首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Transferrin-binding protein B (TbpB) from Neisseria meningitidis binds human transferrin (hTf) at the surface of the bacterial cell as part of the iron uptake process. To identify hTf binding sites within the meningococcal TbpB, defined regions of the molecule were produced in Escherichia coli by a translational fusion expression system and the ability of the recombinant proteins (rTbpB) to bind peroxidase-conjugated hTf was characterized by Western blot and dot blot assays. Both the N-terminal domain (amino acids [aa] 2 to 351) and the C-terminal domain (aa 352 to 691) were able to bind hTf, and by a peptide spot synthesis approach, two and five hTf binding sites were identified in the N- and C-terminal domains, respectively. The hTf binding activity of three rTbpB deletion variants constructed within the central region (aa 346 to 543) highlighted the importance of a specific peptide (aa 377 to 394) in the ligand interaction. Taken together, the results indicated that the N- and C-terminal domains bound hTf approximately 10 and 1000 times less, respectively, than the full-length rTbpB (aa 2 to 691), while the central region (aa 346 to 543) had a binding avidity in the same order of magnitude as the C-terminal domain. In contrast with the hTf binding in the N-terminal domain, which was mediated by conformational epitopes, linear determinants seemed to be involved in the hTf binding in the C-terminal domain. The host specificity for transferrin appeared to be mediated by the N-terminal domain of the meningococcal rTbpB rather than the C-terminal domain, since we report that murine Tf binds to the C-terminal domain. Antisera raised to both N- and C-terminal domains were bactericidal for the parent strain, indicating that both domains are accessible at the bacterial surface. We have thus identified hTf binding sites within each domain of the TbpB from N. meningitidis and propose that the N- and C-terminal domains together contribute to the efficient binding of TbpB to hTf with their respective affinities and specificities for determinants of their ligand.  相似文献   

5.
K-Cl cotransport regulates cell volume and chloride equilibrium potential. Inhibition of erythroid K-Cl cotransport has emerged as an important adjunct strategy for the treatment of sickle cell anemia. However, structure-function relationships among the polypeptide products of the four K-Cl cotransporter (KCC) genes are little understood. We have investigated the importance of the N- and C-terminal cytoplasmic domains of mouse KCC1 to its K-Cl cotransport function expressed in Xenopus oocytes. Truncation of as few as eight C-terminal amino acids (aa) abolished function despite continued polypeptide accumulation and surface expression. These C-terminal loss-of-function mutants lacked a dominant negative phenotype. Truncation of the N-terminal 46 aa diminished function. Removal of 89 or 117 aa (Delta(N)117) abolished function despite continued polypeptide accumulation and surface expression and exhibited dominant negative phenotypes that required the presence of the C-terminal cytoplasmic domain. The dominant negative loss-of-function mutant Delta(N)117 was co-immunoprecipitated with wild type KCC1 polypeptide, and its co-expression did not reduce wild type KCC1 at the oocyte surface. Delta(N)117 also exhibited dominant negative inhibition of human KCC1 and KCC3 and, with lower potency, mouse KCC4 and rat KCC2.  相似文献   

6.
Aurora-A is a centrosome-localized serine/threonine kinase that is overexpressed in multiple human cancers. Here, we report an intramolecular inhibitory regulation in Aurora-A between its N-terminal regulatory domain (aa 1-128, Nt) and the C-terminal catalytic domain (aa 129-403, Cd). Removal of Nt results in a significant increase in kinase activity. Nt inhibited the activity of the single C-terminal kinase domain, but had little effect on the activity of the full-length of Aurora-A. PP1 is not involved in this regulation, instead, Nt interacts Cd directly in vitro and in vivo. The non-Aurora box (aa 64-128) in the N-terminal negatively regulated the kinase activity of the C-terminal kinase domain by intramolecular interaction with aa 240-300 within the C-terminal.  相似文献   

7.
We have determined the sequence of a partial cDNA clone encoding the C-terminal region of bovine cartilage aggregating proteoglycan core protein. The deduced amino acid sequence contains a cysteine-rich region which is homologous with chicken hepatic lectin. This lectin-homologous region has previously been identified in rat and chicken cartilage proteoglycan. The bovine sequence presented here is highly homologous with the rat and chicken amino acid sequences in this apparently globular region. A region containing clusters of Ser-Gly sequences is located N-terminal to the lectin homology domain. These Ser-Gly-rich segments are arranged in tandemly repeated, approx. 100-residue-long, homology domains. Each homology domain consists of an approx. 75-residue-long Ser-Gly-rich region separated by an approx. 25-residue-long segment lacking Ser-Gly dipeptides. These dipeptides are arranged in 10-residue-long segments in the 100-residue-long homology domains. The shorter homologous segments are tandemly repeated some six times in each 100-residue-long homology domain. Serine residues in these repeats are potential attachment sites for chondroitin sulphate chains.  相似文献   

8.
9.
The tertiary structure of apolipoprotein (apo) A-I and the contributions of structural domains to the properties of the protein molecule are not well defined. We used a series of engineered human and mouse apoA-I molecules in a range of physical-biochemical measurements to address this issue. Circular dichroism measurements of alpha-helix thermal unfolding and fluorescence spectroscopy measurements of 8-anilino-1-napthalenesulfonic acid binding indicate that removal of the C-terminal 54 amino acid residues from human and mouse apoA-I has similar effects; the molecules are only slightly destabilized, and there is a decrease in hydrophobic surface exposure. These results are consistent with both human and mouse apoA-I adopting a two-domain tertiary structure, comprising an N-terminal antiparallel helix bundle domain and a separate less ordered C-terminal domain. Mouse apoA-I is significantly less resistant than human apoA-I to thermal and chemical denaturation; the midpoint of thermal unfolding of mouse apoA-I at 45 degrees C is 15 degrees C lower and the midpoint of guanidine hydrochloride denaturation (D1/2) occurs at 0.5 M as compared to 1.0 M for human apoA-I. These differences reflect the overall greater stability of the helix bundle formed by residues 1-189 in human apoA-I. Measurements of the heats of binding to egg phosphatidylcholine (PC) small unilamellar vesicles and the kinetics of solubilization of dimyristoyl PC multilamellar vesicles indicate that the more stable human helix bundle interacts poorly with lipids as compared to the equivalent mouse N-terminal domain. The C-terminal domain of human apoA-I is much more hydrophobic than that of mouse apoA-I; in the lipid-free state the human C-terminal domain (residues 190-243) is partially alpha-helical and undergoes cooperative unfolding (D1/2 = 0.3 M) whereas the isolated mouse C-terminal domain (residues 187-240) is disordered in dilute solution. The human C-terminal domain binds to lipid surfaces much more avidly than the equivalent mouse domain. Human and mouse apoA-I have very different tertiary structure domain contributions for achieving functionality. It is clear that the stability of the N-terminal helix bundle, and the hydrophobicity and alpha-helix content of the C-terminal domain, are critical factors in determining the overall properties of the apoA-I molecule.  相似文献   

10.
Akerström S  Tan YJ  Mirazimi A 《FEBS letters》2006,580(16):3799-3803
A synthetic peptide corresponding to amino acids (aa) 15-28 of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3a protein was used to raise polyclonal antibodies in rabbits. This anti-3a N-terminal antibody could detect 3a protein in infected cells, as did an anti-3a C-terminal antibody previously described. The latter targeted the C-terminal cytoplasmic domain of 3a (aa 134-274). The anti-3a N-terminal antibody could detect intracellular 3a as well as 3a expressed on the cell surface. Interestingly, only the anti-3a N-terminal antibody can inhibit SARS-CoV propagation in Vero E6 culture although the binding affinity of the anti-3a N-terminal antibody was lower than the anti-3a C-terminal antibody.  相似文献   

11.
12.
We used yeast three-hybrid system, for studying interaction of alfalfa mosaic virus coat protein AMVCP (AMVCP) with RNA4, which codes this protein. We have shown that AMVCP with high affinity is bound to plus-chain of RNA4 in vivo. The mutational analysis has shown, that the N-terminal part of AMVCP (aa 1 to 85) contains RNA-binding domain. C-terminal part of this protein (aa 86 to 221) does not participate in direct interaction with RNA4. However activity of the reporter-gene LacZ, which codes beta-galactosidase, in case of interaction only N-terminal part of AMVCP is five times lower, in comparison with full-length hybrid protein, that confirms that the tertiary structure of full-length AMVCP is more favourable for interaction with RNA4.  相似文献   

13.
瞿祥虎  翟云  魏汉东  鱼咏涛  贺福初 《遗传》2001,23(6):503-510
从人胎肝cDNA库分离出一长度为5248bp的cDNA克隆,该基因包含26个外显子和25个内含子,染色体定位于在某些肿瘤细胞中易缺失的3p21.1-21.33。其可读框编码1636个氨基酸,该蛋白属于蛋白酪氨酸磷酸酶(PTP)家族,其C端有一个典型的PTP结构域,N端含有约800氨基酸残基的BRO1样结构域及随后2个可能的SH3结构域结合位点,在这两个结构域之间及C末端还各有一个脯氨酸富集区。Northern杂交和点杂交分析显示,该基因以大约5.4kb的单一转录物广泛表达于人体各种组织,而且在人部分肿瘤细胞中高表达。结果提示,人源PTP-TD14是一个新的蛋白酪氨酸磷酸酶。  相似文献   

14.
Soluble lactose-binding vertebrate lectins: a growing family   总被引:8,自引:0,他引:8  
Extracts of rat intestine contain nine soluble lactose-binding lectins with subunit molecular weights ranging from 14,500 to 19,000 that were purified by affinity chromatography and ion-exchange chromatography. Two of them are either identical with or closely related to other known rat lectins. A third appears to be the isolated carbohydrate-binding C-terminal domain of a known lectin but lacks the N-terminal domain presumed to mediate a different function. The others have not been described previously. Among them, the major rat intestinal lectin, RI-H, and a related protein, RI-G, have N-terminal amino acid sequences with similarities to sequences found in other known rat lectins. Therefore, these results introduce new members of a growing family of these structurally homologous soluble lactose-binding proteins.  相似文献   

15.
We have previously isolated and cloned a novel eosinophil chemoattractant (ECA) from a human T-cell-derived expression library. This ECA, termed ecalectin, is a variant of human galectin-9, a member of a beta-galactoside binding animal lectin family, which contains two conserved carbohydrate recognition domains (CRDs). In the present study, we addressed whether carbohydrate binding activity is required for the ECA activity of ecalectin and whether both CRDs are essential for this activity. Recombinant full-length wild-type ecalectin (ecalectin-WT) and N-terminal and C-terminal CRD (ecalectin-NT and -CT, respectively) were generated. All of these recombinant proteins exhibited affinity for lactose, a property shared by galectins, but ecalectin-WT exhibited substantially higher hemagglutination activities than ecalectin-NT and -CT. Furthermore, ecalectin-WT showed over 100-fold higher ECA activity than ecalectin-NT and -CT; combination of recombinant domain fragments did not reconstitute the ECA and hemagglutination activities of the full-length protein. ECA activity of ecalectin-WT was inhibited by lactose in a dose-dependent manner. Site-directed mutation of positions Arg(65) of ecalectin-NT and Arg(239) of ecalectin-CT to an aspartic acid residue resulted in the loss of both lactose-binding and ECA activities. We conclude that divalent galactoside-binding activity is required for eosinophil chemoattraction by ecalectin.  相似文献   

16.
We have determined the complete nucleotide sequence of the mouse gene encoding the neurofilament NF-H protein. The C-terminal domain of NF-H is very rich in charged amino acids (aa) and contains a 3-aa sequence, Lys-Ser-Pro, that is repeated 51 times within a stretch of 368 aa. The location of this serine-rich repeat in the phosphorylated domain of NF-H indicates that it represents the major protein kinase recognition site. The nfh gene shares two common intron positions with the nfl and nfm genes, but has an additional intron that occurs at a location equivalent to one of the introns in non-neuronal intermediate filament-coding genes. This additional nfh intron may have been acquired via duplication of a primordial intermediate filament gene.  相似文献   

17.
Available evidence indicates that oligomerization of the bacteriophage lambda S holin leads to a non-specific lesion in the cytoplasmic membrane which permits transit of the phage encoded transglycosylase to the periplasm. In an attempt to locate an intermolecular interaction domain in S a chimeric protein comprising the N-terminal 32 aa of phage PhiX174 lysis protein E and the last 75 aa of lambda S has been constructed. We report that the EΦS fusion protein is stable, membrane bound, and inhibits S-mediated lysis in trans. C-terminal truncations of the EΦS fusion protein indicated that the hydrophilic C-terminal end of S (i.e. the last 15 aa) is non-essential for oligomerization.  相似文献   

18.
Hsp90 is a dimeric, ATP-regulated molecular chaperone. Its ATPase cycle involves the N-terminal ATP binding domain (amino acids (aa) 1-272) and, in addition, to some extent the middle domain (aa 273-528) and the C-terminal dimerization domain (aa 529-709). To analyze the contribution of the different domains and the oligomeric state on the progression of the ATPase cycle of yeast Hsp90, we created deletion constructs lacking either the C-terminal or both the C-terminal and the middle domain. To test the effect of dimerization on the ATPase activity of the different constructs, we introduced a Cys residue at the C-terminal ends of the constructs, which allowed covalent dimerization. We show that all monomeric constructs tested exhibit reduced ATPase activity and a decreased affinity for ATP in comparison with wild type Hsp90. The covalently linked dimers lacking only the C-terminal domain hydrolyze ATP as efficiently as the wild type protein. Furthermore, this construct is able to trap the ATP molecule similar to the full-length protein. This demonstrates that in the ATPase cycle, the C-terminal domain can be replaced by a cystine bridge. In contrast, the ATPase activity of the artificially linked N-terminal domains remains very low and bound ATP is not trapped. Taken together, we show that both the dimerization of the N-terminal domains and the association of the N-terminal with the middle domain are important for the efficiency of the ATPase cycle. These reactions are synergistic and require Hsp90 to be in the dimeric state.  相似文献   

19.
We have isolated cDNA clones encoding the mouse cytokeratin No. 19 (Ck 19) from an intestinal cDNA library using synthetic oligodeoxyribonucleotides as probes. We obtained four independent clones, which correspond to about 1.4-kb of ck19 cDNA. Nucleotide sequence analysis revealed that these cDNAs encode a protein of 44,541 Da composed of 403 amino acids (aa). The deduced aa sequence defines an alpha-helical central domain, and suggests that the protein lacks a C-terminal non-alpha-helical tail segment, characteristic of the human and bovine 40-kDa keratins (Ck19). The overall aa identity between mouse Ck19 and human and bovine Ck19 is very high, 82.7% and 82.4%, respectively. The coil-forming central domain of mouse Ck19 has 45-65% similarity to other type-I Ck polypeptides, while it displays only 20-30% similarity to type-II Ck polypeptides. Northern blot analysis showed that mouse ck19 mRNA is strongly expressed in adult intestine, stomach and uterus. Interestingly, it is expressed in a placental cell line and a retinoic acid-treated mouse teratocarcinoma cell line (F9), but not in a parietal yolk sac endoderm-like cell line (PYS-2). This pattern of expression is very similar to that for the mouse gene encoding extra-embryonic endodermal cytoskeletal protein C (EndoC), suggesting they may be the same.  相似文献   

20.
The topology of the human erythrocyte membrane anion-transport protein (band 3) has been investigated by isolation and peptide 'mapping' of the major and minor fragments derived from proteolytic cleavage of the lactoperoxidase 125I-labelled protein in erythrocytes and erythrocyte membranes. The content, in each fragment, of lactoperoxidase 125I-labelled sites (which have a known location in the extracellular or cytoplasmic domain of the protein), together with the location of the sites of proteolytic cleavage yielding the fragments, has allowed us to determine the alignment of the fragments on the linear amino acid sequence and to infer the topology of the polypeptide in the membrane. The results suggest that a region in the C-terminal portion of the polypeptide forms part of the cytoplasmic domain of the protein in addition to a large N-terminal segment. The membrane-bound regions of the protein are located in the C-terminal two-thirds of the molecule. In this region the polypeptide chain traverses the membrane at least four times and an additional loop of polypeptide is either embedded in the membrane or also penetrates through it to the other surface. The location of the lectin receptors on the protein and the site of binding of an anion-transport inhibitor have also been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号