首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The effect of cadmium, lead, and mercury on 5-aminolevulinic acid (ALA), porphobilinogen (PBG), and PBG synthase was determined in hepatopancreas of the bivalve, Cerastoderma edule (L.).2. Cd and Hg exposure induced increased ALA content, and thus an initial doubling of ALA within 24 hr.3. Using ALA in excess (8 mmoll−1) as substrate, no PBG synthase (ALA dehydratase, EC 4.2.1.24) activity was detectable in freshly prepared hepatopancreas homogenates.4. Increased ALA in metal exposed bivalves is not a simple effect due to metal inhibition of PBG synthase.5. The observed lack of PBG synthase suggests an alternative to the general pathway where two ALA molecules condense to one PBG.  相似文献   

2.
Aminolevulinic acid (ALA) is formed by the enzyme ALA synthase (hemA gene). Then ALA is converted to Porphobilinogen (PBG) by the ALA dehydratase (hemB gene). For the overproduction of ALA, we used an Escherichia coli BL21(DE3) containing a hemA gene from Bradyrhzobium japonicum, which was created in our previous work. The effects of pH on the ALA synthase and ALA dehydratase were investigated. The ALA synthase and ALA dehydratase activities were dependent on the pH of the medium, with maximal activities occurring at pH 6.5 and 8.0 respectively. At pH 6.5, extracellular ALA reached 23 mM in a jar-fermenter. In addition, the effects of some nutritional factors, such as nitrogen source and the ratio of carbon to nitrogen (C/N) on the fermentative production of ALA were investigated. The highest ALA production was found with 8:1 of C/N ratio. Among various nitrogen sources, the tryptone might be a useful one for ALA production.  相似文献   

3.
E K Jaffe  G D Markham 《Biochemistry》1987,26(14):4258-4264
13C NMR has been used to observe the equilibrium complex of [4-13C]-5-aminolevulinate ([4-13C]ALA) bound to porphobilinogen (PBG) synthase (5-aminolevulinate dehydratase), a 280,000-dalton protein. [4-13C]ALA (chemical shift = 205.9 ppm) forms [3,5-13C]PBG (chemical shifts = 121.0 and 123.0 ppm). PBG prepared from a mixture of [4-13C]ALA and [15N]ALA was used to assign the 121.0 and 123.0 ppm resonances to C5 and C3, respectively. For the enzyme-bound equilibrium complex formed from holoenzyme and [4-13C]ALA, two peaks of equal area with chemical shifts of 121.5 and 127.2 ppm are observed (line widths approximately 50 Hz), indicating that the predominant species is probably a distorted form of PBG. When excess free PBG is present, it is in slow exchange with bound PBG, indicating an exchange rate of less than 10 s-1, which is consistent with the turnover rate of the enzyme. For the complex formed from [4-13C]ALA and methyl methanethiosulfonate (MMTS) modified PBG synthase, which does not catalyze PBG formation, the predominant species is a Schiff base adduct (chemical shift = 166.5 ppm, line width approximately 50 Hz). Free ALA is in slow exchange with the Schiff base. Activation of the MMTS-modified enzyme-Schiff base complex with 113Cd and 2-mercaptoethanol results in the loss of the Schiff base signal and the appearance of bound PBG with the same chemical shifts as for the bound equilibrium complex with Zn(II) enzyme. Neither splitting nor broadening from 113Cd-13C coupling was observed.  相似文献   

4.
E K Jaffe  G D Markham 《Biochemistry》1988,27(12):4475-4481
13C NMR has been used to observe the equilibrium complex of [5,5-2H,5-13C]-5-aminolevulinate [( 5,5-2H,5-13C]ALA) bound to porphobilinogen (PBG) synthase (5-aminolevulinate dehydratase), a 280,000-dalton protein. [5,5-2H,5-13C]ALA (chemical shift 46.9 ppm in D2O) was prepared from [5-13C]ALA through enolization in deuteriated neutral potassium phosphate buffer. In the PBG synthase reaction [5,5-2H,5-13C]ALA forms [2,11,11-2H,2,11-13C]PBG (chemical shifts 116.2 ppm for C2 and 34.2 ppm for C11 in D2O). For the complex formed between [5,5-2H,5-13C]ALA and methyl methanethiosulfonate (MMTS) modified PBG synthase, which does not catalyze PBG formation but can form a Schiff base adduct, the chemical shift of 44.2 ppm (line width 92 Hz) identifies an imine structure as the predominant tautomeric form of the Schiff base. By comparison to model compounds, the stereochemistry of the imine has been deduced; however, the protonation state of the imine nitrogen remains unresolved. Reconstitution of the MMTS-modified enzyme-Schiff base complex with Zn(II) and 2-mercaptoethanol results in the holoenzyme-bound equilibrium complex; this complex contains predominantly enzyme-bound PBG, and spectra reveal two peaks from bound PBG and two from free PBG. For bound PBG, C2 is -2.8 ppm from the free signal and C11 is +2.6 ppm from the free signal; the line widths of the bound signals are 55 and 75 Hz, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
1. The renal cell lines, JTC-12 and MDCK, not only synthesize galactosylceramide 3-sulfate and lactosylceramide 3'-sulfate in vivo, but also contain enzymes that catalyze the transfer of sulfate to galactosylceramide and lactosylceramide in vitro. 2. Concentration of cations necessary for maximum sulfotransferase activity occurred at 40 mM Ca2+ with galactosylceramide and 15 mM Ca2+ with lactosylceramide as the substrate. Na+ was also found to stimulate the sulfation of galactosylceramide, but was slightly inhibitory for the sulfation of lactosylceramide. 3. The products of the in vitro assay mixture were characterized as galactosylceramide 3-sulfate and lactosylceramide 3'-sulfate by a variety of TLC separations. 4. The apparent Km of JTC-12 cells for galactosylceramide was 17 microM, while that for lactosylceramide was 82 microM. The Km values of MDCK cells were comparable to those of JTC-12 cells. Competition studies suggested that galactosylceramide and lactosylceramide were sulfated by a single enzyme in both cell lines.  相似文献   

6.
Summary A light dependent increase of the activity of -aminolaevulinate dehydratase (E.C. 4.2.1.24) in isolated etioplasts of Avena sativa L. was shown. This increase can be assumed to be due to a de-novo synthesis of the enzyme. Chloramphenicol was found to inhibit this synthesis, whereas cycloheximide did not have any effect. Illumination with red light (660 nm) was followed by the same increase of porphobilinogen production as illumination with white light; far-red (731 nm) did not induce such an effect. It is concluded that a phytochrome-mediated mechanism is involved in the induction of -aminolaevulinate dehydratase synthesis.
Abkürzungen ALA -Aminolaevulinsäure - CAP Chloramphenicol - CHI Cycloheximid - PBG Porphobilinogen  相似文献   

7.
Regulation of delta-aminolevulinic acid (ALA) synthase and heme oxygenase was analyzed in primary rat hepatocytes and in two immortalized cell lines, CWSV16 and CWSV17 cells. ALA synthase was induced by 4,6-dioxohepatnoic acid (4,6-DHA), a specific inhibitor of ALA dehydratase, in all three systems; however, the induction in CWSV17 cells was greater than in either of the other two systems. Therefore, CWSV17 cells were used to explore the regulation of both enzymes by heme and 4,6-DHA. Data obtained from detailed concentration curves demonstrated that 4,6-DHA induced the activity of ALA synthase once ALA dehydratase activity became rate-limiting for heme biosynthesis. Heme induced heme oxygenase activity with increases occurring at concentrations of 10 microM or greater. Heme blocked the 4,6-DHA-dependent induction of ALA synthase with an EC50 of 1.25 microM. Heme-dependent decreases of ALA synthase mRNA levels occurred more quickly and at lower concentrations than heme-dependent increases of heme oxygenase mRNA levels. ALA synthase mRNA remained at reduced levels for extended periods of time, while the increases in heme oxygenase mRNA were much more transient. The drastic differences in concentrations and times at which heme-dependent effects were observed strongly suggest that two-different heme-dependent mechanisms control the ALA synthase and heme oxygenase mRNAs. In CWSV17 cells, heme decreased the stability of ALA synthase mRNA from 2.5 to 1.3 h, while 4,6-DHA increased the stability of the mRNA to 5.2 h. These studies demonstrate that regulation of ALA synthase mRNA levels by heme in a mammalian system is mediated by a change in ALA synthase mRNA stability. The results reported here demonstrate the function of the regulatory heme pool on both ALA synthase and heme oxygenase in a mammalian hepatocyte system.  相似文献   

8.
Catalytic properties and membrane associations of the phosphatidylglycerophosphate (PGP) and phosphatidylserine (PS) synthases of Rhodobacter sphaeroides were examined to further characterize sites of phospholipid biosynthesis. In preparations of cytoplasmic membrane (CM) enriched in these activities, apparent K m values of PGP synthase were 90 M for sn-glycerol-3-phosphate and 60 M for CDP-diacylglycerol; the apparent K m of PS synthase for l-serine was near 165 M. Both enzymes required Triton X-100 with optimal PS synthase activity at a detergent/CDP-diacylglycerol (mol/mol) ratio of 7.5:1.0, while for optimal PGP synthase, a range of 10–50:1.0 was observed. Unlike the enzyme in Escherichia coli and several other Gram-negative bacteria, the PS synthase activity had a specific requirement for magnesium and was tightly associated with membranes rather than ribosomes in crude cell extracts. Sedimentation studies suggested that the PGP synthase ws distributed uniformly over the CM in both chemoheterotrophically and photoheterotrophically grown cells, while the PS synthase was confined mainly to a vesicular CM fraction. Solubilized PGP synthase activity migrated as a single band with a pI value near 5.5 in a chromatofocusing column and 5.8 on isoelectric focusing; in the latter procedure, the pI was shifted to 5.3 in the presence of CDP-diacylglycerol. The PGP synthase activity gave rise to a single polypeptide band in lithium dodecyl sulfatepolyacrylamide gel electrophoresis at 4°C.Abbreviations CM cytoplasmic membrane - ICM intracytoplasmic photosynthetic membrane - OM outer membrane - PGP phosphatidylglycerophosphate - PS phosphatidylserine - TLC thin-layer chromatography Supported in part by a Fellowship Awards from the Charles and Johanna Busch Memorial Fund Award to the Rutgers Bureau of Biological Research  相似文献   

9.
Acute intermittent porphyria (AIP) or precursor syndrome is a well described neuropathic clinical entity with incompletely known etiology. The most prominent biological abnormalities associated with this syndrome are elevations in serum and hepatic -aminolevulinic acid (ALA) and porphobilinogen (PBG). We determined the impact of ALA and PBG on human neuroblastoma and glioblastoma tumor cell survival as measured by the MTT assay. ALA proved to be cytotoxic in neuroblastoma cells, while PBG lacked cytotoxic effects. This cytotoxic effect of ALA could be enhanced by deferoxamine and diminished by heme, presumably through modulation of ALA synthesis. In conclusion, ALA excess may prove to be associated with the development of neuropathy in AIP.  相似文献   

10.
Chicken liver fatty acid synthase is cleaved by kallikrein into polypeptides ranging in molecular weight from 10,000 to 100,000. Fractionation of the digest by ammonium sulfate and chromatography on a Matrix Red A affinity column resulted in the isolation of a polypeptide (Mr = 26,000) containing the beta-hydroxyacyl dehydratase activity, but no other partial activities normally associated with the fatty acid synthase. The specific activity of the dehydratase increased 9 to 12 times in this fraction, an increase that is within the expected range based on relative molecular weight. Kinetic parameters of the purified dehydratase toward the model substrate, crotonyl-CoA, showed no change in apparent Km values and a 12-fold increase in Vmax values as compared to dehydratase activity of the intact synthase. However, the purified fragment did not catalyze the hydration of the crotonyl-N-acetylcysteamine derivative, a substrate that is readily hydrated by the intact synthase. Antibodies against the purified 26-kDa fragment cross-react with the intact synthase and the hydratase-containing fragments produced at all stages of digestion with kallikrein or trypsin as shown by Western blot analyses. The results show that the beta-hydroxyl dehydratase activity of the fatty acid synthase is located in the reduction Domain II (Tsukamoto, Y., Wong, H., Mattick, J. S., and Wakil, S. J. (1983) J. Biol. Chem. 258, 15312-15322) of the synthase subunit.  相似文献   

11.
BACKGROUND AND AIMS: Trypanosoma cruzi is the causative agent of Chagas disease or American trypanosomiasis. The parasite manifests a nutritional requirement for heme compounds because of its biosynthesis deficiency. The aim of this study has been to investigate the presence of metabolites and enzymes of porphyrin pathway, as well as ALA formation in epimastigotes of T. cruzi, Tulahuén strain, Tul 2 stock. METHODS: Succinyl CoA synthetase, 5-aminolevulinic acid (ALA) synthetase, 4,5-dioxovaleric (DOVA) transaminase, ALA dehydratase and porphobilinogenase activities, as well as ALA, porphobilinogen (PBG), free porphyrins and heme content were measured in a parasite cells-free extract. Extracellular content of these metabolites was also determined. RESULTS: DOVA, PBG, porphyrins and heme were not detected in acellular extracts of T. cruzi. However ALA was detected both intra- and extracellularly This is the first time that the presence of ALA (98% of intracellularly formed ALA) is demonstrated in the extracellular medium of a parasite culture. Regarding the ALA synthesizing enzymes, DOVA transaminase levels found were low (7.13+/-0.49EU/mg protein), whilst ALA synthetase (ALA-S) activity was undetectable. A compound of non-protein nature, low molecular weight, heat unstable, inhibiting bacterial ALA-S activity was detected in an acellular extract of T. cruzi. This inhibitor could not be identified with either ALA, DOVA or heme. CONCLUSIONS: ALA synthesis is functional in the parasite and it would be regulated by the heme levels, both directly and through the inhibitor factor detected. ALA formed can not be metabolized further, because the necessary enzymes are not active, therefore it should be excreted to avoid intracellular cytotoxicity.  相似文献   

12.
化学发光探针分子FCLA是一种海萤荧光素类似物分子,它可以选择性地与1O2及O2.反应产生化学发光,近年来已被成功用于在组织水平上进行光动力学和声动力学的肿瘤诊断中。但是FCLA在生物样品中能否进入细胞以及在细胞内的定位等问题目前尚不清楚。本文中报道利用激光共焦扫描显微镜进行FCLA和HpD的跨膜效率以及细胞内定位的形态学研究初步结果。结果表明,在37℃培养箱中用完全培养液进行培养时发现,HpD和FCLA都可以有效地跨膜,并定位在细胞质中。虽然FCLA与HpD的分子量大小相近,但是其进入肿瘤细胞的效率却并不相同。与HpD相比FCLA更容易进入细胞,对细胞没有明显的毒性。实验中未观测到FCLA和HpD进入细胞核的证据。本研究为利用1O2和O2.探针FCLA动态观测细胞内1O2或O2.的产生和定位建立了实验基础,并将推动在细胞或亚细胞水平上进行光动力学机制以及光敏过程引起细胞凋亡机制的研究。  相似文献   

13.
Vincent Girard  Michel Fèvre 《Planta》1984,160(5):400-406
Cytoplasmic membranes from mycelium or protoplasts of Saprolegnia monoica (a cellulosic cell-wall fungus) were separated by continuous sucrose-density-gradient centrifugation. Glucan synthases assayed at low (micromolar uridine 5-diphosphate (UDP) glucose for -1-4-glucan synthase) and high (millimolar UDP glucose for -1-3-glucan synthase) substrate concentrations were associated with membranes exhibiting vanadate-sensitive, oligomycin-insensitive ATPase and equilibrating at density 1.16 g cm-3. Synthase activities were also bound to membranes of lower density (1.10 and 1.145 g cm-3). Plasma membranes were stabilized by coating protoplasts with concanavalin A. After lysis of the protoplasts, plasma membranes recovered by low centrifugal forces were isolated in continuous isopycinic gradients. Both synthase activities peaked with [3H]concanavalin A and Na-vanadate ATPase indicating that the synthetases are located at the plasma membrane. Treatments of intact protoplasts with cold glutaraldehyde or proteases before disruption lead to a diminution of glucan-synthase activities indicating that at least part of the enzymes of plasma membrane face the outside of the cell.Abbreviations ConA concanavalin A - ER endoplasmic reticulum - GSI -1,4-glucan synthase - GSH -1,3-glucan synthase - UDP uridine 5-diphosphate  相似文献   

14.
Summary CMCase and -glucosidase were produced by the mutantNeurospora crassa 40b cultivated on untreated wheat straw in a solid state fermentation. Best enzyme activities were observed when the growth medium was composed of wheat straw mixed with certain mineral solutions at a ratio 1:2 (w/v). A partially purified enzyme preparation showed optimum enzyme activities of CMCase and -glucosidase at pH 4.0 and 5.0 and temperature 50 and 60°C respectively. The apparent Km values for the same enzymes were 16.8 g/l and 1.03x10–4 M respectively. At optimum growth and enzyme assay conditions yields as high as 586.2 U CMCase and 58.4 U -glucosidase per gram of straw were obtained.  相似文献   

15.
The genus Propionibacterium has a wide range of probiotic activities that are exploited in dairy and fermentation systems such as cheeses, propionic acid, and tetrapyrrole compounds. In order to improve production of tetrapyrrole compounds, we expressed the hemA gene, which encodes delta-aminolevulinic acid (ALA) synthase from Rhodobacter sphaeroides, and the hemB gene, which encodes porphobilinogen (PBG) synthase from Propionibacterium freudenreichii subsp. shermanii IFO12424, either monocistronically or polycistronically in strain IFO12426. The recombinant strains accumulated larger amounts of ALA and PBG, with resultant 28- to 33-fold-higher production of porphyrinogens, such as uroporphyrinogen and coproporphyrinogen, than those observed in strain IFO12426, which harbored the shuttle vector pPK705.  相似文献   

16.
Constitutive phenolics of chickpea cell suspension cultures are the isoflavones formononetin and biochanin A, the isoflavanones homoferreirin and cicerin and the pterocarpans medicarpin and maackiain. They accumulate as vacuolar malonylglucosides. The biosynthetic pathways to isoflavones, pterocarpans and malonylglucoside conjugates together with their enzymes are explained. Elicitation of cell cultures leads to pronounced increases in the activities of biosynthetic enzymes with differential effects on the enzymes involved in conjugate metabolism. Low elicitor doses favour pterocarpan conjugate formation whereas high doses lead to pterocarpan aglycone accumulation accompanied by vacuolar efflux of formononetin and pterocarpan malonylglucosides. Elicitor-induced changes in enzyme activities and vacuolar efflux of conjugates are prevented by application of 10-3M concentrations of cinnamic acid. Cinnamate is alternatively metabolized to a glucose ester, a S-glutathionyl conjugate and to cell wall bounds forms; these reactions are intensified by elicitation. Isoflavone and pterocarpan biosynthesis and conjugate metabolism as regulated by elicitation and cinnamate is depicted in a metabolic grid to explain the complex regulatory pattern of phenolic accumulation in chickpea cell cultures.Abbreviations AOPP L--aminooxy--phenylpropionic acid - BGM biochanin A 7-0-glucoside-6-0-malonate - FGM formononetin 7-0-glucoside-6-0-malonate - HPLC high performance liquid chromatography - MaGM maackianin 3-0-glucoside-6-0-malonate - MeGM medicarpin 3-0-glucoside-6-0-malonate  相似文献   

17.
The genus Propionibacterium has a wide range of probiotic activities that are exploited in dairy and fermentation systems such as cheeses, propionic acid, and tetrapyrrole compounds. In order to improve production of tetrapyrrole compounds, we expressed the hemA gene, which encodes δ-aminolevulinic acid (ALA) synthase from Rhodobacter sphaeroides, and the hemB gene, which encodes porphobilinogen (PBG) synthase from Propionibacterium freudenreichii subsp. shermanii IFO12424, either monocistronically or polycistronically in strain IFO12426. The recombinant strains accumulated larger amounts of ALA and PBG, with resultant 28- to 33-fold-higher production of porphyrinogens, such as uroporphyrinogen and coproporphyrinogen, than those observed in strain IFO12426, which harbored the shuttle vector pPK705.  相似文献   

18.
BACKGROUND AND AIMS: Acetaminophen (APAP) or paracetamol is a hepatotoxic drug through mechanisms involving oxidative stress. To know whether mammalian cells possess inducible pathways for antioxidant defense, we have to study the relationship between heme metabolism and oxidative stress. METHODS: fasted female Wistar rats received a single injection of APAP (3.3 mmol kg(-1) body weight) and then were killed at different times. Heme oxygenase-1 (HO), delta-aminolevulinic acid (ALA) synthase, ALA dehydratase, and porphobilinogenase activities, lipid peroxidation, GSH, catalase and glutathione peroxidase, were measured in liver homogenates. The antioxidant properties of bilirubin and S-adenosyl-L-methionine were also evaluated. RESULTS: APAP increased lipid peroxidation (115% +/- 6; S.E.M., n=12 over control values) 1 h after treatment. GSH reached a minimum at 3 h (38% +/- 5) increasing thereafter. At the same time antioxidant enzymes reached minimum values (catalase, 5. 6 +/- 0.4 pmol mg(-1) protein, glutathione peroxidase, 0.101 +/- 0.006 U mg(-1) protein). HO induction was observed 6 h after treatment reaching a maximum value of 2.56 +/- 0.12 U mg(-1) protein 15 after injection. ALA synthase (ALA-S) induction occurred after enhancement of HO, reaching a maximum at 18 h (three-fold the control). ALA dehydratase activity was first inhibited (31 +/- 3%) showing a profile similar to that of GSH, while porphobilinogenase activity was not modified along the whole period of the assay. Administration of bilirubin (5 micromol kg(-1) body weight) or S-adenosyl L-methionine (46 micromol kg(-1) body weight) 2 h before APAP treatment entirely prevented the increase in malondialdehyde (MDA) content, the decrease in GSH levels as well as HO and ALA-S induction. CONCLUSION: This study shows that oxidative stress produced by APAP leads to increase in ALA-S and HO activities, indicating that toxic doses of APAP affect both heme biosynthesis and degradation.  相似文献   

19.
Delta-aminolevulinic acid (ALA), precursor of heme, accumulates in a number of organs, particularly in liver of patients with acute porphyrias or lead intoxication. This study characterizes the involvement of bilirubin as an antioxidant in a chronic intoxication with ALA. Female Wistar rats were injected intraperitoneally a daily dose of 40 mg ALA/body wt., during 10 days. A marked increase in lipid peroxidation and a decrease in GSH content were observed 24 h after the last injection of ALA. The activities of liver antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase were also diminished. ALA synthase (ALA-S) and heme oxygenase-1 were induced. Both ALA dehydratase (ALA-D) and porphobilinogenase (PBG-ase) activities were inhibited. Administration of bilirubin (5 mmol/kg body wt.) 2 h before ALA treatment entirely prevented the effects of ALA. Co-administration of ALA and Sn-protoporphyrin IX (Sn-PPIX; 100 microg/body wt., i.p.), a potent inhibitor of heme oxygenase, completely abolished its induction and provoked a marked decrease in liver GSH levels as well as an increase in lipid peroxidation. These results add further support to the proposal assigning bilirubin a key protective role against oxidative damage here induced by ALA.  相似文献   

20.
Summary 2.4-dichlorophenoxyacetic acid (2.4-D) and (2-chloroethyl)-trimethylammonium chloride (CCC) inhibit chlorophyll synthesis and protochlorophyllide 652 regeneration in 6–8 day old barley leaves whilst having little effect on the rates of protochlorophyll 632 synthesis from exogenous -aminelevulinic acid (ALA) and ALA-dehydratase activity. Longer pretreatments with 2.4-D and CCC show it is only after 50 to 60 hr that the rates of P632 production from exogenous ALA and ALA-dehydratase activity are affected. Similar response times were obtained for chloramphenicol (CAP). The results indicate that 2.4-D and CCC may act by directly inhibiting specific plastid-protein synthesis similar to CAP. Hence it seems that it is only those proteins (enzymes) having a rapid turnover that are affected first i.e. the enzymes necessary for ALA synthesis in the plastid.Abbreviations used ALA -aminolevulinic acid - CAP chloramphenicol - CCC (2-chloroethyl)-trimethylammonium chloride - 2.4-D 2-4-dichlorophenoxyacetic acid - P652 prodochlorophyllide with maximum in-vivo absorption at 652 nm - P684 chlorophyllide absorbing at 684 nm - P670 chlorophyllide absorbing at 670 nm - P632 pigment absorbing at 632 nm synthesised from exogenous ALA - PBG Porphobilinogen P. R. Shewry is in receipt of a Science Research Council Studentship award.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号