首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diabetogenic action of alloxan is believed to involve oxygen free radicals and iron. Incubation of glutathione (GSH) and alloxan with rat liver ferritin resulted in release of ferrous iron as assayed by spectrophotometric detection of ferrous-bathophenanthroline complex formation. Neither GSH nor alloxan alone mediated iron release from ferritin. Superoxide dismutase (SOD) and catalase did not affect initial rates of iron release whereas ceruloplasmin was an effective inhibitor of iron release. The reaction of GSH with alloxan resulted in the formation of the alloxan radical which was detected by ESR spectroscopy and by following the increase in absorbance at 310nm. In both instances, the addition of ferritin resulted in diminished alloxan radical detection. Incubation of GSH, alloxan, and ferritin with phospholipid liposomes also resulted in lipid peroxidation. Lipid peroxidation did not occur in the absence of ferritin. The rates of lipid peroxidation were not affected by the addition of SOD or catalase, but were inhibited by ceruloplasmin. These results suggest that the alloxan radical releases iron from ferritin and indicates that ferritin iron may be involved in alloxan-promoted lipid peroxidation.  相似文献   

2.
A novel anti-5,5-dimethyl-1-pyrroline N-oxide (DMPO) polyclonal antiserum that specifically recognizes protein radical-derived DMPO nitrone adducts has been developed. In this study, we employed this new approach, which combines the specificity of spin trapping and the sensitivity of antigen-antibody interactions, to investigate protein radical formation from lactoperoxidase (LPO). When LPO reacted with GSH in the presence of DMPO, we detected an LPO radical-derived DMPO nitrone adduct using enzyme-linked immunosorbent assay and Western blotting. The formation of this nitrone adduct depended on the concentrations of GSH, LPO, and DMPO as well as pH values, and GSH could not be replaced by H(2)O(2). The level of this nitrone adduct was decreased significantly by azide, catalase, ascorbate, iodide, thiocyanate, phenol, or nitrite. However, its formation was unaffected by chemical modification of free cysteine, tyrosine, and tryptophan residues on LPO. ESR spectra showed that a glutathiyl radical was formed from the LPO/GSH/DMPO system, but no protein radical adduct could be detected by ESR. Its formation was decreased by azide, catalase, ascorbate, iodide, or thiocyanate, whereas phenol or nitrite increased it. GSH caused marked changes in the spectrum of compound II of LPO, indicating that GSH binds to the heme of compound II, whereas phenol or nitrite prevented these changes and reduced compound II back to the native enzyme. GSH also dose-dependently inhibited the peroxidase activity of LPO as determined by measuring 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) oxidation. Taken together, these results demonstrate that the GSH-dependent LPO radical formation is mediated by the glutathiyl radical, possibly via the reaction of the glutathiyl radical with the heme of compound II to form a heme-centered radical trapped by DMPO.  相似文献   

3.
The oxidation of the fluorescent dye 2',7'-dichlorofluorescein (DCF) by horseradish peroxidase was investigated by optical absorption, electron spin resonance (ESR), and oxygen consumption measurements. Spectrophotometric measurements showed that DCF could be oxidized either by horseradish peroxidase-compound I or -compound II with the obligate generation of the DCF phenoxyl radical (DCF(.)). This one-electron oxidation was confirmed by ESR spin-trapping experiments. DCF(.) oxidizes GSH, generating the glutathione thiyl radical (GS(.)), which was detected by the ESR spin-trapping technique. In this case, oxygen was consumed by a sequence of reactions initiated by the GS(.) radical. Similarly, DCF(.) oxidized NADH, generating the NAD(.) radical that reduced oxygen to superoxide (O-(2)), which was also detected by the ESR spin-trapping technique. Superoxide dismutated to generate H(2)O(2), which reacted with horseradish peroxidase, setting up an enzymatic chain reaction leading to H(2)O(2) production and oxygen consumption. In contrast, when ascorbic acid reduced the DCF phenoxyl radical back to its parent molecule, it formed the unreactive ascorbate anion radical. Clearly, DCF catalytically stimulates the formation of reactive oxygen species in a manner that is dependent on and affected by various biochemical reducing agents. This study, together with our earlier studies, demonstrates that DCFH cannot be used conclusively to measure superoxide or hydrogen peroxide formation in cells undergoing oxidative stress.  相似文献   

4.
This in vitro study compares the frequency of redox cycling between alloxan and dialuric acid at different initial ratios of glutathione and alloxan. Alloxan oxidizes GSH to GSSG. The rate of GSH oxidation at a given initial GSH concentration of 2.0 mmol/L depends on the initial concentration of alloxan added. The higher the concentration of alloxan in relation to the initial concentration of GSH, the faster GSH oxidation proceeds, as well as oxygen consumption, and therefore, formation of reactive oxygen species. The highest rates of GSH oxidation, i.e. GSSG formation, were found at concentration ratios of between 2.0 mmol/L GSH and 0.2 and 0.04 mmol/L alloxan, respectively. Because 0.04 mmol/L alloxan oxidizes 2.0 mmol/L GSH completely, a frequency of at least 25 cycles between alloxan and dialuric acid within 3 hours can be assumed. During each redox cycle, two molecules of GSH are oxidized to one molecule of GSSG, and during each cycle one molecule of oxygen is reduced simultaneously to one molecule of hydrogen peroxide. In total, therefore, one molecule of alloxan oxidizes at least 50 molecules of GSH and forms about 25 molecules of hydrogen peroxide.  相似文献   

5.
Glutathione acts as a universal scavenger of free radicals at the expense of the formation of the glutathionyl radicals (GS*). Here we demonstrated that GS* radicals specifically interact with a reporter molecule, paramagnetic and non-fluorescent 4-((9-acridinecarbonyl)-amino)-2,2,6,6-tetramethylpiperidine-1-oxyl (Ac-Tempo), and convert it into a non-paramagnetic fluorescent product, identified as 4-((9-acridinecarbonyl)amino)-2,2,6,6-tetramethylpiperidine (Ac-piperidine). Horseradish peroxidase-, myeloperoxidase-, and cyclooxygenasecatalyzed oxidation of phenol in the presence of H2O2 and GSH caused the generation of phenoxyl radicals and GS* radicals, of which only the latter reacted with Ac-Tempo. Oxidation of several other phenolic compounds (e.g. etoposide and tyrosine) was accompanied by the formation of GS* radicals along with a characteristic fluorescence response from Ac-Tempo. In myeloperoxidase-rich HL-60 cells treated with H2O2 and phenol, fluorescence microscopic imaging of Ac-Tempo revealed the production of GS* radicals. A thiol-blocking reagent, N-ethylmaleimide, as well as myeloperoxidase inhibitors (succinyl acetone and azide), blocked formation of fluorescent acridine-piperidine. H2O2/phenolinduced peroxidation of major classes of phospholipids in HL-60 cells was completely inhibited by Ac-Tempo, indicating that GS* radicals were responsible for phospholipid peroxidation. Thus, GSH, commonly viewed as a universal free radical scavenger and major intracellular antioxidant, acts as a pro-oxidant during myeloperoxidase-catalyzed metabolism of phenol in HL-60 cells.  相似文献   

6.
We report here the application of the electron spin resonance technique to detect free radicals formed by the hydroperoxidase activity of prostaglandin H synthase in cells. Studies were done using keratinocytes obtained from hairless mice. These cells can be prepared in large number and possess significant prostaglandin H synthase activity. Initial attempts to directly detect free radical metabolites of several amines in cells were unsuccessful. A technique was developed based on the ability of some free radicals formed by prostaglandin hydroperoxidase to oxidize reduced glutathione (GSH) to a thiyl radical, which was trapped by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). Phenol and aminopyrine are excellent hydroperoxidase substrates for this purpose and thus were used for all further experiments. Using this approach we detected the DMPO/GS.thiyl radical adduct catalyzed by cellular prostaglandin hydroperoxidase. The formation of the radical was dependent on the addition of substrate, inhibited by indomethacin, and supported by either exogenous arachidonic acid or endogenous arachidonic acid released from phospholipid stores by Ca2+ ionophore A-23187. The addition of GSH significantly increased the intracellular GSH concentration and concomitantly stimulated the formation of the DMPO/GS.thiyl radical adduct. Phenol, but not aminopyrine, enhanced thiyl radical adduct formation and prostaglandin formation with keratinocytes while both cofactors were equally effective in incubations containing microsomes prepared from keratinocytes. These results suggest that prostaglandin hydroperoxidase-dependent co-oxidation of chemicals can result in the intracellular formation of free radical metabolites.  相似文献   

7.
Jiao Y  Shashkin P  Katz A 《Life sciences》2001,69(8):891-900
It was recently reported that MnSO4 stimulates glycogen synthase-dependent glucose transfer from UDPglucose into trichloroacetic acid precipitable endogenous glycoproteins (GSMn(T)) in human muscle extracts. To determine the physiologic significance of this reaction, we compared a new GS activity ratio, GSMn(T)/GSH(E) (where GSH(E) represents the usual glucose transfer to ethanol precipitable exogenous glycogen by GS at 7.2 mM glucose 6-phosphate), with the generally used GSL(E)/GSH(E) ratio (where GSL(E) represents glucose transfer at 0.17 mM glucose 6-P concentration). Biopsies were obtained from the quadriceps femoris muscle of healthy subjects at rest, after 40 min of bicycle exercise at approximately 65% of maximal oxygen uptake and after isometric contraction at 2/3 maximal force to fatigue (approximately 1 min). GSMn(T)/GSH(E) increased from 0.012+/-0.002 at rest to 0.054+/-0.008 (P<0.01) after 40 min of bicycle exercise and the increase in GSMn(T) activity was strongly related to the decrease in endogenous glycogen (i.e.. increase in short-chain endogenous glycoproteins) (r=0.90; P<0.05). On the other hand, GSL(E)/GSH(E) did not change significantly after bicycle exercise (rest = 0.49+/-0.04; exercise = 0.58+/-0.08, P>0.05). GSMn(T)/GSH(E) increased from 0.010+/-0.001 at rest to 0.016+/-0.002 (P<0.05) after isometric exercise, whereas GSL(E)/GSH(E) decreased from 0.27+/-0.04 to 0.20+/-0.02 (P<0.05) under corresponding conditions. Last, insulin, which stimulates glycogen synthesis, also increased GSMn(T)/GSH(E) (1.8-fold, P<0.05), as well as GSL(E)/GSH(E) (1.4-fold, P<0.05), in isolated rat soleus muscle. These data indicate that GSMn(T)/GSH(E) is influenced by endogenous substrate availability and covalent modification. Therefore, GSMn(T)/GSH(E) ratio may prove to be a useful alternative to other GS activity ratios that only reflect changes in the phosphorylation state of GS.  相似文献   

8.
With a view of elucidating the role of glutathione (GSH) in the biochemical pathways of the chromate-exposure related carcinogenesis, we carried out electron spin resonance (ESR) spectroscopic investigations of the chromate-GSH redox reactions. The ESR measurements, employing spin-traps, provide evidence for the involvement of the glutathione (GS) radical, as well as an isolable Cr(V)-glutathione intermediate. These results indicate a new mechanism for the reduction of chromate by GSH in in vitro cellular environment and help understand the (unexpected) increase in Cr(VI)-induced DNA strand breaks at elevated GSH levels.  相似文献   

9.
The initial metabolite formed by most mammalian nitroreductases is the nitro anion free radical. We, as well as others, have proposed that nitroheterocyclic anion radicals covalently bind to protein, DNA, or thiol compounds such as reduced glutathione (GSH). Our results indicate that even at 100 mM GSH does not affect the steady-state concentration of the nitro anion free radical of N-[4-(5-nitro-2-furyl)-2-thiazolyl]acetamide (NFTA) in rat hepatic microsomal or xanthine oxidase incubations. The steady-state ESR amplitude of the anion radical is also unchanged by the addition of BSA or DNA. Similar results are obtained with nitrofurazone and nitrofurantoin. The reactive chemical species which binds to tissue macromolecules and GSH upon the reduction of nitrofurans remains unknown, but the anion free radical metabolite can be excluded from consideration.  相似文献   

10.
The oxidizing power of the thiyl radical (GS*) produced on oxidation of glutathione (GSH) was determined as the mid-point electrode potential (reduction potential) of the one-electron couple E(m)(GS*,H+/GSH) in water, as a function of pH over the physiological range. The method involved measuring the equilibrium constants for electron-transfer equilibria with aniline or phenothiazine redox indicators of known electrode potential. Thiyl and indicator radicals were generated in microseconds by pulse radiolysis, and the position of equilibrium measured by fast kinetic spectrophotometry. The electrode potential E(m)(GS*,H+/GSH) showed the expected decrease by approximately 0.06 V/pH as pH was increased from approximately 6 to 8, reflecting thiol/thiolate dissociation and yielding a value of the reduction potential of GS*=0.92+/-0.03 V at pH 7.4. An apparently almost invariant potential between pH approximately 3 and 6, with potentials significantly lower than expected, is ascribed at least in part to errors arising from radical decay during the approach to the redox equilibrium and slow electron transfer of thiol compared to thiolate.  相似文献   

11.
2',7'-Dichlorodihydrofluorescein (DCFH2) is one of the most widely used probes for detecting intracellular oxidative stress, but requires a catalyst to be oxidized by hydrogen peroxide or superoxide and reacts nonspecifically with oxidizing radicals. Thiyl radicals are produced when many radicals are "repaired" by thiols, but are oxidizing agents and thus potentially capable of oxidizing DCFH2. The aim of this study was to investigate the reactivity of thiol-derived radicals toward DCFH2 and its oxidized, fluorescent form 2',7'-dichlorofluorescein (DCF). Thiyl radicals derived from oxidation of glutathione (GSH) or cysteine (CysSH) oxidized DCFH2 with rate constants at pH 7.4 of approximately 4 or approximately 2x10(7) M(-1) s(-1), respectively. Both the rates of oxidation and the yields of DCF were pH-dependent. Glutathione-derived radicals interacted with DCF, resulting in the formation of DCFH* absorbing at 390 nm and loss of fluorescence; in contrast, cysteine-derived radicals did not cause any depletion of DCF fluorescence. We postulate that the observed apparent difference in reactivity between GS* and CysS* toward DCF is related to the formation of carbon-centered, reducing radicals from base-catalyzed isomerization of GS*. DCF formation from interaction of DCFH2 with GS* was inhibited by oxygen in a concentration-dependent manner over the physiological range. These data indicate that in applying DCFH2 to measure oxidizing radicals in biological systems, we have to consider not only the initial competition between thiols and DCFH2 for the oxidizing radicals, but also subsequent reactions of thiol-derived radicals, together with variables--including pH and oxygen concentration--which control thiyl radical chemistry.  相似文献   

12.
1-Naphthol was metabolised by horseradish peroxidase (HRP) in a H2O2-dependent reaction to methanol-soluble and covalently bound products. Spectrophotometric and electron spin resonance (ESR) studies established that HRP catalysed the one electron oxidation of 1-naphthol to naphthoxy or a naphthoxy-derived radical. Inclusion of glutathione (GSH) in the reaction caused a dose-dependent inhibition of covalent binding and an increase in the amount of unmetabolised 1-naphthol present at the end of the incubation. gamma-Radiolysis studies suggest that this is due to the reduction of naphthoxy radicals by GSH yielding 1-naphthol and GS.. In agreement with this, HRP-catalysed-oxidation of 1-naphthol in the presence of GSH, was found to stimulate oxidised glutathione (GSSG) formation.  相似文献   

13.
The kinetic parameters of the redox transitions subsequent to the two-electron transfer implied in the glutathione (GSH) reductive addition to 2- and 6-hydroxymethyl-1,4-naphthoquinone bioalkylating agents were examined in terms of autoxidation, GSH consumption in the arylation reaction, oxidation of the thiol to glutathione disulfide (GSSG), and free radical formation detected by the spin-trapping electron spin resonance method. The position of the hydroxymethyl substituent in either the benzenoid or the quinonoid ring differentially influenced the initial rates of hydroquinone autoxidation as well as thiol oxidation. Thus, GSSG- and hydrogen peroxide formation during the GSH reductive addition to 6-hydroxymethyl-1,4-naphthoquinone proceeded at rates substantially higher than those observed with the 2-hydroxymethyl derivative. The distribution and concentration of molecular end products, however, was the same for both quinones, regardless of the position of the hydroxymethyl substituent. The [O2]consumed/[GSSG]formed ratio was above unity in both cases, thus indicating the occurrence of autoxidation reactions other than those involved during GSSG formation. EPR studies using the spin probe 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) suggested that the oxidation of GSH coupled to the above redox transitions involved the formation of radicals of differing structure, such as hydroxyl and thiyl radicals. These were identified as the corresponding DMPO adducts. The detection of either DMPO adduct depended on the concentration of GSH in the reaction mixture: the hydroxyl radical adduct of DMPO prevailed at low GSH concentrations, whereas the thiyl radical adduct of DMPO prevailed at high GSH concentrations. The production of the former adduct was sensitive to catalase, whereas that of the latter was sensitive to superoxide dismutase as well as to catalase. The relevance of free radical formation coupled to thiol oxidation is discussed in terms of the thermodynamic and kinetic properties of the reactions involved as well as in terms of potential implications in quinone cytotoxicity.  相似文献   

14.
A stable ESR signal, centred at g = 2.0037 +/- 0.0002, characterised by a single resonance and assignable to a free radical, was found in all the bottled red wines, both commercial and experimental, that we have examined. The radical concentration was calculated to be in the range of 5-82 nM. After exposure of the wines to air for a few minutes a two fold increase of the ESR signal, followed by a slow decrease with time, was observed. The intensity of ESR signal in experimental red wines, was found to increase with the ageing of the wines and was strictly correlated to the total content of polyphenols. The formation of semiquinone radicals of polyphenols is suggested as one possible mechanism leading to the presence of stable free radicals in red wines.  相似文献   

15.
Diabetes mellitus is associated with a variety of cardiovascular complications including impaired cardiac muscle function. The effects of insulin treatment on heart rate, body temperature and physical activity in the alloxan (ALX)-induced diabetic rat were investigated using in vivo biotelemetry techniques. The electrocardiogram, physical activity and body temperature were recorded in vivo with a biotelemetry system for 10 days before ALX treatment, for 20 days following administration of ALX (120 mg/kg) and thereafter, for 15 days whilst rats received daily insulin. Heart rate declined rapidly after administration of ALX. Pre-ALX heart rate was 321+/-9 beats per minute, falling to 285+/-12 beats per minute 15-20 days after ALX and recovering to 331+/-10 beats per minute 5-10 days after commencement of insulin. Heart rate variability declined and PQ, QRS and QT intervals were prolonged after administration of ALX. Physical activity and body temperature declined after administration of ALX. Pre-ALX body temperature was 37.6+/-0.1 °C, falling to 37.3+/-0.1 °C 15-20 days after ALX and recovering to 37.8+/-0.1 °C 5-10 days after commencement insulin. ALX-induced diabetes is associated with disturbances in heart rhythm, physical activity and body temperature that are variously affected during insulin treatment.  相似文献   

16.
Time-resolved electron spin resonance (ESR) spectroscopy for the study of radicals produced by pulse radiolysis is illustrated by a study of the oxidation of ascorbic acid by OH radical in aqueous solution. In basic solution, the direct oxidation product, the ascorbate mono-anion radical, is formed within less than 2 mus of the radiolysis pulse. In acid solutions (pH 3(-4.5), N(2)O:saturated) three radicals are initially formed, the ascorbate mono-anion radical, an OH adduct seen also in steady-state ESR experiments, and an OH adduct at C2 with the main spin density at C3 of the ring. The first OH adduct decays with an initial half-life of about 100 mus, probably by biomolecular reaction. The second OH adduct, which shows one hyperfine splitting about a(H) = 24.4 +/- 0.3 G and g = 2.0031 +/- 0.0002, decays with a half-life of about 10 mus. On this same time scale the concentration of the ascorbate radical approximately doubles. It is concluded that the adduct at C2, but not the other adduct, loses water rapidly to form the ascorbate radical.  相似文献   

17.
《Free radical research》2013,47(6):351-358
The nonenzymatic reduction of nitrosobenzene (1), 2-nitroso-l-naphthol (II) and 2-nitroso-l-naphthol-4-sulfonic acid (III) with reducing agents such as NADPH, L-cysteine and N-acetyl-L-cysteine led to the formation of the corresponding hydronitroxide radicals, as confirmed with ESR spectroscopy. In addition to these radicals, a novel hydronitroxide radical, which was conjugated with GSH at the 4-position, was observed in the reaction of II or III with GSH. The formation of a hydronitroxide conjugated with GSH still retains the radical structure with its related redox chemistry. In this case, the formation of a GSH conjugate does not lead to the formation of chemically less reactive species.  相似文献   

18.
The nonenzymatic reduction of nitrosobenzene (1), 2-nitroso-l-naphthol (II) and 2-nitroso-l-naphthol-4-sulfonic acid (III) with reducing agents such as NADPH, L-cysteine and N-acetyl-L-cysteine led to the formation of the corresponding hydronitroxide radicals, as confirmed with ESR spectroscopy. In addition to these radicals, a novel hydronitroxide radical, which was conjugated with GSH at the 4-position, was observed in the reaction of II or III with GSH. The formation of a hydronitroxide conjugated with GSH still retains the radical structure with its related redox chemistry. In this case, the formation of a GSH conjugate does not lead to the formation of chemically less reactive species.  相似文献   

19.
Pyrimidine base-derived radical spin adducts were detected in reaction mixtures containing pyrimidine bases, glutathione, and alloxan by the ESR spin trapping technique with a spin trap, alpha-phenyl-N-tert-butyl nitrone (PBN). Pyrimidine nucleoside- and nucleotide-, and ribose- and deoxyribose-derived radical spin adducts of PBN were also observed. However, purine base- and nucleoside-derived radical spin adducts of PBN were not detected. A cytosine-derived radical spin adduct of PBN was not generated under anaerobic conditions. Catalase and mannitol inhibited the formation of the cytosine-derived radical spin adduct of PBN but superoxide dismutase (SOD) did not. EDTA stimulated it and desferrioxamine suppressed it nearly completely. From these results it is presumed that the hydroxyl radical is involved in the formation of the cytosine-derived radical spin adduct of PBN generated by alloxan.  相似文献   

20.
Upon photoirradiation under aerobic conditions, the porphyrin prosthetic group in Mg-substituted horseradish peroxidase was oxidized to a mixture of its pi-cation radical and an oxidized product with an absorption band at 448 nm. The 448 nm compound was then converted to a 489 nm compound in the dark and the activation energy for the conversion was 19.3 kcal/mol. About 1 mol of O2 was consumed per mol of the 448 nm compound formed and no O2 consumption was seen in the dark reaction. The substitution of ethyl groups (meso) and hydroxyethyl groups (hemato) for the vinyl groups in protoporphyrin IX did not have an effect on the result. Under anaerobic conditions and in the presence of a suitable electron acceptor, the only photooxidation product of porphyrin was its pi-cation radical. The formation of hydroxyl radicals during irradiation under aerobic conditions was confirmed by the spin-trapping method. The formation of the above two radicals could be followed by ESR spectroscopy separately at a fixed magnetic field which was set to maximize each ESR signal. The rate of hydroxyl radical formation depended linearly on the concentration of Mg peroxidase. The photooxidation of porphyrin was slow and gave nonspecific product(s) when Mg protoporphyrin IX was present in the heme crevice of apomyoglobin or free in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号