首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
KCNE1 associates with KCNQ1 to increase its current amplitude and slow the activation gating process, creating the slow delayed rectifier channel that functions as a “repolarization reserve” in human heart. The transmembrane domain (TMD) of KCNE1 plays a key role in modulating KCNQ1 pore conductance and gating kinetics, and the extracellular juxtamembrane (EJM) region plays a modulatory role by interacting with the extracellular surface of KCNQ1. KCNE2 is also expressed in human heart and can associate with KCNQ1 to suppress its current amplitude and slow the deactivation gating process. KCNE1 and KCNE2 share the transmembrane topology and a high degree of sequence homology in TMD and surrounding regions. The structural basis for their distinctly different effects on KCNQ1 is not clear. To address this question, we apply cysteine (Cys) scanning mutagenesis to TMDs and EJMs of KCNE1 and KCNE2. We analyze the patterns of functional perturbation to identify high impact positions, and probe disulfide formation between engineered Cys side chains on KCNE subunits and native Cys on KCNQ1. We also use methanethiosulfonate reagents to probe the relationship between EJMs of KCNE subunits and KCNQ1. Our data suggest that the TMDs of both KCNE subunits are at about the same location but interact differently with KCNQ1. In particular, the much closer contact of KCNE2 TMD with KCNQ1, relative to that of KCNE1, is expected to impact the allosteric modulation of KCNQ1 pore conductance and may explain their differential effects on the KCNQ1 current amplitude. KCNE1 and KCNE2 also differ in the relationship between their EJMs and KCNQ1. Although the EJM of KCNE1 makes intimate contacts with KCNQ1, there appears to be a crevice between KCNQ1 and KCNE2. This putative crevice may perturb the electrical field around the voltage-sensing domain of KCNQ1, contributing to the differential effects of KCNE2 versus KCNE1 on KCNQ1 gating kinetics.  相似文献   

2.
KCNQ1 channels are voltage-gated potassium channels that are widely expressed in various non-neuronal tissues, such as the heart, pancreas, and intestine. KCNE proteins are known as the auxiliary subunits for KCNQ1 channels. The effects and functions of the different KCNE proteins on KCNQ1 modulation are various; the KCNQ1-KCNE1 ion channel complex produces a slowly activating potassium channel that is crucial for heartbeat regulation, while the KCNE3 protein makes KCNQ1 channels constitutively active, which is important for K(+) and Cl(-) transport in the intestine. The mechanisms by which KCNE proteins modulate KCNQ1 channels have long been studied and discussed; however, it is not well understood how different KCNE proteins exert considerably different effects on KCNQ1 channels. Here, we approached this point by taking advantage of the recently isolated Ci-KCNQ1, a KCNQ1 homologue from marine invertebrate Ciona intestinalis. We found that Ci-KCNQ1 alone could be expressed in Xenopus laevis oocytes and produced a voltage-dependent potassium current, but that Ci-KCNQ1 was not properly modulated by KCNE1 and totally unaffected by coexpression of KCNE3. By making chimeras of Ci-KCNQ1 and human KCNQ1, we determined several amino acid residues located in the pore region of human KCNQ1 involved in KCNE1 modulation. Interestingly, though, these amino acid residues of the pore region are not important for KCNE3 modulation, and we subsequently found that the S1 segment plays an important role in making KCNQ1 channels constitutively active by KCNE3. Our findings indicate that different KCNE proteins use different domains of KCNQ1 channels, and that may explain why different KCNE proteins give quite different outcomes by forming a complex with KCNQ1 channels.  相似文献   

3.
KCNQ1 is a pore-forming K+ channel subunit critically important to cardiac repolarization at high heart rates. (2R)-N-[4-(4-methoxyphenyl)-2-thiazolyl]-1-[(4-methylphenyl)sulfonyl]-2 piperidinecarboxamide, or ML277, is an activator of this channel that rescues function of pathophysiologically important mutant channel complexes in human induced pluripotent stem cell–derived cardiomyocytes, and that therefore may have therapeutic potential. Here we extend our understanding of ML277 actions through cell-attached single-channel recordings of wild-type and mutant KCNQ1 channels with voltage sensor domains fixed in resting, intermediate, and activated states. ML277 has profound effects on KCNQ1 single-channel kinetics, eliminating the flickering nature of the openings, converting them to discrete opening bursts, and increasing their amplitudes approximately threefold. KCNQ1 single-channel behavior after ML277 treatment most resembles IO state-locked channels (E160R/R231E) rather than AO state channels (E160R/R237E), suggesting that at least during ML277 treatment, KCNQ1 does not frequently visit the AO state. Introduction of KCNE1 subunits reduces the effectiveness of ML277, but some enhancement of single-channel openings is still observed.  相似文献   

4.
We have isolated KCNQ5, a novel human member of the KCNQ potassium channel gene family that is differentially expressed in subregions of the brain and in skeletal muscle. When expressed in Xenopus oocytes, KCNQ5 generated voltage-dependent, slowly activating K(+)-selective currents that displayed a marked inward rectification at positive membrane voltages. KCNQ5 currents were insensitive to the K(+) channel blocker tetraethylammonium but were strongly inhibited by the selective M-current blocker linopirdine. Upon coexpression with the structurally related KCNQ3 channel subunit, current amplitudes increased 4-5-fold. Compared with homomeric KCNQ5 currents, KCNQ3/KCNQ5 currents also displayed slower activation kinetics and less inward rectification, indicating that KCNQ5 combined with KCNQ3 to form functional heteromeric channel proteins. This functional interaction between KCNQ5 and KCNQ3, a component of the M-channel, suggests that KCNQ5 may contribute to a diversity of heteromeric channels underlying native neuronal M-currents.  相似文献   

5.
KCNE1-KCNE5 are single membrane-spanning proteins that associate with voltage-gated potassium channels to diversify their function. Other than the KCNQ1/KCNE1 complex, little is known about how KCNE proteins work. We focus on KCNE2, which associates with KCNQ1 to form K channels critical for gastric acid secretion in parietal cells. We use cysteine (Cys)-scanning mutagenesis to probe the functional role of residues along the KCNE2 transmembrane domain (TMD) in modulating KCNQ1 function. There is an α-helical periodicity in how Cys substitutions along the KCNE2 TMD perturb KCNQ1 pore conductance/ion selectivity. However, positions where Cys substitutions perturb KCNQ1 gating kinetics cluster to the extracellular end and cytoplasmic half of the KCNE2 TMD. This is the first systematic perturbation analysis of a KCNE TMD. We propose that the KCNE2 TMD adopts an α-helical secondary structure with one face making intimate contact with the KCNQ1 pore domain, while the contacts with the KCNQ1 voltage-sensing domain appear more dynamic.  相似文献   

6.
Heteromeric KCNQ2/3 potassium channels are thought to underlie the M-current, a subthreshold potassium current involved in the regulation of neuronal excitability. KCNQ channel subunits are structurally unique, but it is unknown whether these structural differences result in unique conduction properties. Heterologously expressed KCNQ2/3 channels showed a permeation sequence of while showing a conduction sequence of A differential contribution of component subunits to the properties of heteromeric KCNQ2/3 channels was demonstrated by studying homomeric KCNQ2 and KCNQ3 channels, which displayed contrasting ionic selectivities. KCNQ2/3 channels did not exhibit an anomalous mole-fraction effect in mixtures of K(+) and Rb(+). However, extreme voltage-dependence of block by external Cs(+) was indicative of multi-ion pore behavior. Block of KCNQ2/3 channels by external Ba(2+) ions was voltage-independent, demonstrating unusual ionic occupation of the outer pore. Selectivity properties and block of KCNQ2 were altered by mutation of outer pore residues in a manner consistent with the presence of multiple ion-binding sites. KCNQ2/3 channel deactivation kinetics were slowed exclusively by Rb(+), whereas activation of KCNQ2/3 channels was altered by a variety of external permeant ions. These data indicate that KCNQ2/3 channels are multi-ion pores which exhibit distinctive mechanisms of ion conduction and gating.  相似文献   

7.
KCNE1 binds to the KCNQ1 pore to regulate potassium channel activity   总被引:12,自引:0,他引:12  
Melman YF  Um SY  Krumerman A  Kagan A  McDonald TV 《Neuron》2004,42(6):927-937
Potassium channels control the resting membrane potential and excitability of biological tissues. Many voltage-gated potassium channels are controlled through interactions with accessory subunits of the KCNE family through mechanisms still not known. Gating of mammalian channel KCNQ1 is dramatically regulated by KCNE subunits. We have found that multiple segments of the channel pore structure bind to the accessory protein KCNE1. The sites that confer KCNE1 binding are necessary for the functional interaction, and all sites must be present in the channel together for proper regulation by the accessory subunit. Specific gating control is localized to a single site of interaction between the ion channel and accessory subunit. Thus, direct physical interaction with the ion channel pore is the basis of KCNE1 regulation of K+ channels.  相似文献   

8.
Chemical openers for KCNQ potassium channels are useful probes both for understanding channel gating and for developing therapeutics. The five KCNQ isoforms (KCNQ1 to KCNQ5, or Kv7.1 to Kv7.5) are differentially localized. Therefore, the molecular specificity of chemical openers is an important subject of investigation. Native KCNQ1 normally exists in complex with auxiliary subunits known as KCNE. In cardiac myocytes, the KCNQ1-KCNE1 (IsK or minK) channel is thought to underlie the I(Ks) current, a component critical for membrane repolarization during cardiac action potential. Hence, the molecular and pharmacological differences between KCNQ1 and KCNQ1-KCNE1 channels have been important topics. Zinc pyrithione (ZnPy) is a newly identified KCNQ channel opener, which potently activates KCNQ2, KCNQ4, and KCNQ5. However, the ZnPy effects on cardiac KCNQ1 potassium channels remain largely unknown. Here we show that ZnPy effectively augments the KCNQ1 current, exhibiting an increase in current amplitude, reduction of inactivation, and slowing of both activation and deactivation. Some of these are reminiscent of effects by KCNE1. In addition, neither the heteromultimeric KCNQ1-KCNE1 channels nor native I(Ks) current displayed any sensitivity to ZnPy, indicating that the static occupancy by a KCNE subunit desensitizes the reversible effects by a chemical opener. Site-directed mutagenesis of KCNQ1 reveals that residues critical for the potentiation effects by either ZnPy or KCNE are clustered together in the S6 region overlapping with the critical gating determinants. Thus, the convergence of potentiation effects and molecular determinants critical for both an auxiliary subunit and a chemical opener argue for a mechanistic overlap in causing potentiation.  相似文献   

9.
KCNQ potassium channels are activated by changes in transmembrane voltage and play an important role in controlling electrical excitability. Human mutations of KCNQ2 and KCNQ3 potassium channel genes result in reduction or loss of channel activity and cause benign familial neonatal convulsions (BFNCs). Thus, small molecules capable of augmenting KCNQ currents are essential both for understanding the mechanism of channel activity and for developing therapeutics. We performed a high-throughput screen in search for agonistic compounds potentiating KCNQ potassium channels. Here we report identification of a new opener, zinc pyrithione (1), which activates both recombinant and native KCNQ M currents. Interactions with the channel protein cause an increase of single-channel open probability that could fully account for the overall conductance increase. Separate point mutations have been identified that either shift the concentration dependence or affect potentiation efficacy, thereby providing evidence for residues influencing ligand binding and downstream events. Furthermore, zinc pyrithione is capable of rescuing the mutant channels causal to BFNCs.  相似文献   

10.
KCNQ2 and KCNQ3, both of which are mutated in a type of human neonatal epilepsy, form heteromeric potassium channels that are expressed in broad regions of the brain. The associated current may be identical to the M-current, an important regulator of neuronal excitability. We now show that the RNA encoding the novel KCNQ5 channel is also expressed in brain and in sympathetic ganglia where it overlaps largely with KCNQ2 and KCNQ3. In addition, it is expressed in skeletal muscle. KCNQ5 yields currents that activate slowly with depolarization and can form heteromeric channels with KCNQ3. Currents expressed from KCNQ5 have voltage dependences and inhibitor sensitivities in common with M-currents. They are also inhibited by M1 muscarinic receptor activation. A KCNQ5 splice variant found in skeletal muscle displays altered gating kinetics. This indicates a molecular diversity of channels yielding M-type currents and suggests a role for KCNQ5 in the regulation of neuronal excitability.  相似文献   

11.
KCNQ1 voltage-gated K+ channels (Kv7.1) associate with the family of five KCNE peptides to form complexes with diverse gating properties and pharmacological sensitivities. The varied gating properties of the different KCNQ1-KCNE complexes enables the same K+ channel to function in both excitable and non excitable tissues. Small molecule activators would be valuable tools for dissecting the gating mechanisms of KCNQ1-KCNE complexes; however, there are very few known activators of KCNQ1 channels and most are ineffective on the physiologically relevant KCNQ1-KCNE complexes. Here we show that a simple boronic acid, phenylboronic acid (PBA), activates KCNQ1/KCNE1 complexes co-expressed in Xenopus oocytes at millimolar concentrations. PBA shifts the voltage sensitivity of KCNQ1 channel complexes to favor the open state at negative potentials. Analysis of different-sized charge carriers revealed that PBA also targets the permeation pathway of KCNQ1 channels. Activation by the boronic acid moiety has some specificity for the Kv7 family members (KCNQ1, KCNQ2/3, and KCNQ4) since PBA does not activate Shaker or hERG channels. Furthermore, the commercial availability of numerous PBA derivatives provides a large class of compounds to investigate the gating mechanisms of KCNQ1-KCNE complexes.  相似文献   

12.
BACKGROUND/AIMS: Heteromeric KCNEx/KCNQ1 (=KvLQT1, Kv7.1) K(+) channels are important for repolarization of cardiac myocytes, endolymph secretion in the inner ear, gastric acid secretion, and transport across epithelia. They are modulated by pH in a complex way: homomeric KCNQ1 is inhibited by external acidification (low pH(e)); KCNE2/KCNQ1 is activated; and for KCNE1/KCNQ1, variable effects have been reported. Methods: The role of KCNE subunits for the effect of pH(e) on KCNQ1 was analyzed in transfected COS cells and cardiac myocytes by the patch-clamp technique. RESULTS: In outside-out patches of transfected cells, hKCNE2/hKCNQ1 current was increased by acidification down to pH 4.5. Chimeras with the acid-insensitive hKCNE3 revealed that the extracellular N-terminus and at least part of the transmembrane domain of hKCNE2 are needed for activation by low pH(e). hKCNE1/hKCNQ1 heteromeric channels exhibited marked changes of biophysical properties at low pH(e): The slowly activating hKCNE1/hKCNQ1 channels were converted into constitutively open, non-deactivating channels. Experiments on guinea pig and mouse cardiac myocytes pointed to an important role of KCNQ1 during acidosis implicating a significant contribution to cardiac repolarization under acidic conditions. CONCLUSION: External pH can modify current amplitude and biophysical properties of KCNQ1. KCNE subunits work as molecular switches by modulating the pH sensitivity of human KCNQ1.  相似文献   

13.
The co-assembly of KCNQ1 with KCNE1 produces IKS, a K+ current, crucial for the repolarization of the cardiac action potential. Mutations in these channel subunits lead to life-threatening cardiac arrhythmias. However, very little is known about the gating mechanisms underlying KCNQ1 channel activation. Shaker channels have provided a powerful tool to establish the basic gating mechanisms of voltage-dependent K+ channels, implying prior independent movement of all four voltage sensor domains (VSDs) followed by channel opening via a last concerted cooperative transition. To determine the nature of KCNQ1 channel gating, we performed a thermodynamic mutant cycle analysis by constructing a concatenated tetrameric KCNQ1 channel and by introducing separately a gain and a loss of function mutation, R231W and R243W, respectively, into the S4 helix of the VSD of one, two, three, and four subunits. The R231W mutation destabilizes channel closure and produces constitutively open channels, whereas the R243W mutation disrupts channel opening solely in the presence of KCNE1 by right-shifting the voltage dependence of activation. The linearity of the relationship between the shift in the voltage dependence of activation and the number of mutated subunits points to an independence of VSD movements, with each subunit incrementally contributing to channel gating. Contrary to Shaker channels, our work indicates that KCNQ1 channels do not experience a late cooperative concerted opening transition. Our data suggest that KCNQ1 channels in both the absence and the presence of KCNE1 undergo sequential gating transitions leading to channel opening even before all VSDs have moved.  相似文献   

14.
The K+ channel KCNQ1 (KVLQT1) is a voltage-gated K+ channel, coexpressed with regulatory subunits such as KCNE1 (IsK, mink) or KCNE3, depending on the tissue examined. Here, we investigate regulation and properties of human and rat KCNQ1 and the impact of regulators such as KCNE1 and KCNE3. Because the cystic fibrosis transmembrane conductance regulator (CFTR) has also been suggested to regulate KCNQ1 channels we studied the effects of CFTR on KCNQ1 in Xenopus oocytes. Expression of both human and rat KCNQ1 induced time dependent K+ currents that were sensitive to Ba2+ and 293B. Coexpression with KCNE1 delayed voltage activation, while coexpression with KCNE3 accelerated current activation. KCNQ1 currents were activated by an increase in intracellular cAMP, independent of coexpression with KCNE1 or KCNE3. cAMP dependent activation was abolished in N-terminal truncated hKCNQ1 but was still detectable after deletion of a single PKA phosphorylation motif. In the presence but not in the absence of KCNE1 or KCNE3, K+ currents were activated by the Ca2+ ionophore ionomycin. Coexpression of CFTR with either human or rat KCNQ1 had no impact on regulation of KCNQ1 K+ currents by cAMP but slightly shifted the concentration response curve for 293B. Thus, KCNQ1 expressed in Xenopus oocytes is regulated by cAMP and Ca2+ but is not affected by CFTR. Received: 13 December 2000/Revised: 30 March 2001  相似文献   

15.
16.
The congenital long QT syndrome (LQTS) is a hereditary cardiac disease characterized by prolonged ventricular repolarization, syncope, and sudden death. Mutations causing LQTS have been identified in various genes that encode for ionic channels or their regulatory subunits. Several of these mutations have been reported on the KCNQ1 gene encoding for a potassium channel or its regulatory subunit (KCNE1). In this study, we report the biophysical characteristics of a new mutation (L251P) in the transmembrane segment 5 (S5) of the KCNQ1 potassium channel. Potassium currents were recorded from CHO cells transfected with either wild type or mutant KCNQ1 in the presence or in the absence of its regulatory subunit (KCNE1), using the whole-cell configuration of the patch clamp technique. Wild-type KCNQ1 current amplitudes are increased particularly by KCNE1 co-expression but no current is observed with the KCNQ1 (L251P) mutant either in the presence or in the absence of KCNE1. Coexpressing KCNE1 with equal amount of cDNAs encoding wild type and mutant KCNQ1 results in an 11-fold reduction in the amplitude of potassium currents. The kinetics of activation and inactivation and the activation curve are minimally affected by this mutation. Our results suggest that the dominant negative effect of the P251L mutation on KCNQ1 channel explains the prolonged repolarization in patients carrying this mutation.  相似文献   

17.
Voltage-gated potassium channels are often assembled with accessory proteins which increases their functional diversity. KCNE proteins are small accessory proteins that modulate voltage-gated potassium (KV) channels. Although the functional effects of various KCNE proteins have been described, many questions remain regarding their assembly with the pore-forming subunits. For example, while previous experiments with some KV channels suggest that the association of the pore-subunit with the accessory subunits occurs co-translationally in the endoplasmic reticulum, it is not known whether KCNQ1 assembly with KCNE1 occurs in a similar manner to generate the medically important cardiac slow delayed rectifier current (IKs). In this study we used a novel approach to demonstrate that purified recombinant human KCNE1 protein (prKCNE1) modulates KCNQ1 channels heterologously expressed in Xenopus oocytes resulting in generation of IKs. Incubation of KCNQ1-expressing oocytes with cycloheximide did not prevent IKs expression following prKCNE1 injection. By contrast, incubation with brefeldin A prevented KCNQ1 modulation by prKCNE1. Moreover, injection of the trafficking-deficient KCNE1-L51H reduced KCNQ1 currents. Together, these observations indicate that while assembly of KCNE1 with KCNQ1 does not require co-translation, functional KCNQ1-prKCNE1 channels assemble early in the secretory pathway and reach the plasma membrane via vesicular trafficking.  相似文献   

18.
Thimerosal (o-Ethylmercurithio)benzoic acid, TMS), a membrane-impermeable, sulfhydryl-oxidizing agent, has been described to increase the K+ current IKs in KCNE1-injected Xenopus laevis oocytes. Since there are no cysteine residues in the extracellular domain of KCNE1, it has been proposed that TMS interacts with its partner protein KCNQ1. The aim of this study was therefore to investigate the interaction of TMS with KCNQ1 and the respective K+current IK. In CHO cells stably transfected with KCNQ1/KCNE1, TMS increased IKs, whereas in CHO cells expressing KCNQ1 alone, TMS initially decreased IK. TMS also affected the cytosolic pH (pHi) and the cytosolic Ca2+ activity ([Ca2+]i) in these cells. TMS slowly decreased pHi. With a short delay, TMS increased [Ca2+]i by store depletion and capacitative influx. The time course of the effects of TMS on pHi and [Ca2+]i did not correlate with the effect of TMS on IK. We therefore anticipated a different mode of action by TMS and investigated the influence of TMS on cysteine residues of KCNQ1. For this purpose, KCNQ1wt and two mutants lacking a cysteine residue in the S6 or the S3 segment (KCNQ1C331A and KCNQ1C214A, respectively) were expressed in Xenopus laevis oocytes. A sustained current decrease was observed in KCNQ1wt and KCNQ1C331A, but not in KCNQ1C214A-injected oocytes. The analysis of tail currents, I/V curves and activation kinetics revealed a complex effect of TMS on the gating of KCNQ1wt and KCNQ1C331A. In another series we investigated the effect of TMS on IKs. TMS increased IKs of KCNQ1C214A/KCNE1-injected oocytes significantly less than IKs in KCNQ1wt/KCNE1- or KCNQ1C331A/KCNE1-injected cells. These results suggest that thimerosal interacts with the cysteine residue C214 in the S3 segment of KCNQ1, leading to a change of its gating properties. Our results support the idea that not only the inner shell, but also the outer shell of the channel is important for the gating behavior of voltage dependent K+ channels.  相似文献   

19.
The slow delayed rectifier (IKs) channel is composed of KCNQ1 (pore-forming) and KCNE1 (auxiliary) subunits, and functions as a repolarization reserve in the human heart. Design of IKs-targeting anti-arrhythmic drugs requires detailed three-dimensional structures of the KCNQ1/KCNE1 complex, a task made possible by Kv channel crystal structures (templates for KCNQ1 homology-modeling) and KCNE1 NMR structures. Our goal was to build KCNQ1/KCNE1 models and extract mechanistic information about their interactions by molecular-dynamics simulations in an explicit lipid/solvent environment. We validated our models by confirming two sets of model-generated predictions that were independent from the spatial restraints used in model-building. Detailed analysis of the molecular-dynamics trajectories revealed previously unrecognized KCNQ1/KCNE1 interactions, whose relevance in IKs channel function was confirmed by voltage-clamp experiments. Our models and analyses suggest three mechanisms by which KCNE1 slows KCNQ1 activation: by promoting S6 bending at the Pro hinge that closes the activation gate; by promoting a downward movement of gating charge on S4; and by establishing a network of electrostatic interactions with KCNQ1 on the extracellular surface that stabilizes the channel in a pre-open activated state. Our data also suggest how KCNE1 may affect the KCNQ1 pore conductance.  相似文献   

20.
The slow delayed rectifier (IKs) channel is composed of KCNQ1 (pore-forming) and KCNE1 (auxiliary) subunits, and functions as a repolarization reserve in the human heart. Design of IKs-targeting anti-arrhythmic drugs requires detailed three-dimensional structures of the KCNQ1/KCNE1 complex, a task made possible by Kv channel crystal structures (templates for KCNQ1 homology-modeling) and KCNE1 NMR structures. Our goal was to build KCNQ1/KCNE1 models and extract mechanistic information about their interactions by molecular-dynamics simulations in an explicit lipid/solvent environment. We validated our models by confirming two sets of model-generated predictions that were independent from the spatial restraints used in model-building. Detailed analysis of the molecular-dynamics trajectories revealed previously unrecognized KCNQ1/KCNE1 interactions, whose relevance in IKs channel function was confirmed by voltage-clamp experiments. Our models and analyses suggest three mechanisms by which KCNE1 slows KCNQ1 activation: by promoting S6 bending at the Pro hinge that closes the activation gate; by promoting a downward movement of gating charge on S4; and by establishing a network of electrostatic interactions with KCNQ1 on the extracellular surface that stabilizes the channel in a pre-open activated state. Our data also suggest how KCNE1 may affect the KCNQ1 pore conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号