首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Niemann-Pick type C (NPC) disease is a fatal autosomal-recessive neurodegenerative disorder characterized by the inappropriate accumulation of unesterified cholesterol in aberrant organelles. The disease is due to mutations in either of two genes, NPC1, which encodes a transmembrane protein related to the Hedgehog receptor Patched, and NPC2, which encodes a secreted cholesterol-binding protein. Npc1 mutant mice can be partially rescued by treatment with specific steroids. We have created a Drosophila NPC model by mutating dnpc1a, one of two Drosophila genes related to mammalian NPC1. Cells throughout the bodies of dnpc1a mutants accumulated sterol in a punctate pattern, as in individuals with NPC1 mutations. The mutants developed only to the first larval stage and were unable to molt. Molting after the normal first instar period was restored to various degrees by feeding the mutants the steroid molting hormone 20-hydroxyecdysone, or the precursors of ecdysone biosynthesis, cholesterol and 7-dehydrocholesterol. dnpc1a is normally highly expressed in the ecdysone-producing ring gland. Ring gland-specific expression of dnpc1a in otherwise mutant flies allowed development to adulthood, suggesting that the lack of ecdysone in the mutants is the cause of death. We propose that dnpc1a mutants have sterols trapped in aberrant organelles, leading to a shortage of sterol in the endoplasmic reticulum and/or mitochondria of ring gland cells, and, consequently, inadequate ecdysone synthesis.  相似文献   

2.
Drosophila has provided a powerful genetic system in which to elucidate fundamental cellular pathways in the context of a developing and functioning nervous system. Recently, Drosophila has been applied toward elucidating mechanisms of human neurodegenerative disease, including Alzheimer's, Parkinson's and Huntington's diseases. Drosophila allows study of the normal function of disease proteins, as well as study of effects of familial mutations upon targeted expression of human mutant forms in the fly. These studies have revealed new insight into the normal functions of such disease proteins, as well as provided models in Drosophila that will allow genetic approaches to be applied toward elucidating ways to prevent or delay toxic effects of such disease proteins. These, and studies to come that follow from the recently completed sequence of the Drosophila genome, underscore the contributions that Drosophila as a model genetic system stands to contribute toward the understanding of human neurodegenerative disease.  相似文献   

3.
NPC2 is a small lysosomal glycoprotein that binds cholesterol with submicromolar affinity. Deficiency in NPC2 is the cause of Niemann-Pick type C2 disease, a fatal neurovisceral disorder characterized by accumulation of cholesterol in lysosomes. Here we report the crystal structure of bovine NPC2 bound to cholesterol-3-O-sulfate, an analog that binds with greater apparent affinity than cholesterol. Structures of both apo-bound and sterol-bound NPC2 were observed within the same crystal lattice, with an asymmetric unit containing one molecule of apoNPC2 and two molecules of sterol-bound NPC2. As predicted from a previously determined structure of apoNPC2, the sterol binds in a deep hydrophobic pocket sandwiched between the two beta-sheets of NPC2, with only the sulfate substituent of the ligand exposed to solvent. In the two available structures of apoNPC2, the incipient ligand-binding pocket, which ranges from a loosely packed hydrophobic core to a small tunnel, is too small to accommodate cholesterol. In the presence of sterol, the pocket expands, facilitated by a slight separation of the beta-strands and substantial reorientation of some side chains, resulting in a perfect molding of the pocket around the hydrocarbon portion of cholesterol. A notable feature is the repositioning of two aromatic residues at the tunnel entrance that are essential for NPC2 function. The NPC2 structures provide evidence of a malleable binding site, consistent with the previously documented broad range of sterol ligand specificity.  相似文献   

4.
摘要:【目的】研究ERG6基因编码的甾醇C-24甲基转移酶和ERG2基因编码的甾醇C-8异构酶在酿酒酵母麦角甾醇生物合成代谢中的调控作用。【方法】通过PCR扩增克隆到酿酒酵母甾醇C-8异构酶的编码序列及其终止子序列,以大肠杆菌-酿酒酵母穿梭质粒YEp352为载体,以磷酸甘油酸激酶基因PGK1启动子为上游调控元件构建了酵母菌表达质粒pPERG2;同时,在本实验室已构建的ERG6表达质粒pPERG6的基础上,构建了ERG2和ERG6共表达的重组质粒pPERG6-2。将表达质粒转化酿酒酵母单倍体菌株YS58,依据营养缺陷互补筛选到重组菌株YS58(pPERG2)和YS58(pPERG6-2)。通过紫外分光光度法和气相色谱法分析重组菌株甾醇组分和含量。【结果】在ERG6高表达的重组酵母菌中,甾醇中间体和终产物麦角甾醇的含量均比对照菌高;而在ERG2高表达的酵母菌株中,无论甾醇中间体,还是麦角甾醇的含量均明显降低。ERG6和ERG2共表达重组菌株YS58(pPERG6-2)的麦角甾醇含量是对照菌株YS58(YEp352)的1.41倍,是ERG2单独高表达菌株YS58(pPERG2)的1.92倍,是ERG6单独高表达菌株YS58(pPERG6)的1.12倍。【结论】本研究首次证明甾醇C-24甲基转移酶催化的反应是酿酒酵母麦角甾醇合成代谢途径中的一个重要的限速步骤,该酶活性提高不但补偿了ERG2高表达对甾醇合成的负效应,而且使麦角甾醇含量进一步提高,为构建麦角甾醇高产酵母工程菌株提供了实验依据。  相似文献   

5.
Understanding neurodegenerative disease progression and its treatment requires the systematic characterization and manipulation of relevant cell types and molecular pathways. The neurodegenerative lysosomal storage disorder Niemann-Pick disease type C (NPC) is highly amenable to genetic approaches that allow exploration of the disease biology at the organismal, cellular and molecular level. Although NPC is a rare disease, genetic analysis of the associated neuropathology promises to provide insight into the logic of disease neural circuitry, selective neuron vulnerability and neural-glial interactions. The ability to control the disorder cell-autonomously and in naturally occurring spontaneous animal models that recapitulate many aspects of the human disease allows for an unparalleled dissection of the disease neurobiology in vivo. Here, we review progress in mouse-model-based studies of NPC disease, specifically focusing on the subtype that is caused by a deficiency in NPC1, a sterol-binding late endosomal membrane protein involved in lipid trafficking. We also discuss recent findings and future directions in NPC disease research that are pertinent to understanding the cellular and molecular mechanisms underlying neurodegeneration in general.  相似文献   

6.
Hepatic sterol carrier protein-2 (SCP2) and sterol carrier protein-X (SCPx) levels in normal and in mutant Niemann-Pick Type C mice were determined by immunoblotting with antiserum against rat SCP2. A 14-kDa protein (SCP2) was detected in the cytosol fraction and a 58-kDa protein (SCPx) was found in both cytosolic and organellar fractions. Expression of hepatic SCPx protein was developmentally regulated in a sex-specific pattern. The amounts of organelle-associated SCPx increased 4-fold during sexual development of normal males but decreased dramatically during development of normal females. Levels of hepatic SCP2 increased much less dramatically during sexual maturation of normal males and females. Adult Niemann-Pick Type C mice were deficient in both hepatic SCPx and SCP2. The deficit in SCPx in affected males reflected a failure to increase hepatic SCPx levels during sexual maturation. In affected males SCPx remained at levels found in immature mice. Affected male and female mice were also unable to maintain levels of hepatic SCP2. The level of SCP2 was near normal in affected immature males and subnormal in affected immature females. During sexual maturation hepatic SCP2 declined in affected animals.  相似文献   

7.
We recently demonstrated that calcium homeostasis is altered in mouse models of two sphingolipid storage diseases, Gaucher and Sandhoff diseases, owing to modulation of the activities of a calcium-release channel (the ryanodine receptor) and of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) respectively, by the accumulating sphingolipids. We now demonstrate that calcium homeostasis is also altered in a mouse model of Niemann-Pick A disease, the acid sphingomyelinase (A-SMase)-deficient mouse (ASM-/-), with reduced rates of calcium uptake via SERCA in the cerebellum of 6-7-month-old mice. However, the mechanism responsible for defective calcium homeostasis is completely different from that observed in the other two disease models. Thus, levels of SERCA expression are significantly reduced in the ASM-/- cerebellum by 6-7 months of age, immediately before death of the mice, as are levels of the inositol 1,4,5-triphosphate receptor (IP3R), the major calcium-release channel in the cerebellum. Systematic analyses of the time course of loss of SERCA and IP3R expression revealed that loss of the IP3R preceeded that of SERCA, with essentially no IP3R remaining by 4 months of age, whereas SERCA was still present even after 6 months. Expression of zebrin II (aldolase C), a protein found in about half of the Purkinje cells in the adult mouse cerebellum, was essentially unchanged during development. We discuss possible pathological mechanisms related to calcium dysfunction that may cause Purkinje cell degeneration, and as a result, the onset of neuropathology in Niemann-Pick A disease.  相似文献   

8.
Niemann-Pick type C (NP-C) disease is a rare and fatal neurodegenerative disease typified by aberrations in intracellular lipid transport. Cholesterol and other lipids accumulate in the late endosome/lysosome of all diseased cells thereby causing neuronal and visceral atrophy. A cure for NP-C remains elusive despite the extensive molecular advances emanating from the identification of the primary genetic defect in 1997. Penetration of the blood-brain barrier and efficacy in the viscera are prerequisites for effective therapy, however the rarity of NP-C disease is the major impediment to progress. Disease diagnosis is challenging and establishment of appropriate test populations for clinical trials difficult. Fortunately, disease models that span the diversity of microbial and metazoan life have been utilized to advance the quest for a therapy. The complexity of lipid storage in this disorder and in the model systems, has led to multiple theories on the primary disease mechanism and consequently numerous and varied proposed interventions. Here, we conduct an evaluation of these studies.  相似文献   

9.
10.
Niemann-Pick type II disease is a severe disorder characterized by accumulation of tissue cholesterol and sphingomyelin and by progressive degeneration of the nervous system. This disease has two clinically similar subtypes, type C (NPC) and type D (NPD). NPC is clinically variable and has been identified in many ethnic groups. NPD, on the other hand, has been reported only in descendants of an Acadian couple who lived in Nova Scotia in the early 18th century and has a more homogeneous expression resembling that of less severely affected NPC patients. Despite biochemical differences, it has not been established whether NPC and NPD are allelic variants of the same disease. We report here that NPD is tightly linked (recombination fraction .00; maximum LOD score 4.50) to a microsatellite marker, D18S480, from the centromeric region of chromosome 18q. Carstea et al. have reported that the NPC gene maps to this same site; therefore we suggest that NPC and NPD likely result from mutations in the same gene.  相似文献   

11.
Niemann-Pick C1-like 1 (NPC1L1) is an essential intestinal component of cholesterol absorption. However, little is known about the molecular regulation of intestinal NPC1L1 expression and promoter activity. We demonstrated that human NPC1L1 mRNA expression was significantly decreased by 25-hydroxycholesterol but increased in response to cellular cholesterol depletion achieved by incubation with Mevinolin (an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase) in human intestinal Caco-2 cells. We also showed that a -1741/+56 fragment of the NPC1L1 gene demonstrated high promoter activity in Caco-2 cells that was reduced by 25-hydroxycholesterol and stimulated by cholesterol depletion. Interestingly, we showed that the NPC1L1 promoter is remarkably transactivated by the overexpression of sterol regulatory element (SRE) binding protein (SREBP)-2, suggesting its involvement in the sterol-induced alteration in NPC1L1 promoter activity. Finally, we identified two putative SREs in the human NPC1L1 promoter and established their essential roles in mediating the effects of cholesterol on promoter activity. Our study demonstrated the modulation of human NPC1L1 expression and promoter activity by cholesterol in a SREBP-2-dependent mechanism.  相似文献   

12.
The first committed step in the conversion of cycloartenol into Delta(5) C24-alkyl sterols in plants is catalyzed by an S-adenosyl-methionine-dependent sterol-C24-methyltransferase type 1 (SMT1). We report the consequences of overexpressing SMT1 in tobacco (Nicotiana tabacum), under control of either the constitutive carnation etched ring virus promoter or the seed-specific Brassica napus acyl-carrier protein promoter, on sterol biosynthesis in seed tissue. Overexpression of SMT1 with either promoter increased the amount of total sterols in seed tissue by up to 44%. The sterol composition was also perturbed with levels of sitosterol increased by up to 50% and levels of isofucosterol and campesterol increased by up to 80%, whereas levels of cycloartenol and cholesterol were decreased by up to 53% and 34%, respectively. Concomitant with the enhanced SMT1 activity was an increase in endogenous 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, from which one can speculate that reduced levels of cycloartenol feed back to up-regulate 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and thereby control the carbon flux into sterol biosynthesis. This potential regulatory role of SMT1 in seed sterol biosynthesis is discussed.  相似文献   

13.
Rice planthoppers and anobiid beetles harbor intracellular yeastlike symbiotes (YLS), whose sterols are nutritionally advantageous for the host insects that cannot synthesize sterols. YLS of anobiid beetles synthesize ergosterol, whereas YLS of planthoppers produce ergosta-5,7,24(28)-trienol, which is a metabolic intermediate in the ergosterol biosynthetic pathway in yeasts. Since sterol C-22 desaturase (ERG5p, CYP61) metabolizes ergosta-5,7,24(28)-trienol into ergosta-5,7,22,24(28)-tetraenol, which is the penultimate compound in the ergosterol biosynthesis, we examined the gene of this enzyme to determine whether this enzyme works in the planthopper YLS. C-22 desaturase genes (ERG5) of YLS of the planthoppers and beetles had four introns in identical positions; such introns are not found in the reported genes of yeasts. Cytochrome P450 cysteine heme-iron ligand signature motif was well conserved among the putative amino acid sequences. The gene expression of the planthopper YLS were strongly suppressed, and the genes possessed nonsense mutations. The accumulation of ergosta-5,7,24(28)-trienol in the planthopper YLS was attributed to the inability of the planthopper YLS to produce functional ERG5p.  相似文献   

14.
The ability of Drosophila genetics to reveal new insights into human neurodegenerative disease is highlighted not only by mutants in flies that show neuronal cell loss, but also by targeted expression of human disease genes in the fly. Moreover, study of Drosophila homologs of various human disease genes provides new insight into fundamental aspects of protein function. These recent findings confirm the remarkable homology of gene function in flies when compared with humans. With the advent of complete genomic sequencing on the horizon, Drosophila will continue to be an outstanding model system in which to unravel the complexities, causes and treatments for human neural degeneration.  相似文献   

15.
16.
Niemann-Pick type C2 (NPC2) disease is a fatal autosomal recessive neurovisceral degenerative disorder characterized by late endosomal-lysosomal sequestration of low-density lipoprotein derived cholesterol. The breach in intracellular cholesterol homeostasis is caused by deficiency of functional NPC2, a soluble sterol binding protein targeted to the lysosomes by binding the mannose-6-phosphate receptor. As currently there is no effective treatment for the disorder, we have investigated the efficacy of NPC2 replacement therapy in a murine gene-trap model of NPC2-disease generated on the 129P2/OlaHsd genetic background. NPC2 was purified from bovine milk and its functional competence assured in NPC2-deficient fibroblasts using the specific cholesterol fluorescent probe filipin. For evaluation of phenotype correction in vivo, three-week-old NPC2(-/-) mice received two weekly intravenous injections of 5 mg/kg NPC2 until trial termination 66 days later. Whereas the saline treated NPC2(-/-) mice exhibited massive visceral cholesterol storage as compared to their wild-type littermates, administration of NPC2 caused a marked reduction in cholesterol build up. The histological findings, indicating an amelioration of the disease pathology in liver, spleen, and lungs, corroborated the biochemical results. Little or no difference in the overall cholesterol levels was observed in the kidneys, blood, cerebral cortex and hippocampus when comparing NPC2(-/-) and wild type mice. However, cerebellum cholesterol was increased about two fold in NPC2(-/-) mice compared with wild-type littermates. Weight gain performance was slightly improved as a result of the NPC2 treatment but significant motor coordination deficits were still observed. Accordingly, ultrastructural cerebellar abnormalities were detected in both saline treated and NPC2 treated NPC2(-/-) animals 87 days post partum. Our data indicate that protein replacement may be a beneficial therapeutic approach in the treatment of the visceral manifestations in NPC2 disease and further suggest that neurodegeneration is not secondary to visceral dysfunction.  相似文献   

17.
Nonalcoholic fatty liver disease (NAFLD) is associated with the development of metabolic syndromes and hepatocellular carcinoma (HCC). Cholesterol accumulation is related to NAFLD, whereas its detailed mechanism is not fully understood. Previously, we reported that glycine N-methyltransferase (GNMT) knockout (Gnmt(-/-)) mice develop chronic hepatitis and HCC. In this study, we showed that Gnmt(-/-) mice had hyperlipidemia and steatohepatitis. Single photon emission computed tomography images of mice injected with (131)I-labeled 6β-iodocholesterol demonstrated that Gnmt(-/-) mice had slower hepatic cholesterol uptake and excretion rates than wild-type mice. In addition, genes related to cholesterol uptake (scavenger receptor class B type 1 [SR-B1] and ATP-binding cassette A1 [ABCA1]), intracellular trafficking (Niemann-Pick type C1 protein [NPC1] and Niemann-Pick type C2 protein [NPC2]) and excretion (ATP-binding cassette G1 [ABCG1]) were downregulated in Gnmt(-/-) mice. Yeast two-hybrid screenings and coimmunoprecipitation assays elucidated that the C conserved region (81-105 amino acids) of NPC2 interacts with the carboxyl-terminal fragment (171-295 amino acids) of GNMT. Confocal microscopy demonstrated that when cells were treated with low-density lipoprotein, NPC2 was released from lysosomes and interacts with GNMT in the cytosol. Overexpression of GNMT doubled the half-lives of both NPC2 isoforms and reduced cholesterol accumulation in cells. Furthermore, GNMT was downregulated in the liver tissues from patients suffering with NAFLD as well as from mice fed a high-fat diet, high-cholesterol diet or methionine/choline-deficient diet. In conclusion, our study demonstrated that GNMT regulates the homeostasis of cholesterol metabolism, and hepatic cholesterol accumulation may result from downregulation of GNMT and instability of its interactive protein NPC2. Novel therapeutics for steatohepatitis and HCC may be developed by using this concept.  相似文献   

18.
Niemann-Pick Disease Type C (NP-C) is a fatal neurodegenerative disease, which is biochemically distinguished by the lysosomal accumulation of exogenously derived cholesterol. Mutation of either the hNPC1 or hNPC2 gene is causative for NP-C. We report the identification of the yeast homologue of human NPC2, Saccharomyces cerevisiae Npc2p. We demonstrate that scNpc2p is evolutionarily related to the mammalian NPC2 family of proteins. We also show, through colocalization, subcellular fractionation, and secretion analyses, that yeast Npc2p is treated similarly to human NPC2 when expressed in mammalian cells. Importantly, we show that yeast Npc2p can efficiently revert the unesterified cholesterol and GM1 accumulation seen in hNPC2-/- patient fibroblasts demonstrating that it is a functional homologue of human NPC2. The present study reveals that the fundamental process of NPC2-mediated lipid transport has been maintained throughout evolution.  相似文献   

19.
Y chromosomal fertility genes of Drosophila: a new type of eukaryotic genes   总被引:2,自引:0,他引:2  
The Y chromosomal fertility genes of Drosophila are required for sperm differentiation. They are active only in primary spermatocytes where they form giant lampbrush loops. The molecular structure of these genes was investigated and revealed an unusual composition of DNA. Short, tandemly repeated sequence clusters are interrupted by longer and more heterogeneous sequences, which probably all represent transposable elements. No indication of the presence of protein-coding regions has been found within the fertility genes. However, the lampbrush loops bind site-specific proteins recognized by immunofluorescence techniques. This, together with other experimental data, led to the hypothesis that the Y chromosomal genes have a function in binding chromosomal proteins. The data and arguments in support of this gene model are summarized in this paper.  相似文献   

20.
We previously reported that human Niemann-Pick Disease type B (NPD-B) is associated with low HDL. In this study, we investigated the pathophysiology of this HDL deficiency by examining both HDL samples from NPD-B patients and nascent high density lipoprotein (LpA-I) generated by incubation of lipid-free apolipoprotein A-I (apoA-I) with NPD-B fibroblasts. Interestingly, both LpA-I and HDL isolated from patient plasma had a significant increase in sphingomyelin (SM) mass ( approximately 50-100%). Analysis of LCAT kinetics parameters (V(max) and K(m)) revealed that either LpA-I or plasma HDL from NPD-B, as well as reconstituted HDL enriched with SM, exhibited severely decreased LCAT-mediated cholesterol esterification. Importantly, we documented that SM enrichment of NPD-B LpA-I was not attributable to increased cellular mass transfer of SM or unesterified cholesterol to lipid-free apoA-I. Finally, we obtained evidence that the conditioned medium from HUVEC, THP-1, and normal fibroblasts, but not NPD-B fibroblasts, contained active secretory sphingomyelinase (S-SMase) that mediated the hydrolysis of [(3)H]SM-labeled LpA-I and HDL(3). Furthermore, expression of mutant SMase (DeltaR608) in CHO cells revealed that DeltaR608 was synthesized normally but had defective secretion and activity. Our data suggest that defective S-SMase in NPD leads to SM enrichment of HDL that impairs LCAT-mediated nascent HDL maturation and contributes to HDL deficiency. Thus, S-SMase and LCAT may act in concert and play a crucial role in the biogenesis and maturation of nascent HDL particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号