH 23390. The binding of [3H]SCH 23390 to solubilized receptor preparations was specific, saturable, and reversible, with a dissociation constant of 5 nM. Dopaminergic antagonists and agonists inhibited [3H]SCH 23390 binding in a stereoselective and concentration-dependent manner with an appropriate rank order of potency for D1 receptors. Moreover, agonist high affinity binding to D1 receptors and its sensitivity to guanine nucleotides was preserved following solubilization, with agonist dissociation constants virtually identical to those observed with membrane-bound receptors. To ascertain the molecular basis for the existence of an agonist-high affinity receptor complex, D1 receptors labeled with [3H] dopamine (agonist) or [3H]SCH 23390 (antagonist) prior to, or following, solubilization were subjected to high pressure liquid steric-exclusion chromatography. All agonist- and antagonist-labeled receptor species elute as the same apparent molecular size. Treatment of brain membranes with the guanine nucleotide guanyl-5'-yl imidodiphosphate prior to solubilization prevented the retention of [3H]dopamine but not [3H]SCH 23390-labeled soluble receptors. This suggests that the same guanine nucleotide-dopamine D1 receptor complex formed in membranes is stable to solubilization and confers agonist high affinity binding in soluble preparations. These results contrast with those reported on the digitonin-solubilized dopamine D2 receptor, and the molecular mechanism responsible for this difference remains to be elucidated.  相似文献   

11.
Clathrin-coated vesicles purified from bovine brain express adenosine A1 receptor binding activity. N6-Cyclohexyl[3H]adenosine [( 3H]CHA), an agonist for the A1 receptor, binds specifically to coated vesicles. High and low agonist affinity states of the receptor for the radioligand [3H]CHA with KD values of 0.18 and 4.4 nM, respectively, were detected. The high purity of coated vesicles was established by assays for biochemical markers and by electron microscopy. Binding competition experiments using agonists (N6CHA, N-cyclopentyladenosine, 5'-(N-ethylcarboxamido)adenosine, and N6-[(R)- and N6-[(S)-phenylisopropyl]adenosine) and antagonists (theophylline, 3-isobutyl-1-methylxanthine, and caffeine) confirmed the typical adenosine A1 nature of the binding site. This binding site presents stereospecificity for N6-phenylisopropyladenosine, showing 33 times more affinity for N6-[(R)- than for N6-[(S)-phenylisopropyl]adenosine. The specific binding of [3H]CHA in coated vesicles is regulated by guanine nucleotides. [3H]CHA specific binding was decreased by 70% in the presence of the hydrolysis-resistant GTP analogue guanyl-5-yl-imidodiphosphate. Bovine brain coated vesicles present adenylate cyclase activity. This activity was modulated by forskolin and CHA. The results of this study support the evidence that adenosine A1 receptors present in coated vesicles are coupled to adenylate cyclase activity through a Gi protein.  相似文献   

12.
The serotonin1A (5-HT1A) receptor is an important member of the superfamily of seven transmembrane domain G-protein coupled receptors (GPCRs). We report here that guanine nucleotide sensitivity of agonist binding to hippocampal 5-HT1A receptors is dependent on the concentration of Mg2+. Our results show that agonist binding to 5-HT1A receptors is relatively insensitive to guanine nucleotides in the absence of Mg2+. In contrast to this, the specific antagonist binding is insensitive to guanine nucleotides, even in the presence of Mg2+. These results point out the requirement of an optimal concentration of Mg2+ which could be used in assays toward determining guanine nucleotide sensitivity of ligand binding to GPCRs such as the 5-HT1A receptor. Our results provide novel insight into the requirement and concentration dependence of Mg2+ in relation to guanine nucleotide sensitivity for the 5-HT1A receptor in particular, and GPCRs in general.  相似文献   

13.
Pertussis toxin-catalyzed ADP-ribosylation of the guanine nucleotide-binding proteins Gi and Go is shown to proceed in Mg2+-digitonin extracts from rat brain; the Mr 41,000 and Mr 39,000 peptides are labelled there as in the membranes. The ADP-ribosylation in detergent solution retains the differential sensitivity to guanine nucleotide analogues. This reaction also removes the partial inhibition by the guanine nucleotides of the binding of opioid agonists, as does the same treatment in the membranes. The partial inhibition of agonist binding by Na+, however, is left unchanged. The binding of the antagonist naloxone is little affected by Na+ or by guanine nucleotides in the treated membranes, but the treated soluble receptors show an enhanced binding in high-Na+ medium, although still guanine nucleotide insensitive. The data suggest that the toxin reaction in the absence of guanine nucleotides and agonist stabilizes the opioid receptor in a receptor-G-protein coupled state which is no longer sensitive to guanine nucleotides but retains its sensitivity to the Na+ ions.  相似文献   

14.
Quantitative autoradiography was used to investigate the effects of Mg2+ on agonist and antagonist binding to A1 receptors in rat striatum. A1 receptors were labelled with the selective agonist N6-[3H]cyclohexyladenosine ([3H]CHA) or the selective antagonist 1,3-[3H]dipropyl-8-cyclopentylxanthine ([3H]DPCPX). Mg2+ had no significant effect on equilibrium binding constants for [3H]CHA [control: KD (95% confidence interval) of 0.34 (0.15-0.80) nM and Bmax of 267 +/- 8 fmol/mg of gray matter; with 10 mM Mg2+: KD of 0.8 (0.13-4.9) nM and Bmax of 313 +/- 8.9 fmol/mg of gray matter] or [3H]DPCPX [control: KD of 0.54 (0.30-0.99) nM and Bmax of 256 +/- 2.3 fmol/mg of gray matter; with 10 mM Mg2+: KD of 1.54 (0.2-11.0) nM and Bmax of 269 +/- 35.7 fmol/mg of gray matter]. In contrast, Mg2+ slowed the apparent association rate for both ligands; this was observed as a shift from a one-component to a two-component model for [3H]DPCPX. Mg2+ also affected the dissociation rates of both ligands; for [3H]CHA, dissociation in the presence of Mg2+ was not detected. Mg2+ produced a concentration-dependent inhibition of [3H]CHA binding only prior to equilibrium. HPLC was performed on untreated sections, sections preincubated with adenosine deaminase (ADA), and sections preincubated with ADA and incubated with ADA in the absence or presence of Mg2+. Adenosine was found in measurable quantities under all conditions, and the concentration was not influenced by Mg2+ or by the inclusion of GTP in the preincubation medium. From these data, we conclude the following: (a) adenosine is present and may be produced continuously in brain sections; (b) ADA is not capable of completely eliminating the produced adenosine; (c) Mg2+ apparently does not influence adenosine production or elimination; (d) A1 receptor-guanine nucleotide binding protein coupling is maximal in this preparation; and (e) Mg2+ decreases the dissociation rate of bound endogenous adenosine from A1 receptors, thus limiting the access of [3H]CHA and [3H]DPCPX to the receptors. Thus, enhancement of endogenous adenosine binding to A1 receptors by Mg2+ is a complicating factor in receptor autoradiography and may be so in other preparations as well.  相似文献   

15.
Both A1 and A2a Purine Receptors Regulate Striatal Acetylcholine Release   总被引:2,自引:2,他引:0  
The receptors responsible for the adenosine-mediated control of acetylcholine release from immunoaffinity-purified rat striatal cholinergic nerve terminals have been characterized. The relative affinities of three analogues for the inhibitory receptor were (R)-phenylisopropyladenosine greater than cyclohexyladenosine greater than N-ethylcarboxamidoadenosine (NECA), with binding being dependent of the presence of Mg2+ and inhibited by 5'-guanylylimidodiphosphate [Gpp(NH)p] and adenosine receptor antagonists. Adenosine A1 receptor agonists inhibited forskolin-stimulated cholinergic adenylate cyclase activity, with an IC50 of 0.5 nM for (R)-phenylisopropyladenosine and 500 nM for (S)-phenylisopropyladenosine. A1 agonists inhibited acetylcholine release at concentrations approximately 10% of those required to inhibit the cholinergic adenylate cyclase. High concentrations (1 microM) of adenosine A1 agonists were less effective in inhibiting both adenylate cyclase and acetylcholine release, due to the presence of a lower affinity stimulatory A2 receptor. Blockade of the A1 receptor with 8-cyclopentyl-1,3-dipropylxanthine revealed a half-maximal stimulation by NECA of the adenylate cyclase at 10 nM, and of acetylcholine release at approximately 100 nM. NECA-stimulated adenylate cyclase activity copurified with choline acetyltransferase in the preparation of the cholinergic nerve terminals, suggesting that the striatal A2 receptor is localized to cholinergic neurones. The possible role of feedback inhibitory and stimulatory receptors on cholinergic nerve terminals is discussed.  相似文献   

16.
Although dopamine agonists can recognize two states of the D2 dopamine receptor in the anterior pituitary (D2high and D2low), we examined whether the dopamine antagonists such as [3H]spiperone could recognize these two sites with different affinities. Using up to 30 concentrations of [3H]spiperone, however, we could only detect a single population of binding sites (porcine anterior pituitary homogenates) with a dissociation constant (KD) of 130 pM. When specific [3H]spiperone binding was defined by a low concentration of (+)-butaclamol (100 nM), the apparent density was low. When defined by a high concentration of (+)-butaclamol (10 microM), nonspecific sites became detectable, thus revealing two apparent populations of sites for [3H]spiperone, only one of which was specific for dopamine. Sodium chloride reduced the KD of the single population of specific D2 sites to 64 pM. Guanine nucleotide by itself had no effect on the KD, but enhanced the density by 25%. Since the density-enhancement could be eliminated by extensive washing of membranes, and could be restored by preincubation with dopamine, the nucleotide-induced elevation of D2 density appeared to be a result of the release of tightly bound endogenous dopamine. Thus, monovalent cations and guanine nucleotides appear to have separate regulatory effects on the anterior pituitary D2 receptor that modulate antagonist-receptor interactions. Several maneuvers were used to test whether [3H]spiperone could differentiate between the two agonist-detected subpopulations of sites. Twentyfold different concentrations of [3H]spiperone (47 pM and 1000 pM) were found to label identical proportions of receptors in the D2high and D2low states as detected by the agonist 6,7-dihydroxyaminotetralin (ADTN), suggesting that spiperone labelled equal proportions of D2high and D2low sites without differential affinity for them. In addition, competition of spiperone for D2high sites selectively labelled by the agonist [3H]n-propylnorapomorphine (NPA) had a virtually identical KD for spiperone as did the total D2 receptor population as determined by direct binding studies (75 pM versus 64 pM). [3H]Spiperone also bound to a uniform population of D2low sites induced by preincubation with guanine nucleotide with identical affinity as to the total D2 population. Thus, these data do not support a "reciprocal model" for the D2 receptor (i.e., antagonist having low affinity for D2high and high affinity for D2low in a manner reciprocal to agonists).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Abstract: Cultured astroglia express both adenosine and ATP purinergic receptors that are coupled to increases in intracellular calcium concentration ([Ca2+]i). Currently, there is little evidence that such purinergic receptors exist on astrocytes in vivo. To address this issue, calcium-sensitive fluorescent dyes were used in conjunction with confocal microscopy and immunocytochemistry to examine the responsiveness of astrocytes in acutely isolated hippocampal slices to purinergic neuroligands. Both ATP and adenosine induced dynamic increases in astrocytic [Ca2+]i that were blocked by the adenosine receptor antagonist 8-( p -sulfophenyl)theophylline. The responses to adenosine were not blocked by tetrodotoxin, 8-cyclopentyltheophylline, 8-(3-chlorostyryl)caffeine, dipyridamole, or removal of extracellular calcium. The P2Y-selective agonist 2-methylthioadenosine triphosphate was unable to induce increases in astrocytic [Ca2+]i, whereas the P2 agonist adenosine 5'- O -(2-thiodiphosphate) induced astrocytic responses in a low percentage of astrocytes. These results indicate that the majority of hippocampal astrocytes in situ contain P1 purinergic receptors coupled to increases in [Ca2+]i, whereas a small minority appear to contain P2 purinergic receptors. Furthermore, individual hippocampal astrocytes responded to adenosine, glutamate, and depolarization with increases in [Ca2+]i. The existence of both purinergic and glutamatergic receptors on individual astrocytes in situ suggests that astrocytes in vivo are able to integrate information derived from glutamate and adenosine receptor stimulation.  相似文献   

18.
Specific D2 binding in rat striatum was characterized and then the effects of chronic disruption of dopaminergic activity on antagonist and agonist binding to these sites were studied. D2 receptors were defined as those sites capable of binding [3H]spiperone in the presence of cinanserin, a 5-HT2 antagonist, but not in the presence of (+)-butaclamol, a D2 and 5-HT2 blocker. Saturation, competition, and kinetic analyses suggested that D2 receptors are a homogeneous population exhibiting more complex interactions with agonists than antagonists. Antagonist binding was monophasic and guanine nucleotide-insensitive whereas agonist binding was biphasic and guanine nucleotide-sensitive. D2 receptor density was elevated by more than 40% following dopamine depletion by 6-hydroxydopamine or chronic receptor blockade by haloperidol. However neither treatment altered the affinities or magnitudes of the high- and low-affinity components associated with agonist binding to the D2 receptor.  相似文献   

19.
The binding sites for opiates (agonist and antagonist) and opioid peptides can be solubilized from rat brain membranes with digitonin in the presence of Mg2+ (10 mM). High affinity and high capacity binding to the soluble delta, mu, and kappa receptors is obtainable when the membranes are treated in Mg2+ (30 degrees C, 60 min) prior to solubilization. The yields of solubilized binding sites extracted with digitonin, 40-90%, are higher than those obtained from Mg2+-pretreated membranes with other detergents commonly used for receptor solubilization. The stability of the digitonin-soluble opioid receptor at room temperature makes it useful for purification and characterization.  相似文献   

20.
Purification and partial sequence analysis of plant annexins.   总被引:10,自引:0,他引:10       下载免费PDF全文
1. White adipocytes were found to be more responsive than brown adipocytes to inhibition of lipolysis by the A1 adenosine receptor agonist phenylisopropyladenosine. 2. Radioligand binding studies with plasma membranes isolated from the two adipocyte types indicated differences in the properties of the A1 receptors. Kd values (high and low affinity) for phenylisopropyladenosine were higher in membranes from brown adipocytes. The Kd values for the antagonist dipropylcyclopentylxanthine were also higher in brown adipocyte membranes. 3. The effects of guanine nucleotides in converting adipocyte A1 receptors into a low-affinity state were enhanced by dithiothreitol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号